(root)/
glibc-2.38/
soft-fp/
op-1.h
       1  /* Software floating-point emulation.
       2     Basic one-word fraction declaration and manipulation.
       3     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       4     This file is part of the GNU C Library.
       5  
       6     The GNU C Library is free software; you can redistribute it and/or
       7     modify it under the terms of the GNU Lesser General Public
       8     License as published by the Free Software Foundation; either
       9     version 2.1 of the License, or (at your option) any later version.
      10  
      11     In addition to the permissions in the GNU Lesser General Public
      12     License, the Free Software Foundation gives you unlimited
      13     permission to link the compiled version of this file into
      14     combinations with other programs, and to distribute those
      15     combinations without any restriction coming from the use of this
      16     file.  (The Lesser General Public License restrictions do apply in
      17     other respects; for example, they cover modification of the file,
      18     and distribution when not linked into a combine executable.)
      19  
      20     The GNU C Library is distributed in the hope that it will be useful,
      21     but WITHOUT ANY WARRANTY; without even the implied warranty of
      22     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      23     Lesser General Public License for more details.
      24  
      25     You should have received a copy of the GNU Lesser General Public
      26     License along with the GNU C Library; if not, see
      27     <https://www.gnu.org/licenses/>.  */
      28  
      29  #ifndef SOFT_FP_OP_1_H
      30  #define SOFT_FP_OP_1_H	1
      31  
      32  #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f _FP_ZERO_INIT
      33  #define _FP_FRAC_COPY_1(D, S)	(D##_f = S##_f)
      34  #define _FP_FRAC_SET_1(X, I)	(X##_f = I)
      35  #define _FP_FRAC_HIGH_1(X)	(X##_f)
      36  #define _FP_FRAC_LOW_1(X)	(X##_f)
      37  #define _FP_FRAC_WORD_1(X, w)	(X##_f)
      38  
      39  #define _FP_FRAC_ADDI_1(X, I)	(X##_f += I)
      40  #define _FP_FRAC_SLL_1(X, N)			\
      41    do						\
      42      {						\
      43        if (__builtin_constant_p (N) && (N) == 1)	\
      44  	X##_f += X##_f;				\
      45        else					\
      46  	X##_f <<= (N);				\
      47      }						\
      48    while (0)
      49  #define _FP_FRAC_SRL_1(X, N)	(X##_f >>= N)
      50  
      51  /* Right shift with sticky-lsb.  */
      52  #define _FP_FRAC_SRST_1(X, S, N, sz)	__FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
      53  #define _FP_FRAC_SRS_1(X, N, sz)	__FP_FRAC_SRS_1 (X##_f, (N), (sz))
      54  
      55  #define __FP_FRAC_SRST_1(X, S, N, sz)			\
      56    do							\
      57      {							\
      58        S = (__builtin_constant_p (N) && (N) == 1		\
      59  	   ? X & 1					\
      60  	   : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\
      61        X = X >> (N);					\
      62      }							\
      63    while (0)
      64  
      65  #define __FP_FRAC_SRS_1(X, N, sz)				\
      66    (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1	\
      67  		    ? X & 1					\
      68  		    : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
      69  
      70  #define _FP_FRAC_ADD_1(R, X, Y)	(R##_f = X##_f + Y##_f)
      71  #define _FP_FRAC_SUB_1(R, X, Y)	(R##_f = X##_f - Y##_f)
      72  #define _FP_FRAC_DEC_1(X, Y)	(X##_f -= Y##_f)
      73  #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ ((z), X##_f)
      74  
      75  /* Predicates.  */
      76  #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE) X##_f < 0)
      77  #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
      78  #define _FP_FRAC_OVERP_1(fs, X)	(X##_f & _FP_OVERFLOW_##fs)
      79  #define _FP_FRAC_CLEAR_OVERP_1(fs, X)	(X##_f &= ~_FP_OVERFLOW_##fs)
      80  #define _FP_FRAC_HIGHBIT_DW_1(fs, X)	(X##_f & _FP_HIGHBIT_DW_##fs)
      81  #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
      82  #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
      83  #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
      84  
      85  #define _FP_ZEROFRAC_1		0
      86  #define _FP_MINFRAC_1		1
      87  #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE) 0)
      88  
      89  /* Unpack the raw bits of a native fp value.  Do not classify or
      90     normalize the data.  */
      91  
      92  #define _FP_UNPACK_RAW_1(fs, X, val)			\
      93    do							\
      94      {							\
      95        union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo;	\
      96        _FP_UNPACK_RAW_1_flo.flt = (val);			\
      97  							\
      98        X##_f = _FP_UNPACK_RAW_1_flo.bits.frac;		\
      99        X##_e = _FP_UNPACK_RAW_1_flo.bits.exp;		\
     100        X##_s = _FP_UNPACK_RAW_1_flo.bits.sign;		\
     101      }							\
     102    while (0)
     103  
     104  #define _FP_UNPACK_RAW_1_P(fs, X, val)			\
     105    do							\
     106      {							\
     107        union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo	\
     108  	= (union _FP_UNION_##fs *) (val);		\
     109  							\
     110        X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac;	\
     111        X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp;		\
     112        X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign;	\
     113      }							\
     114    while (0)
     115  
     116  /* Repack the raw bits of a native fp value.  */
     117  
     118  #define _FP_PACK_RAW_1(fs, val, X)		\
     119    do						\
     120      {						\
     121        union _FP_UNION_##fs _FP_PACK_RAW_1_flo;	\
     122  						\
     123        _FP_PACK_RAW_1_flo.bits.frac = X##_f;	\
     124        _FP_PACK_RAW_1_flo.bits.exp  = X##_e;	\
     125        _FP_PACK_RAW_1_flo.bits.sign = X##_s;	\
     126  						\
     127        (val) = _FP_PACK_RAW_1_flo.flt;		\
     128      }						\
     129    while (0)
     130  
     131  #define _FP_PACK_RAW_1_P(fs, val, X)			\
     132    do							\
     133      {							\
     134        union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo	\
     135  	= (union _FP_UNION_##fs *) (val);		\
     136  							\
     137        _FP_PACK_RAW_1_P_flo->bits.frac = X##_f;		\
     138        _FP_PACK_RAW_1_P_flo->bits.exp  = X##_e;		\
     139        _FP_PACK_RAW_1_P_flo->bits.sign = X##_s;		\
     140      }							\
     141    while (0)
     142  
     143  
     144  /* Multiplication algorithms: */
     145  
     146  /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
     147     multiplication immediately.  */
     148  
     149  #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y)	\
     150    do							\
     151      {							\
     152        R##_f = X##_f * Y##_f;				\
     153      }							\
     154    while (0)
     155  
     156  #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
     157    do									\
     158      {									\
     159        _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y);			\
     160        /* Normalize since we know where the msb of the multiplicands	\
     161  	 were (bit B), we know that the msb of the of the product is	\
     162  	 at either 2B or 2B-1.  */					\
     163        _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits));			\
     164      }									\
     165    while (0)
     166  
     167  /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
     168  
     169  #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit)	\
     170    do								\
     171      {								\
     172        doit (R##_f1, R##_f0, X##_f, Y##_f);			\
     173      }								\
     174    while (0)
     175  
     176  #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
     177    do									\
     178      {									\
     179        _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z);				\
     180        _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z,	\
     181  			      X, Y, doit);				\
     182        /* Normalize since we know where the msb of the multiplicands	\
     183  	 were (bit B), we know that the msb of the of the product is	\
     184  	 at either 2B or 2B-1.  */					\
     185        _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1,		\
     186  		      2*(wfracbits));					\
     187        R##_f = _FP_MUL_MEAT_1_wide_Z_f0;					\
     188      }									\
     189    while (0)
     190  
     191  /* Finally, a simple widening multiply algorithm.  What fun!  */
     192  
     193  #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y)			\
     194    do									\
     195      {									\
     196        _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl;	\
     197        _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl;	\
     198        _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a);			\
     199  									\
     200        /* Split the words in half.  */					\
     201        _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2);		\
     202        _FP_MUL_MEAT_DW_1_hard_xl						\
     203  	= X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
     204        _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2);		\
     205        _FP_MUL_MEAT_DW_1_hard_yl						\
     206  	= Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
     207  									\
     208        /* Multiply the pieces.  */					\
     209        R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl;	\
     210        _FP_MUL_MEAT_DW_1_hard_a_f0					\
     211  	= _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl;	\
     212        _FP_MUL_MEAT_DW_1_hard_a_f1					\
     213  	= _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh;	\
     214        R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh;	\
     215  									\
     216        /* Reassemble into two full words.  */				\
     217        if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1)	\
     218  	  < _FP_MUL_MEAT_DW_1_hard_a_f1)				\
     219  	R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2);		\
     220        _FP_MUL_MEAT_DW_1_hard_a_f1					\
     221  	= _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2);		\
     222        _FP_MUL_MEAT_DW_1_hard_a_f0					\
     223  	= _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2);		\
     224        _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a);			\
     225      }									\
     226    while (0)
     227  
     228  #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)			\
     229    do								\
     230      {								\
     231        _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z);			\
     232        _FP_MUL_MEAT_DW_1_hard ((wfracbits),			\
     233  			      _FP_MUL_MEAT_1_hard_z, X, Y);	\
     234  								\
     235        /* Normalize.  */						\
     236        _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z,			\
     237  		      (wfracbits) - 1, 2*(wfracbits));		\
     238        R##_f = _FP_MUL_MEAT_1_hard_z_f0;				\
     239      }								\
     240    while (0)
     241  
     242  
     243  /* Division algorithms: */
     244  
     245  /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
     246     division immediately.  Give this macro either _FP_DIV_HELP_imm for
     247     C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
     248     choose will depend on what the compiler does with divrem4.  */
     249  
     250  #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)				\
     251    do									\
     252      {									\
     253        _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r;		\
     254        X##_f <<= (X##_f < Y##_f						\
     255  		 ? R##_e--, _FP_WFRACBITS_##fs				\
     256  		 : _FP_WFRACBITS_##fs - 1);				\
     257        doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f);	\
     258        R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0);	\
     259      }									\
     260    while (0)
     261  
     262  /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
     263     that may be useful in this situation.  This first is for a primitive
     264     that requires normalization, the second for one that does not.  Look
     265     for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
     266  
     267  #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
     268    do									\
     269      {									\
     270        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh;				\
     271        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl;				\
     272        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q;				\
     273        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r;				\
     274        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y;				\
     275  									\
     276        /* Normalize Y -- i.e. make the most significant bit set.  */	\
     277        _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs;	\
     278  									\
     279        /* Shift X op correspondingly high, that is, up one full word.  */ \
     280        if (X##_f < Y##_f)						\
     281  	{								\
     282  	  R##_e--;							\
     283  	  _FP_DIV_MEAT_1_udiv_norm_nl = 0;				\
     284  	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f;				\
     285  	}								\
     286        else								\
     287  	{								\
     288  	  _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1);	\
     289  	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1;			\
     290  	}								\
     291  									\
     292        udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q,				\
     293  		  _FP_DIV_MEAT_1_udiv_norm_r,				\
     294  		  _FP_DIV_MEAT_1_udiv_norm_nh,				\
     295  		  _FP_DIV_MEAT_1_udiv_norm_nl,				\
     296  		  _FP_DIV_MEAT_1_udiv_norm_y);				\
     297        R##_f = (_FP_DIV_MEAT_1_udiv_norm_q				\
     298  	       | (_FP_DIV_MEAT_1_udiv_norm_r != 0));			\
     299      }									\
     300    while (0)
     301  
     302  #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)				\
     303    do									\
     304      {									\
     305        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl;	\
     306        _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r;		\
     307        if (X##_f < Y##_f)						\
     308  	{								\
     309  	  R##_e--;							\
     310  	  _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs;		\
     311  	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs;	\
     312  	}								\
     313        else								\
     314  	{								\
     315  	  _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
     316  	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
     317  	}								\
     318        udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r,		\
     319  		  _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl,	\
     320  		  Y##_f);						\
     321        R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0);	\
     322      }									\
     323    while (0)
     324  
     325  
     326  /* Square root algorithms:
     327     We have just one right now, maybe Newton approximation
     328     should be added for those machines where division is fast.  */
     329  
     330  #define _FP_SQRT_MEAT_1(R, S, T, X, q)		\
     331    do						\
     332      {						\
     333        while ((q) != _FP_WORK_ROUND)		\
     334  	{					\
     335  	  T##_f = S##_f + (q);			\
     336  	  if (T##_f <= X##_f)			\
     337  	    {					\
     338  	      S##_f = T##_f + (q);		\
     339  	      X##_f -= T##_f;			\
     340  	      R##_f += (q);			\
     341  	    }					\
     342  	  _FP_FRAC_SLL_1 (X, 1);		\
     343  	  (q) >>= 1;				\
     344  	}					\
     345        if (X##_f)				\
     346  	{					\
     347  	  if (S##_f < X##_f)			\
     348  	    R##_f |= _FP_WORK_ROUND;		\
     349  	  R##_f |= _FP_WORK_STICKY;		\
     350  	}					\
     351      }						\
     352    while (0)
     353  
     354  /* Assembly/disassembly for converting to/from integral types.
     355     No shifting or overflow handled here.  */
     356  
     357  #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	((r) = X##_f)
     358  #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = (r))
     359  
     360  
     361  /* Convert FP values between word sizes.  */
     362  
     363  #define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f)
     364  
     365  #endif /* !SOFT_FP_OP_1_H */