(root)/
glibc-2.38/
math/
k_casinh_template.c
       1  /* Return arc hyperbolic sine for a complex float type, with the
       2     imaginary part of the result possibly adjusted for use in
       3     computing other functions.
       4     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       5     This file is part of the GNU C Library.
       6  
       7     The GNU C Library is free software; you can redistribute it and/or
       8     modify it under the terms of the GNU Lesser General Public
       9     License as published by the Free Software Foundation; either
      10     version 2.1 of the License, or (at your option) any later version.
      11  
      12     The GNU C Library is distributed in the hope that it will be useful,
      13     but WITHOUT ANY WARRANTY; without even the implied warranty of
      14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15     Lesser General Public License for more details.
      16  
      17     You should have received a copy of the GNU Lesser General Public
      18     License along with the GNU C Library; if not, see
      19     <https://www.gnu.org/licenses/>.  */
      20  
      21  #include <complex.h>
      22  #include <math.h>
      23  #include <math_private.h>
      24  #include <math-underflow.h>
      25  #include <float.h>
      26  
      27  /* Return the complex inverse hyperbolic sine of finite nonzero Z,
      28     with the imaginary part of the result subtracted from pi/2 if ADJ
      29     is nonzero.  */
      30  
      31  CFLOAT
      32  M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
      33  {
      34    CFLOAT res;
      35    FLOAT rx, ix;
      36    CFLOAT y;
      37  
      38    /* Avoid cancellation by reducing to the first quadrant.  */
      39    rx = M_FABS (__real__ x);
      40    ix = M_FABS (__imag__ x);
      41  
      42    if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
      43      {
      44        /* For large x in the first quadrant, x + csqrt (1 + x * x)
      45  	 is sufficiently close to 2 * x to make no significant
      46  	 difference to the result; avoid possible overflow from
      47  	 the squaring and addition.  */
      48        __real__ y = rx;
      49        __imag__ y = ix;
      50  
      51        if (adj)
      52  	{
      53  	  FLOAT t = __real__ y;
      54  	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
      55  	  __imag__ y = t;
      56  	}
      57  
      58        res = M_SUF (__clog) (y);
      59        __real__ res += M_MLIT (M_LN2);
      60      }
      61    else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
      62      {
      63        FLOAT s = M_HYPOT (1, rx);
      64  
      65        __real__ res = M_LOG (rx + s);
      66        if (adj)
      67  	__imag__ res = M_ATAN2 (s, __imag__ x);
      68        else
      69  	__imag__ res = M_ATAN2 (ix, s);
      70      }
      71    else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
      72      {
      73        FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
      74  
      75        __real__ res = M_LOG (ix + s);
      76        if (adj)
      77  	__imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
      78        else
      79  	__imag__ res = M_ATAN2 (s, rx);
      80      }
      81    else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
      82      {
      83        if (rx < M_EPSILON * M_EPSILON)
      84  	{
      85  	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
      86  	  FLOAT s = M_SQRT (ix2m1);
      87  
      88  	  __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
      89  	  if (adj)
      90  	    __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
      91  	  else
      92  	    __imag__ res = M_ATAN2 (s, rx);
      93  	}
      94        else
      95  	{
      96  	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
      97  	  FLOAT rx2 = rx * rx;
      98  	  FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
      99  	  FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
     100  	  FLOAT dp = d + ix2m1;
     101  	  FLOAT dm = f / dp;
     102  	  FLOAT r1 = M_SQRT ((dm + rx2) / 2);
     103  	  FLOAT r2 = rx * ix / r1;
     104  
     105  	  __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
     106  	  if (adj)
     107  	    __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
     108  	  else
     109  	    __imag__ res = M_ATAN2 (ix + r2, rx + r1);
     110  	}
     111      }
     112    else if (ix == 1 && rx < M_LIT (0.5))
     113      {
     114        if (rx < M_EPSILON / 8)
     115  	{
     116  	  __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
     117  	  if (adj)
     118  	    __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
     119  	  else
     120  	    __imag__ res = M_ATAN2 (1, M_SQRT (rx));
     121  	}
     122        else
     123  	{
     124  	  FLOAT d = rx * M_SQRT (4 + rx * rx);
     125  	  FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
     126  	  FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
     127  
     128  	  __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
     129  	  if (adj)
     130  	    __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
     131  	  else
     132  	    __imag__ res = M_ATAN2 (1 + s2, rx + s1);
     133  	}
     134      }
     135    else if (ix < 1 && rx < M_LIT (0.5))
     136      {
     137        if (ix >= M_EPSILON)
     138  	{
     139  	  if (rx < M_EPSILON * M_EPSILON)
     140  	    {
     141  	      FLOAT onemix2 = (1 + ix) * (1 - ix);
     142  	      FLOAT s = M_SQRT (onemix2);
     143  
     144  	      __real__ res = M_LOG1P (2 * rx / s) / 2;
     145  	      if (adj)
     146  		__imag__ res = M_ATAN2 (s, __imag__ x);
     147  	      else
     148  		__imag__ res = M_ATAN2 (ix, s);
     149  	    }
     150  	  else
     151  	    {
     152  	      FLOAT onemix2 = (1 + ix) * (1 - ix);
     153  	      FLOAT rx2 = rx * rx;
     154  	      FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
     155  	      FLOAT d = M_SQRT (onemix2 * onemix2 + f);
     156  	      FLOAT dp = d + onemix2;
     157  	      FLOAT dm = f / dp;
     158  	      FLOAT r1 = M_SQRT ((dp + rx2) / 2);
     159  	      FLOAT r2 = rx * ix / r1;
     160  
     161  	      __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
     162  	      if (adj)
     163  		__imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
     164  							     __imag__ x));
     165  	      else
     166  		__imag__ res = M_ATAN2 (ix + r2, rx + r1);
     167  	    }
     168  	}
     169        else
     170  	{
     171  	  FLOAT s = M_HYPOT (1, rx);
     172  
     173  	  __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
     174  	  if (adj)
     175  	    __imag__ res = M_ATAN2 (s, __imag__ x);
     176  	  else
     177  	    __imag__ res = M_ATAN2 (ix, s);
     178  	}
     179        math_check_force_underflow_nonneg (__real__ res);
     180      }
     181    else
     182      {
     183        __real__ y = (rx - ix) * (rx + ix) + 1;
     184        __imag__ y = 2 * rx * ix;
     185  
     186        y = M_SUF (__csqrt) (y);
     187  
     188        __real__ y += rx;
     189        __imag__ y += ix;
     190  
     191        if (adj)
     192  	{
     193  	  FLOAT t = __real__ y;
     194  	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
     195  	  __imag__ y = t;
     196  	}
     197  
     198        res = M_SUF (__clog) (y);
     199      }
     200  
     201    /* Give results the correct sign for the original argument.  */
     202    __real__ res = M_COPYSIGN (__real__ res, __real__ x);
     203    __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
     204  
     205    return res;
     206  }