(root)/
glibc-2.38/
rt/
aio_misc.c
       1  /* Handle general operations.
       2     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <aio.h>
      20  #include <assert.h>
      21  #include <errno.h>
      22  #include <limits.h>
      23  #include <pthreadP.h>
      24  #include <stdlib.h>
      25  #include <unistd.h>
      26  #include <sys/param.h>
      27  #include <sys/stat.h>
      28  #include <sys/time.h>
      29  #include <aio_misc.h>
      30  
      31  #if !PTHREAD_IN_LIBC
      32  /* The available function names differ outside of libc.  (In libc, we
      33     need to use hidden aliases to avoid the PLT.)  */
      34  # define __pread __libc_pread
      35  # define __pthread_attr_destroy pthread_attr_destroy
      36  # define __pthread_attr_init pthread_attr_init
      37  # define __pthread_attr_setdetachstate pthread_attr_setdetachstate
      38  # define __pthread_cond_signal pthread_cond_signal
      39  # define __pthread_cond_timedwait pthread_cond_timedwait
      40  # define __pthread_getschedparam pthread_getschedparam
      41  # define __pthread_setschedparam pthread_setschedparam
      42  # define __pwrite __libc_pwrite
      43  #endif
      44  
      45  #ifndef aio_create_helper_thread
      46  # define aio_create_helper_thread __aio_create_helper_thread
      47  
      48  extern inline int
      49  __aio_create_helper_thread (pthread_t *threadp, void *(*tf) (void *), void *arg)
      50  {
      51    pthread_attr_t attr;
      52  
      53    /* Make sure the thread is created detached.  */
      54    __pthread_attr_init (&attr);
      55    __pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
      56  
      57    int ret = __pthread_create (threadp, &attr, tf, arg);
      58  
      59    __pthread_attr_destroy (&attr);
      60    return ret;
      61  }
      62  #endif
      63  
      64  static void add_request_to_runlist (struct requestlist *newrequest);
      65  
      66  /* Pool of request list entries.  */
      67  static struct requestlist **pool;
      68  
      69  /* Number of total and allocated pool entries.  */
      70  static size_t pool_max_size;
      71  static size_t pool_size;
      72  
      73  /* We implement a two dimensional array but allocate each row separately.
      74     The macro below determines how many entries should be used per row.
      75     It should better be a power of two.  */
      76  #define ENTRIES_PER_ROW	32
      77  
      78  /* How many rows we allocate at once.  */
      79  #define ROWS_STEP	8
      80  
      81  /* List of available entries.  */
      82  static struct requestlist *freelist;
      83  
      84  /* List of request waiting to be processed.  */
      85  static struct requestlist *runlist;
      86  
      87  /* Structure list of all currently processed requests.  */
      88  static struct requestlist *requests;
      89  
      90  /* Number of threads currently running.  */
      91  static int nthreads;
      92  
      93  /* Number of threads waiting for work to arrive. */
      94  static int idle_thread_count;
      95  
      96  
      97  /* These are the values used to optimize the use of AIO.  The user can
      98     overwrite them by using the `aio_init' function.  */
      99  static struct aioinit optim =
     100  {
     101    20,	/* int aio_threads;	Maximal number of threads.  */
     102    64,	/* int aio_num;		Number of expected simultaneous requests. */
     103    0,
     104    0,
     105    0,
     106    0,
     107    1,
     108    0
     109  };
     110  
     111  
     112  /* Since the list is global we need a mutex protecting it.  */
     113  pthread_mutex_t __aio_requests_mutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
     114  
     115  /* When you add a request to the list and there are idle threads present,
     116     you signal this condition variable. When a thread finishes work, it waits
     117     on this condition variable for a time before it actually exits. */
     118  pthread_cond_t __aio_new_request_notification = PTHREAD_COND_INITIALIZER;
     119  
     120  
     121  /* Functions to handle request list pool.  */
     122  static struct requestlist *
     123  get_elem (void)
     124  {
     125    struct requestlist *result;
     126  
     127    if (freelist == NULL)
     128      {
     129        struct requestlist *new_row;
     130        int cnt;
     131  
     132        assert (sizeof (struct aiocb) == sizeof (struct aiocb64));
     133  
     134        if (pool_size + 1 >= pool_max_size)
     135  	{
     136  	  size_t new_max_size = pool_max_size + ROWS_STEP;
     137  	  struct requestlist **new_tab;
     138  
     139  	  new_tab = (struct requestlist **)
     140  	    realloc (pool, new_max_size * sizeof (struct requestlist *));
     141  
     142  	  if (new_tab == NULL)
     143  	    return NULL;
     144  
     145  	  pool_max_size = new_max_size;
     146  	  pool = new_tab;
     147  	}
     148  
     149        /* Allocate the new row.  */
     150        cnt = pool_size == 0 ? optim.aio_num : ENTRIES_PER_ROW;
     151        new_row = (struct requestlist *) calloc (cnt,
     152  					       sizeof (struct requestlist));
     153        if (new_row == NULL)
     154  	return NULL;
     155  
     156        pool[pool_size++] = new_row;
     157  
     158        /* Put all the new entries in the freelist.  */
     159        do
     160  	{
     161  	  new_row->next_prio = freelist;
     162  	  freelist = new_row++;
     163  	}
     164        while (--cnt > 0);
     165      }
     166  
     167    result = freelist;
     168    freelist = freelist->next_prio;
     169  
     170    return result;
     171  }
     172  
     173  
     174  void
     175  __aio_free_request (struct requestlist *elem)
     176  {
     177    elem->running = no;
     178    elem->next_prio = freelist;
     179    freelist = elem;
     180  }
     181  
     182  
     183  struct requestlist *
     184  __aio_find_req (aiocb_union *elem)
     185  {
     186    struct requestlist *runp = requests;
     187    int fildes = elem->aiocb.aio_fildes;
     188  
     189    while (runp != NULL && runp->aiocbp->aiocb.aio_fildes < fildes)
     190      runp = runp->next_fd;
     191  
     192    if (runp != NULL)
     193      {
     194        if (runp->aiocbp->aiocb.aio_fildes != fildes)
     195  	runp = NULL;
     196        else
     197  	while (runp != NULL && runp->aiocbp != elem)
     198  	  runp = runp->next_prio;
     199      }
     200  
     201    return runp;
     202  }
     203  
     204  
     205  struct requestlist *
     206  __aio_find_req_fd (int fildes)
     207  {
     208    struct requestlist *runp = requests;
     209  
     210    while (runp != NULL && runp->aiocbp->aiocb.aio_fildes < fildes)
     211      runp = runp->next_fd;
     212  
     213    return (runp != NULL && runp->aiocbp->aiocb.aio_fildes == fildes
     214  	  ? runp : NULL);
     215  }
     216  
     217  
     218  void
     219  __aio_remove_request (struct requestlist *last, struct requestlist *req,
     220  		      int all)
     221  {
     222    assert (req->running == yes || req->running == queued
     223  	  || req->running == done);
     224  
     225    if (last != NULL)
     226      last->next_prio = all ? NULL : req->next_prio;
     227    else
     228      {
     229        if (all || req->next_prio == NULL)
     230  	{
     231  	  if (req->last_fd != NULL)
     232  	    req->last_fd->next_fd = req->next_fd;
     233  	  else
     234  	    requests = req->next_fd;
     235  	  if (req->next_fd != NULL)
     236  	    req->next_fd->last_fd = req->last_fd;
     237  	}
     238        else
     239  	{
     240  	  if (req->last_fd != NULL)
     241  	    req->last_fd->next_fd = req->next_prio;
     242  	  else
     243  	    requests = req->next_prio;
     244  
     245  	  if (req->next_fd != NULL)
     246  	    req->next_fd->last_fd = req->next_prio;
     247  
     248  	  req->next_prio->last_fd = req->last_fd;
     249  	  req->next_prio->next_fd = req->next_fd;
     250  
     251  	  /* Mark this entry as runnable.  */
     252  	  req->next_prio->running = yes;
     253  	}
     254  
     255        if (req->running == yes)
     256  	{
     257  	  struct requestlist *runp = runlist;
     258  
     259  	  last = NULL;
     260  	  while (runp != NULL)
     261  	    {
     262  	      if (runp == req)
     263  		{
     264  		  if (last == NULL)
     265  		    runlist = runp->next_run;
     266  		  else
     267  		    last->next_run = runp->next_run;
     268  		  break;
     269  		}
     270  	      last = runp;
     271  	      runp = runp->next_run;
     272  	    }
     273  	}
     274      }
     275  }
     276  
     277  
     278  /* The thread handler.  */
     279  static void *handle_fildes_io (void *arg);
     280  
     281  
     282  /* User optimization.  */
     283  void
     284  __aio_init (const struct aioinit *init)
     285  {
     286    /* Get the mutex.  */
     287    __pthread_mutex_lock (&__aio_requests_mutex);
     288  
     289    /* Only allow writing new values if the table is not yet allocated.  */
     290    if (pool == NULL)
     291      {
     292        optim.aio_threads = init->aio_threads < 1 ? 1 : init->aio_threads;
     293        assert (powerof2 (ENTRIES_PER_ROW));
     294        optim.aio_num = (init->aio_num < ENTRIES_PER_ROW
     295  		       ? ENTRIES_PER_ROW
     296  		       : init->aio_num & ~(ENTRIES_PER_ROW - 1));
     297      }
     298  
     299    if (init->aio_idle_time != 0)
     300      optim.aio_idle_time = init->aio_idle_time;
     301  
     302    /* Release the mutex.  */
     303    __pthread_mutex_unlock (&__aio_requests_mutex);
     304  }
     305  
     306  
     307  /* The main function of the async I/O handling.  It enqueues requests
     308     and if necessary starts and handles threads.  */
     309  struct requestlist *
     310  __aio_enqueue_request (aiocb_union *aiocbp, int operation)
     311  {
     312    int result = 0;
     313    int policy, prio;
     314    struct sched_param param;
     315    struct requestlist *last, *runp, *newp;
     316    int running = no;
     317  
     318    if (operation == LIO_SYNC || operation == LIO_DSYNC)
     319      aiocbp->aiocb.aio_reqprio = 0;
     320    else if (aiocbp->aiocb.aio_reqprio < 0
     321  #ifdef AIO_PRIO_DELTA_MAX
     322  	   || aiocbp->aiocb.aio_reqprio > AIO_PRIO_DELTA_MAX
     323  #endif
     324  	   )
     325      {
     326        /* Invalid priority value.  */
     327        __set_errno (EINVAL);
     328        aiocbp->aiocb.__error_code = EINVAL;
     329        aiocbp->aiocb.__return_value = -1;
     330        return NULL;
     331      }
     332  
     333    /* Compute priority for this request.  */
     334    __pthread_getschedparam (__pthread_self (), &policy, &param);
     335    prio = param.sched_priority - aiocbp->aiocb.aio_reqprio;
     336  
     337    /* Get the mutex.  */
     338    __pthread_mutex_lock (&__aio_requests_mutex);
     339  
     340    last = NULL;
     341    runp = requests;
     342    /* First look whether the current file descriptor is currently
     343       worked with.  */
     344    while (runp != NULL
     345  	 && runp->aiocbp->aiocb.aio_fildes < aiocbp->aiocb.aio_fildes)
     346      {
     347        last = runp;
     348        runp = runp->next_fd;
     349      }
     350  
     351    /* Get a new element for the waiting list.  */
     352    newp = get_elem ();
     353    if (newp == NULL)
     354      {
     355        __pthread_mutex_unlock (&__aio_requests_mutex);
     356        __set_errno (EAGAIN);
     357        return NULL;
     358      }
     359    newp->aiocbp = aiocbp;
     360    newp->waiting = NULL;
     361  
     362    aiocbp->aiocb.__abs_prio = prio;
     363    aiocbp->aiocb.__policy = policy;
     364    aiocbp->aiocb.aio_lio_opcode = operation;
     365    aiocbp->aiocb.__error_code = EINPROGRESS;
     366    aiocbp->aiocb.__return_value = 0;
     367  
     368    if (runp != NULL
     369        && runp->aiocbp->aiocb.aio_fildes == aiocbp->aiocb.aio_fildes)
     370      {
     371        /* The current file descriptor is worked on.  It makes no sense
     372  	 to start another thread since this new thread would fight
     373  	 with the running thread for the resources.  But we also cannot
     374  	 say that the thread processing this descriptor shall immediately
     375  	 after finishing the current job process this request if there
     376  	 are other threads in the running queue which have a higher
     377  	 priority.  */
     378  
     379        /* Simply enqueue it after the running one according to the
     380  	 priority.  */
     381        last = NULL;
     382        while (runp->next_prio != NULL
     383  	     && runp->next_prio->aiocbp->aiocb.__abs_prio >= prio)
     384  	{
     385  	  last = runp;
     386  	  runp = runp->next_prio;
     387  	}
     388  
     389        newp->next_prio = runp->next_prio;
     390        runp->next_prio = newp;
     391  
     392        running = queued;
     393      }
     394    else
     395      {
     396        running = yes;
     397        /* Enqueue this request for a new descriptor.  */
     398        if (last == NULL)
     399  	{
     400  	  newp->last_fd = NULL;
     401  	  newp->next_fd = requests;
     402  	  if (requests != NULL)
     403  	    requests->last_fd = newp;
     404  	  requests = newp;
     405  	}
     406        else
     407  	{
     408  	  newp->next_fd = last->next_fd;
     409  	  newp->last_fd = last;
     410  	  last->next_fd = newp;
     411  	  if (newp->next_fd != NULL)
     412  	    newp->next_fd->last_fd = newp;
     413  	}
     414  
     415        newp->next_prio = NULL;
     416        last = NULL;
     417      }
     418  
     419    if (running == yes)
     420      {
     421        /* We try to create a new thread for this file descriptor.  The
     422  	 function which gets called will handle all available requests
     423  	 for this descriptor and when all are processed it will
     424  	 terminate.
     425  
     426  	 If no new thread can be created or if the specified limit of
     427  	 threads for AIO is reached we queue the request.  */
     428  
     429        /* See if we need to and are able to create a thread.  */
     430        if (nthreads < optim.aio_threads && idle_thread_count == 0)
     431  	{
     432  	  pthread_t thid;
     433  
     434  	  running = newp->running = allocated;
     435  
     436  	  /* Now try to start a thread.  */
     437  	  result = aio_create_helper_thread (&thid, handle_fildes_io, newp);
     438  	  if (result == 0)
     439  	    /* We managed to enqueue the request.  All errors which can
     440  	       happen now can be recognized by calls to `aio_return' and
     441  	       `aio_error'.  */
     442  	    ++nthreads;
     443  	  else
     444  	    {
     445  	      /* Reset the running flag.  The new request is not running.  */
     446  	      running = newp->running = yes;
     447  
     448  	      if (nthreads == 0)
     449  		{
     450  		  /* We cannot create a thread in the moment and there is
     451  		     also no thread running.  This is a problem.  `errno' is
     452  		     set to EAGAIN if this is only a temporary problem.  */
     453  		  __aio_remove_request (last, newp, 0);
     454  		}
     455  	      else
     456  		result = 0;
     457  	    }
     458  	}
     459      }
     460  
     461    /* Enqueue the request in the run queue if it is not yet running.  */
     462    if (running == yes && result == 0)
     463      {
     464        add_request_to_runlist (newp);
     465  
     466        /* If there is a thread waiting for work, then let it know that we
     467  	 have just given it something to do. */
     468        if (idle_thread_count > 0)
     469  	__pthread_cond_signal (&__aio_new_request_notification);
     470      }
     471  
     472    if (result == 0)
     473      newp->running = running;
     474    else
     475      {
     476        /* Something went wrong.  */
     477        __aio_free_request (newp);
     478        aiocbp->aiocb.__error_code = result;
     479        __set_errno (result);
     480        newp = NULL;
     481      }
     482  
     483    /* Release the mutex.  */
     484    __pthread_mutex_unlock (&__aio_requests_mutex);
     485  
     486    return newp;
     487  }
     488  
     489  
     490  static void *
     491  handle_fildes_io (void *arg)
     492  {
     493    pthread_t self = __pthread_self ();
     494    struct sched_param param;
     495    struct requestlist *runp = (struct requestlist *) arg;
     496    aiocb_union *aiocbp;
     497    int policy;
     498    int fildes;
     499  
     500    __pthread_getschedparam (self, &policy, &param);
     501  
     502    do
     503      {
     504        /* If runp is NULL, then we were created to service the work queue
     505  	 in general, not to handle any particular request. In that case we
     506  	 skip the "do work" stuff on the first pass, and go directly to the
     507  	 "get work off the work queue" part of this loop, which is near the
     508  	 end. */
     509        if (runp == NULL)
     510  	__pthread_mutex_lock (&__aio_requests_mutex);
     511        else
     512  	{
     513  	  /* Hopefully this request is marked as running.  */
     514  	  assert (runp->running == allocated);
     515  
     516  	  /* Update our variables.  */
     517  	  aiocbp = runp->aiocbp;
     518  	  fildes = aiocbp->aiocb.aio_fildes;
     519  
     520  	  /* Change the priority to the requested value (if necessary).  */
     521  	  if (aiocbp->aiocb.__abs_prio != param.sched_priority
     522  	      || aiocbp->aiocb.__policy != policy)
     523  	    {
     524  	      param.sched_priority = aiocbp->aiocb.__abs_prio;
     525  	      policy = aiocbp->aiocb.__policy;
     526  	      __pthread_setschedparam (self, policy, &param);
     527  	    }
     528  
     529  	  /* Process request pointed to by RUNP.  We must not be disturbed
     530  	     by signals.  */
     531  	  if ((aiocbp->aiocb.aio_lio_opcode & 127) == LIO_READ)
     532  	    {
     533  	      if (sizeof (off_t) != sizeof (off64_t)
     534  		  && aiocbp->aiocb.aio_lio_opcode & 128)
     535  		aiocbp->aiocb.__return_value =
     536  		  TEMP_FAILURE_RETRY (__pread64 (fildes, (void *)
     537  						 aiocbp->aiocb64.aio_buf,
     538  						 aiocbp->aiocb64.aio_nbytes,
     539  						 aiocbp->aiocb64.aio_offset));
     540  	      else
     541  		aiocbp->aiocb.__return_value =
     542  		  TEMP_FAILURE_RETRY (__pread (fildes,
     543  					       (void *)
     544  					       aiocbp->aiocb.aio_buf,
     545  					       aiocbp->aiocb.aio_nbytes,
     546  					       aiocbp->aiocb.aio_offset));
     547  
     548  	      if (aiocbp->aiocb.__return_value == -1 && errno == ESPIPE)
     549  		/* The Linux kernel is different from others.  It returns
     550  		   ESPIPE if using pread on a socket.  Other platforms
     551  		   simply ignore the offset parameter and behave like
     552  		   read.  */
     553  		aiocbp->aiocb.__return_value =
     554  		  TEMP_FAILURE_RETRY (read (fildes,
     555  					    (void *) aiocbp->aiocb64.aio_buf,
     556  					    aiocbp->aiocb64.aio_nbytes));
     557  	    }
     558  	  else if ((aiocbp->aiocb.aio_lio_opcode & 127) == LIO_WRITE)
     559  	    {
     560  	      if (sizeof (off_t) != sizeof (off64_t)
     561  		  && aiocbp->aiocb.aio_lio_opcode & 128)
     562  		aiocbp->aiocb.__return_value =
     563  		  TEMP_FAILURE_RETRY (__pwrite64 (fildes, (const void *)
     564  						  aiocbp->aiocb64.aio_buf,
     565  						  aiocbp->aiocb64.aio_nbytes,
     566  						  aiocbp->aiocb64.aio_offset));
     567  	      else
     568  		aiocbp->aiocb.__return_value =
     569  		  TEMP_FAILURE_RETRY (__pwrite (fildes, (const void *)
     570  						aiocbp->aiocb.aio_buf,
     571  						aiocbp->aiocb.aio_nbytes,
     572  						aiocbp->aiocb.aio_offset));
     573  
     574  	      if (aiocbp->aiocb.__return_value == -1 && errno == ESPIPE)
     575  		/* The Linux kernel is different from others.  It returns
     576  		   ESPIPE if using pwrite on a socket.  Other platforms
     577  		   simply ignore the offset parameter and behave like
     578  		   write.  */
     579  		aiocbp->aiocb.__return_value =
     580  		  TEMP_FAILURE_RETRY (write (fildes,
     581  					     (void *) aiocbp->aiocb64.aio_buf,
     582  					     aiocbp->aiocb64.aio_nbytes));
     583  	    }
     584  	  else if (aiocbp->aiocb.aio_lio_opcode == LIO_DSYNC)
     585  	    aiocbp->aiocb.__return_value =
     586  	      TEMP_FAILURE_RETRY (fdatasync (fildes));
     587  	  else if (aiocbp->aiocb.aio_lio_opcode == LIO_SYNC)
     588  	    aiocbp->aiocb.__return_value =
     589  	      TEMP_FAILURE_RETRY (fsync (fildes));
     590  	  else
     591  	    {
     592  	      /* This is an invalid opcode.  */
     593  	      aiocbp->aiocb.__return_value = -1;
     594  	      __set_errno (EINVAL);
     595  	    }
     596  
     597  	  /* Get the mutex.  */
     598  	  __pthread_mutex_lock (&__aio_requests_mutex);
     599  
     600  	  if (aiocbp->aiocb.__return_value == -1)
     601  	    aiocbp->aiocb.__error_code = errno;
     602  	  else
     603  	    aiocbp->aiocb.__error_code = 0;
     604  
     605  	  /* Send the signal to notify about finished processing of the
     606  	     request.  */
     607  	  __aio_notify (runp);
     608  
     609  	  /* For debugging purposes we reset the running flag of the
     610  	     finished request.  */
     611  	  assert (runp->running == allocated);
     612  	  runp->running = done;
     613  
     614  	  /* Now dequeue the current request.  */
     615  	  __aio_remove_request (NULL, runp, 0);
     616  	  if (runp->next_prio != NULL)
     617  	    add_request_to_runlist (runp->next_prio);
     618  
     619  	  /* Free the old element.  */
     620  	  __aio_free_request (runp);
     621  	}
     622  
     623        runp = runlist;
     624  
     625        /* If the runlist is empty, then we sleep for a while, waiting for
     626  	 something to arrive in it. */
     627        if (runp == NULL && optim.aio_idle_time >= 0)
     628  	{
     629  	  struct timespec now;
     630  	  struct timespec wakeup_time;
     631  
     632  	  ++idle_thread_count;
     633  	  __clock_gettime (CLOCK_REALTIME, &now);
     634  	  wakeup_time.tv_sec = now.tv_sec + optim.aio_idle_time;
     635  	  wakeup_time.tv_nsec = now.tv_nsec;
     636  	  if (wakeup_time.tv_nsec >= 1000000000)
     637  	    {
     638  	      wakeup_time.tv_nsec -= 1000000000;
     639  	      ++wakeup_time.tv_sec;
     640  	    }
     641  	  __pthread_cond_timedwait (&__aio_new_request_notification,
     642  				    &__aio_requests_mutex,
     643  				    &wakeup_time);
     644  	  --idle_thread_count;
     645  	  runp = runlist;
     646  	}
     647  
     648        if (runp == NULL)
     649  	--nthreads;
     650        else
     651  	{
     652  	  assert (runp->running == yes);
     653  	  runp->running = allocated;
     654  	  runlist = runp->next_run;
     655  
     656  	  /* If we have a request to process, and there's still another in
     657  	     the run list, then we need to either wake up or create a new
     658  	     thread to service the request that is still in the run list. */
     659  	  if (runlist != NULL)
     660  	    {
     661  	      /* There are at least two items in the work queue to work on.
     662  		 If there are other idle threads, then we should wake them
     663  		 up for these other work elements; otherwise, we should try
     664  		 to create a new thread. */
     665  	      if (idle_thread_count > 0)
     666  		__pthread_cond_signal (&__aio_new_request_notification);
     667  	      else if (nthreads < optim.aio_threads)
     668  		{
     669  		  pthread_t thid;
     670  		  pthread_attr_t attr;
     671  
     672  		  /* Make sure the thread is created detached.  */
     673  		  __pthread_attr_init (&attr);
     674  		  __pthread_attr_setdetachstate (&attr,
     675  						 PTHREAD_CREATE_DETACHED);
     676  
     677  		  /* Now try to start a thread. If we fail, no big deal,
     678  		     because we know that there is at least one thread (us)
     679  		     that is working on AIO operations. */
     680  		  if (__pthread_create (&thid, &attr, handle_fildes_io, NULL)
     681  		      == 0)
     682  		    ++nthreads;
     683  		}
     684  	    }
     685  	}
     686  
     687        /* Release the mutex.  */
     688        __pthread_mutex_unlock (&__aio_requests_mutex);
     689      }
     690    while (runp != NULL);
     691  
     692    return NULL;
     693  }
     694  
     695  
     696  /* Free allocated resources.  */
     697  #if !PTHREAD_IN_LIBC
     698  __attribute__ ((__destructor__)) static
     699  #endif
     700  void
     701  __aio_freemem (void)
     702  {
     703    size_t row;
     704  
     705    for (row = 0; row < pool_size; ++row)
     706      free (pool[row]);
     707  
     708    free (pool);
     709  }
     710  
     711  
     712  /* Add newrequest to the runlist. The __abs_prio flag of newrequest must
     713     be correctly set to do this. Also, you had better set newrequest's
     714     "running" flag to "yes" before you release your lock or you'll throw an
     715     assertion. */
     716  static void
     717  add_request_to_runlist (struct requestlist *newrequest)
     718  {
     719    int prio = newrequest->aiocbp->aiocb.__abs_prio;
     720    struct requestlist *runp;
     721  
     722    if (runlist == NULL || runlist->aiocbp->aiocb.__abs_prio < prio)
     723      {
     724        newrequest->next_run = runlist;
     725        runlist = newrequest;
     726      }
     727    else
     728      {
     729        runp = runlist;
     730  
     731        while (runp->next_run != NULL
     732  	     && runp->next_run->aiocbp->aiocb.__abs_prio >= prio)
     733  	runp = runp->next_run;
     734  
     735        newrequest->next_run = runp->next_run;
     736        runp->next_run = newrequest;
     737      }
     738  }
     739  
     740  #if PTHREAD_IN_LIBC
     741  versioned_symbol (libc, __aio_init, aio_init, GLIBC_2_34);
     742  # if OTHER_SHLIB_COMPAT (librt, GLIBC_2_1, GLIBC_2_34)
     743  compat_symbol (librt, __aio_init, aio_init, GLIBC_2_1);
     744  # endif
     745  #else /* !PTHREAD_IN_LIBC */
     746  weak_alias (__aio_init, aio_init)
     747  #endif /* !PTHREAD_IN_LIBC */