(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
branred.c
       1  /*
       2   * IBM Accurate Mathematical Library
       3   * Copyright (C) 2001-2023 Free Software Foundation, Inc.
       4   *
       5   * This program is free software; you can redistribute it and/or modify
       6   * it under the terms of the GNU Lesser General Public License as published by
       7   * the Free Software Foundation; either version 2.1 of the License, or
       8   * (at your option) any later version.
       9   *
      10   * This program is distributed in the hope that it will be useful,
      11   * but WITHOUT ANY WARRANTY; without even the implied warranty of
      12   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      13   * GNU Lesser General Public License for more details.
      14   *
      15   * You should have received a copy of the GNU Lesser General Public License
      16   * along with this program; if not, see <https://www.gnu.org/licenses/>.
      17   */
      18  /*******************************************************************/
      19  /*                                                                 */
      20  /* MODULE_NAME: branred.c                                          */
      21  /*                                                                 */
      22  /* FUNCTIONS:   branred                                            */
      23  /*                                                                 */
      24  /* FILES NEEDED: branred.h mydefs.h endian.h mpa.h                 */
      25  /*               mha.c                                             */
      26  /*                                                                 */
      27  /* Routine  branred() performs range  reduction of a double number */
      28  /* x into Double length number  a+aa,such that                     */
      29  /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,....               */
      30  /* Routine returns the integer (n mod 4) of the above description  */
      31  /* of x.                                                           */
      32  /*******************************************************************/
      33  
      34  #include "endian.h"
      35  #include "mydefs.h"
      36  #include "branred.h"
      37  #include <math.h>
      38  #include <math_private.h>
      39  
      40  #ifndef SECTION
      41  # define SECTION
      42  #endif
      43  
      44  
      45  /*******************************************************************/
      46  /* Routine  branred() performs range  reduction of a double number */
      47  /* x into Double length number a+aa,such that                      */
      48  /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,....               */
      49  /* Routine return integer (n mod 4)                                */
      50  /*******************************************************************/
      51  int
      52  SECTION
      53  __branred(double x, double *a, double *aa)
      54  {
      55    int i,k;
      56    mynumber  u,gor;
      57    double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2;
      58  
      59    x*=tm600.x;
      60    t=x*split;   /* split x to two numbers */
      61    x1=t-(t-x);
      62    x2=x-x1;
      63    sum=0;
      64    u.x = x1;
      65    k = (u.i[HIGH_HALF]>>20)&2047;
      66    k = (k-450)/24;
      67    if (k<0)
      68      k=0;
      69    gor.x = t576.x;
      70    gor.i[HIGH_HALF] -= ((k*24)<<20);
      71    for (i=0;i<6;i++)
      72      { r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; }
      73    for (i=0;i<3;i++) {
      74      s=(r[i]+big.x)-big.x;
      75      sum+=s;
      76      r[i]-=s;
      77    }
      78    t=0;
      79    for (i=0;i<6;i++)
      80      t+=r[5-i];
      81    bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
      82    s=(t+big.x)-big.x;
      83    sum+=s;
      84    t-=s;
      85    b=t+bb;
      86    bb=(t-b)+bb;
      87    s=(sum+big1.x)-big1.x;
      88    sum-=s;
      89    b1=b;
      90    bb1=bb;
      91    sum1=sum;
      92    sum=0;
      93  
      94    u.x = x2;
      95    k = (u.i[HIGH_HALF]>>20)&2047;
      96    k = (k-450)/24;
      97    if (k<0)
      98      k=0;
      99    gor.x = t576.x;
     100    gor.i[HIGH_HALF] -= ((k*24)<<20);
     101    for (i=0;i<6;i++)
     102      { r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; }
     103    for (i=0;i<3;i++) {
     104      s=(r[i]+big.x)-big.x;
     105      sum+=s;
     106      r[i]-=s;
     107    }
     108    t=0;
     109    for (i=0;i<6;i++)
     110      t+=r[5-i];
     111    bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
     112    s=(t+big.x)-big.x;
     113   sum+=s;
     114   t-=s;
     115   b=t+bb;
     116   bb=(t-b)+bb;
     117   s=(sum+big1.x)-big1.x;
     118   sum-=s;
     119  
     120   b2=b;
     121   bb2=bb;
     122   sum2=sum;
     123  
     124   sum=sum1+sum2;
     125   b=b1+b2;
     126   bb = (fabs(b1)>fabs(b2))? (b1-b)+b2 : (b2-b)+b1;
     127   if (b > 0.5)
     128     {b-=1.0; sum+=1.0;}
     129   else if (b < -0.5)
     130     {b+=1.0; sum-=1.0;}
     131   s=b+(bb+bb1+bb2);
     132   t=((b-s)+bb)+(bb1+bb2);
     133   b=s*split;
     134   t1=b-(b-s);
     135   t2=s-t1;
     136   b=s*hp0.x;
     137   bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x);
     138   s=b+bb;
     139   t=(b-s)+bb;
     140   *a=s;
     141   *aa=t;
     142   return ((int) sum)&3; /* return quarter of unit circle */
     143  }