(root)/
glibc-2.38/
stdlib/
divmod_1.c
       1  /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
       2     Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
       3     Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
       4     Return the single-limb remainder.
       5     There are no constraints on the value of the divisor.
       6  
       7     QUOT_PTR and DIVIDEND_PTR might point to the same limb.
       8  
       9  Copyright (C) 1991-2023 Free Software Foundation, Inc.
      10  
      11  This file is part of the GNU MP Library.
      12  
      13  The GNU MP Library is free software; you can redistribute it and/or modify
      14  it under the terms of the GNU Lesser General Public License as published by
      15  the Free Software Foundation; either version 2.1 of the License, or (at your
      16  option) any later version.
      17  
      18  The GNU MP Library is distributed in the hope that it will be useful, but
      19  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      20  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      21  License for more details.
      22  
      23  You should have received a copy of the GNU Lesser General Public License
      24  along with the GNU MP Library; see the file COPYING.LIB.  If not, see
      25  <https://www.gnu.org/licenses/>.  */
      26  
      27  #include <gmp.h>
      28  #include "gmp-impl.h"
      29  #include "longlong.h"
      30  
      31  #ifndef UMUL_TIME
      32  #define UMUL_TIME 1
      33  #endif
      34  
      35  #ifndef UDIV_TIME
      36  #define UDIV_TIME UMUL_TIME
      37  #endif
      38  
      39  /* FIXME: We should be using invert_limb (or invert_normalized_limb)
      40     here (not udiv_qrnnd).  */
      41  
      42  mp_limb_t
      43  mpn_divmod_1 (mp_ptr quot_ptr,
      44  	      mp_srcptr dividend_ptr, mp_size_t dividend_size,
      45  	      mp_limb_t divisor_limb)
      46  {
      47    mp_size_t i;
      48    mp_limb_t n1, n0, r;
      49    mp_limb_t dummy __attribute__ ((unused));
      50  
      51    /* ??? Should this be handled at all?  Rely on callers?  */
      52    if (dividend_size == 0)
      53      return 0;
      54  
      55    /* If multiplication is much faster than division, and the
      56       dividend is large, pre-invert the divisor, and use
      57       only multiplications in the inner loop.  */
      58  
      59    /* This test should be read:
      60         Does it ever help to use udiv_qrnnd_preinv?
      61  	 && Does what we save compensate for the inversion overhead?  */
      62    if (UDIV_TIME > (2 * UMUL_TIME + 6)
      63        && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
      64      {
      65        int normalization_steps;
      66  
      67        count_leading_zeros (normalization_steps, divisor_limb);
      68        if (normalization_steps != 0)
      69  	{
      70  	  mp_limb_t divisor_limb_inverted;
      71  
      72  	  divisor_limb <<= normalization_steps;
      73  
      74  	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
      75  	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
      76  	     most significant bit (with weight 2**N) implicit.  */
      77  
      78  	  /* Special case for DIVISOR_LIMB == 100...000.  */
      79  	  if (divisor_limb << 1 == 0)
      80  	    divisor_limb_inverted = ~(mp_limb_t) 0;
      81  	  else
      82  	    udiv_qrnnd (divisor_limb_inverted, dummy,
      83  			-divisor_limb, 0, divisor_limb);
      84  
      85  	  n1 = dividend_ptr[dividend_size - 1];
      86  	  r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
      87  
      88  	  /* Possible optimization:
      89  	     if (r == 0
      90  	     && divisor_limb > ((n1 << normalization_steps)
      91  			     | (dividend_ptr[dividend_size - 2] >> ...)))
      92  	     ...one division less... */
      93  
      94  	  for (i = dividend_size - 2; i >= 0; i--)
      95  	    {
      96  	      n0 = dividend_ptr[i];
      97  	      udiv_qrnnd_preinv (quot_ptr[i + 1], r, r,
      98  				 ((n1 << normalization_steps)
      99  				  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
     100  				 divisor_limb, divisor_limb_inverted);
     101  	      n1 = n0;
     102  	    }
     103  	  udiv_qrnnd_preinv (quot_ptr[0], r, r,
     104  			     n1 << normalization_steps,
     105  			     divisor_limb, divisor_limb_inverted);
     106  	  return r >> normalization_steps;
     107  	}
     108        else
     109  	{
     110  	  mp_limb_t divisor_limb_inverted;
     111  
     112  	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
     113  	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
     114  	     most significant bit (with weight 2**N) implicit.  */
     115  
     116  	  /* Special case for DIVISOR_LIMB == 100...000.  */
     117  	  if (divisor_limb << 1 == 0)
     118  	    divisor_limb_inverted = ~(mp_limb_t) 0;
     119  	  else
     120  	    udiv_qrnnd (divisor_limb_inverted, dummy,
     121  			-divisor_limb, 0, divisor_limb);
     122  
     123  	  i = dividend_size - 1;
     124  	  r = dividend_ptr[i];
     125  
     126  	  if (r >= divisor_limb)
     127  	    r = 0;
     128  	  else
     129  	    {
     130  	      quot_ptr[i] = 0;
     131  	      i--;
     132  	    }
     133  
     134  	  for (; i >= 0; i--)
     135  	    {
     136  	      n0 = dividend_ptr[i];
     137  	      udiv_qrnnd_preinv (quot_ptr[i], r, r,
     138  				 n0, divisor_limb, divisor_limb_inverted);
     139  	    }
     140  	  return r;
     141  	}
     142      }
     143    else
     144      {
     145        if (UDIV_NEEDS_NORMALIZATION)
     146  	{
     147  	  int normalization_steps;
     148  
     149  	  count_leading_zeros (normalization_steps, divisor_limb);
     150  	  if (normalization_steps != 0)
     151  	    {
     152  	      divisor_limb <<= normalization_steps;
     153  
     154  	      n1 = dividend_ptr[dividend_size - 1];
     155  	      r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
     156  
     157  	      /* Possible optimization:
     158  		 if (r == 0
     159  		 && divisor_limb > ((n1 << normalization_steps)
     160  				 | (dividend_ptr[dividend_size - 2] >> ...)))
     161  		 ...one division less... */
     162  
     163  	      for (i = dividend_size - 2; i >= 0; i--)
     164  		{
     165  		  n0 = dividend_ptr[i];
     166  		  udiv_qrnnd (quot_ptr[i + 1], r, r,
     167  			      ((n1 << normalization_steps)
     168  			       | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
     169  			      divisor_limb);
     170  		  n1 = n0;
     171  		}
     172  	      udiv_qrnnd (quot_ptr[0], r, r,
     173  			  n1 << normalization_steps,
     174  			  divisor_limb);
     175  	      return r >> normalization_steps;
     176  	    }
     177  	}
     178        /* No normalization needed, either because udiv_qrnnd doesn't require
     179  	 it, or because DIVISOR_LIMB is already normalized.  */
     180  
     181        i = dividend_size - 1;
     182        r = dividend_ptr[i];
     183  
     184        if (r >= divisor_limb)
     185  	r = 0;
     186        else
     187  	{
     188  	  quot_ptr[i] = 0;
     189  	  i--;
     190  	}
     191  
     192        for (; i >= 0; i--)
     193  	{
     194  	  n0 = dividend_ptr[i];
     195  	  udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb);
     196  	}
     197        return r;
     198      }
     199  }