(root)/
gzip-1.13/
trees.c
       1  /* trees.c -- output deflated data using Huffman coding
       2  
       3     Copyright (C) 1997-1999, 2009-2023 Free Software Foundation, Inc.
       4     Copyright (C) 1992-1993 Jean-loup Gailly
       5  
       6     This program is free software; you can redistribute it and/or modify
       7     it under the terms of the GNU General Public License as published by
       8     the Free Software Foundation; either version 3, or (at your option)
       9     any later version.
      10  
      11     This program is distributed in the hope that it will be useful,
      12     but WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14     GNU General Public License for more details.
      15  
      16     You should have received a copy of the GNU General Public License
      17     along with this program; if not, write to the Free Software Foundation,
      18     Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
      19  
      20  /*
      21   *  PURPOSE
      22   *
      23   *      Encode various sets of source values using variable-length
      24   *      binary code trees.
      25   *
      26   *  DISCUSSION
      27   *
      28   *      The PKZIP "deflation" process uses several Huffman trees. The more
      29   *      common source values are represented by shorter bit sequences.
      30   *
      31   *      Each code tree is stored in the ZIP file in a compressed form
      32   *      which is itself a Huffman encoding of the lengths of
      33   *      all the code strings (in ascending order by source values).
      34   *      The actual code strings are reconstructed from the lengths in
      35   *      the UNZIP process, as described in the "application note"
      36   *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
      37   *
      38   *  REFERENCES
      39   *
      40   *      Lynch, Thomas J.
      41   *          Data Compression:  Techniques and Applications, pp. 53-55.
      42   *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
      43   *
      44   *      Storer, James A.
      45   *          Data Compression:  Methods and Theory, pp. 49-50.
      46   *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
      47   *
      48   *      Sedgewick, R.
      49   *          Algorithms, p290.
      50   *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
      51   *
      52   *  INTERFACE
      53   *
      54   *      void ct_init (ush *attr, int *methodp)
      55   *          Allocate the match buffer, initialize the various tables and save
      56   *          the location of the internal file attribute (ascii/binary) and
      57   *          method (DEFLATE/STORE)
      58   *
      59   *      void ct_tally (int dist, int lc);
      60   *          Save the match info and tally the frequency counts.
      61   *
      62   *      off_t flush_block (char *buf, ulg stored_len, int eof)
      63   *          Determine the best encoding for the current block: dynamic trees,
      64   *          static trees or store, and output the encoded block to the zip
      65   *          file. Returns the total compressed length for the file so far.
      66   *
      67   */
      68  
      69  #include <config.h>
      70  #include <ctype.h>
      71  
      72  #include "tailor.h"
      73  #include "gzip.h"
      74  
      75  /* ===========================================================================
      76   * Constants
      77   */
      78  
      79  #define MAX_BITS 15
      80  /* All codes must not exceed MAX_BITS bits */
      81  
      82  #define MAX_BL_BITS 7
      83  /* Bit length codes must not exceed MAX_BL_BITS bits */
      84  
      85  #define LENGTH_CODES 29
      86  /* number of length codes, not counting the special END_BLOCK code */
      87  
      88  #define LITERALS  256
      89  /* number of literal bytes 0..255 */
      90  
      91  #define END_BLOCK 256
      92  /* end of block literal code */
      93  
      94  #define L_CODES (LITERALS+1+LENGTH_CODES)
      95  /* number of Literal or Length codes, including the END_BLOCK code */
      96  
      97  #define D_CODES   30
      98  /* number of distance codes */
      99  
     100  #define BL_CODES  19
     101  /* number of codes used to transfer the bit lengths */
     102  
     103  
     104  static int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     105     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
     106  
     107  static int near extra_dbits[D_CODES] /* extra bits for each distance code */
     108     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
     109  
     110  static int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
     111     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
     112  
     113  #define STORED_BLOCK 0
     114  #define STATIC_TREES 1
     115  #define DYN_TREES    2
     116  /* The three kinds of block type */
     117  
     118  #ifndef LIT_BUFSIZE
     119  #  ifdef SMALL_MEM
     120  #    define LIT_BUFSIZE  0x2000
     121  #  else
     122  #  ifdef MEDIUM_MEM
     123  #    define LIT_BUFSIZE  0x4000
     124  #  else
     125  #    define LIT_BUFSIZE  0x8000
     126  #  endif
     127  #  endif
     128  #endif
     129  #ifndef DIST_BUFSIZE
     130  #  define DIST_BUFSIZE  LIT_BUFSIZE
     131  #endif
     132  /* Sizes of match buffers for literals/lengths and distances.  There are
     133   * 4 reasons for limiting LIT_BUFSIZE to 64K:
     134   *   - frequencies can be kept in 16 bit counters
     135   *   - if compression is not successful for the first block, all input data is
     136   *     still in the window so we can still emit a stored block even when input
     137   *     comes from standard input.  (This can also be done for all blocks if
     138   *     LIT_BUFSIZE is not greater than 32K.)
     139   *   - if compression is not successful for a file smaller than 64K, we can
     140   *     even emit a stored file instead of a stored block (saving 5 bytes).
     141   *   - creating new Huffman trees less frequently may not provide fast
     142   *     adaptation to changes in the input data statistics. (Take for
     143   *     example a binary file with poorly compressible code followed by
     144   *     a highly compressible string table.) Smaller buffer sizes give
     145   *     fast adaptation but have of course the overhead of transmitting trees
     146   *     more frequently.
     147   *   - I can't count above 4
     148   * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
     149   * memory at the expense of compression). Some optimizations would be possible
     150   * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
     151   */
     152  #if LIT_BUFSIZE > INBUFSIZ
     153      error cannot overlay l_buf and inbuf
     154  #endif
     155  
     156  #define REP_3_6      16
     157  /* repeat previous bit length 3-6 times (2 bits of repeat count) */
     158  
     159  #define REPZ_3_10    17
     160  /* repeat a zero length 3-10 times  (3 bits of repeat count) */
     161  
     162  #define REPZ_11_138  18
     163  /* repeat a zero length 11-138 times  (7 bits of repeat count) */
     164  
     165  /* ===========================================================================
     166   * Local data
     167   */
     168  
     169  /* Data structure describing a single value and its code string. */
     170  typedef struct ct_data {
     171      union {
     172          ush  freq;       /* frequency count */
     173          ush  code;       /* bit string */
     174      } fc;
     175      union {
     176          ush  dad;        /* father node in Huffman tree */
     177          ush  len;        /* length of bit string */
     178      } dl;
     179  } ct_data;
     180  
     181  #define Freq fc.freq
     182  #define Code fc.code
     183  #define Dad  dl.dad
     184  #define Len  dl.len
     185  
     186  #define HEAP_SIZE (2*L_CODES+1)
     187  /* maximum heap size */
     188  
     189  static ct_data near dyn_ltree[HEAP_SIZE];   /* literal and length tree */
     190  static ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
     191  
     192  static ct_data near static_ltree[L_CODES+2];
     193  /* The static literal tree. Since the bit lengths are imposed, there is no
     194   * need for the L_CODES extra codes used during heap construction. However
     195   * The codes 286 and 287 are needed to build a canonical tree (see ct_init
     196   * below).
     197   */
     198  
     199  static ct_data near static_dtree[D_CODES];
     200  /* The static distance tree. (Actually a trivial tree since all codes use
     201   * 5 bits.)
     202   */
     203  
     204  static ct_data near bl_tree[2*BL_CODES+1];
     205  /* Huffman tree for the bit lengths */
     206  
     207  typedef struct tree_desc {
     208      ct_data near *dyn_tree;      /* the dynamic tree */
     209      ct_data near *static_tree;   /* corresponding static tree or NULL */
     210      int     near *extra_bits;    /* extra bits for each code or NULL */
     211      int     extra_base;          /* base index for extra_bits */
     212      int     elems;               /* max number of elements in the tree */
     213      int     max_length;          /* max bit length for the codes */
     214      int     max_code;            /* largest code with non zero frequency */
     215  } tree_desc;
     216  
     217  static tree_desc near l_desc =
     218  {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
     219  
     220  static tree_desc near d_desc =
     221  {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};
     222  
     223  static tree_desc near bl_desc =
     224  {bl_tree, (ct_data near *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS, 0};
     225  
     226  
     227  static ush near bl_count[MAX_BITS+1];
     228  /* number of codes at each bit length for an optimal tree */
     229  
     230  static uch near bl_order[BL_CODES]
     231     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
     232  /* The lengths of the bit length codes are sent in order of decreasing
     233   * probability, to avoid transmitting the lengths for unused bit length codes.
     234   */
     235  
     236  static int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
     237  static int heap_len;               /* number of elements in the heap */
     238  static int heap_max;               /* element of largest frequency */
     239  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
     240   * The same heap array is used to build all trees.
     241   */
     242  
     243  static uch near depth[2*L_CODES+1];
     244  /* Depth of each subtree used as tie breaker for trees of equal frequency */
     245  
     246  static uch length_code[MAX_MATCH-MIN_MATCH+1];
     247  /* length code for each normalized match length (0 == MIN_MATCH) */
     248  
     249  static uch dist_code[512];
     250  /* distance codes. The first 256 values correspond to the distances
     251   * 3 .. 258, the last 256 values correspond to the top 8 bits of
     252   * the 15 bit distances.
     253   */
     254  
     255  static int near base_length[LENGTH_CODES];
     256  /* First normalized length for each code (0 = MIN_MATCH) */
     257  
     258  static int near base_dist[D_CODES];
     259  /* First normalized distance for each code (0 = distance of 1) */
     260  
     261  #define l_buf inbuf
     262  /* DECLARE(uch, l_buf, LIT_BUFSIZE);  buffer for literals or lengths */
     263  
     264  /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
     265  
     266  static uch near flag_buf[(LIT_BUFSIZE/8)];
     267  /* flag_buf is a bit array distinguishing literals from lengths in
     268   * l_buf, thus indicating the presence or absence of a distance.
     269   */
     270  
     271  static unsigned last_lit;    /* running index in l_buf */
     272  static unsigned last_dist;   /* running index in d_buf */
     273  static unsigned last_flags;  /* running index in flag_buf */
     274  static uch flags;            /* current flags not yet saved in flag_buf */
     275  static uch flag_bit;         /* current bit used in flags */
     276  /* bits are filled in flags starting at bit 0 (least significant).
     277   * Note: these flags are overkill in the current code since we don't
     278   * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
     279   */
     280  
     281  static ulg opt_len;        /* bit length of current block with optimal trees */
     282  static ulg static_len;     /* bit length of current block with static trees */
     283  
     284  static off_t compressed_len; /* total bit length of compressed file */
     285  
     286  static off_t input_len;      /* total byte length of input file */
     287  /* input_len is for debugging only since we can get it by other means. */
     288  
     289  static ush *file_type;        /* pointer to UNKNOWN, BINARY or ASCII */
     290  static int *file_method;      /* pointer to DEFLATE or STORE */
     291  
     292  #ifdef DEBUG
     293  extern off_t bits_sent;  /* bit length of the compressed data */
     294  #endif
     295  
     296  extern long block_start;       /* window offset of current block */
     297  extern unsigned near strstart; /* window offset of current string */
     298  
     299  /* ===========================================================================
     300   * Local (static) routines in this file.
     301   */
     302  
     303  static void init_block (void);
     304  static void pqdownheap (ct_data near *tree, int k);
     305  static void gen_bitlen (tree_desc near *desc);
     306  static void gen_codes (ct_data near *tree, int max_code);
     307  static void build_tree (tree_desc near *desc);
     308  static void scan_tree (ct_data near *tree, int max_code);
     309  static void send_tree (ct_data near *tree, int max_code);
     310  static int  build_bl_tree  (void);
     311  static void send_all_trees (int lcodes, int dcodes, int blcodes);
     312  static void compress_block (ct_data near *ltree, ct_data near *dtree);
     313  static void set_file_type (void);
     314  
     315  
     316  #ifndef DEBUG
     317  #  define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
     318     /* Send a code of the given tree. c and tree must not have side effects */
     319  
     320  #else /* DEBUG */
     321  #  define send_code(c, tree) \
     322       { if (verbose > 1) fprintf (stderr, "\ncd %3u ", (c) + 0u); \
     323         send_bits(tree[c].Code, tree[c].Len); }
     324  #endif
     325  
     326  #define d_code(dist) \
     327     ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
     328  /* Mapping from a distance to a distance code. dist is the distance - 1 and
     329   * must not have side effects. dist_code[256] and dist_code[257] are never
     330   * used.
     331   */
     332  
     333  #define MAX(a,b) (a >= b ? a : b)
     334  /* the arguments must not have side effects */
     335  
     336  /* ===========================================================================
     337   * Allocate the match buffer, initialize the various tables and save the
     338   * location of the internal file attribute (ascii/binary) and method
     339   * (DEFLATE/STORE).
     340   * ATTR points to internal file attribute.
     341   * METHODP points to the compression method.
     342   */
     343  void
     344  ct_init (ush *attr, int *methodp)
     345  {
     346      int n;        /* iterates over tree elements */
     347      int bits;     /* bit counter */
     348      int length;   /* length value */
     349      int code;     /* code value */
     350      int dist;     /* distance index */
     351  
     352      file_type = attr;
     353      file_method = methodp;
     354      compressed_len = input_len = 0L;
     355  
     356      if (static_dtree[0].Len != 0) return; /* ct_init already called */
     357  
     358      /* Initialize the mapping length (0..255) -> length code (0..28) */
     359      length = 0;
     360      for (code = 0; code < LENGTH_CODES-1; code++) {
     361          base_length[code] = length;
     362          for (n = 0; n < (1<<extra_lbits[code]); n++) {
     363              length_code[length++] = (uch)code;
     364          }
     365      }
     366      Assert (length == 256, "ct_init: length != 256");
     367      /* Note that the length 255 (match length 258) can be represented
     368       * in two different ways: code 284 + 5 bits or code 285, so we
     369       * overwrite length_code[255] to use the best encoding:
     370       */
     371      length_code[length-1] = (uch)code;
     372  
     373      /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
     374      dist = 0;
     375      for (code = 0 ; code < 16; code++) {
     376          base_dist[code] = dist;
     377          for (n = 0; n < (1<<extra_dbits[code]); n++) {
     378              dist_code[dist++] = (uch)code;
     379          }
     380      }
     381      Assert (dist == 256, "ct_init: dist != 256");
     382      dist >>= 7; /* from now on, all distances are divided by 128 */
     383      for ( ; code < D_CODES; code++) {
     384          base_dist[code] = dist << 7;
     385          for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
     386              dist_code[256 + dist++] = (uch)code;
     387          }
     388      }
     389      Assert (dist == 256, "ct_init: 256+dist != 512");
     390  
     391      /* Construct the codes of the static literal tree */
     392      for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
     393      n = 0;
     394      while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
     395      while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
     396      while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
     397      while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
     398      /* Codes 286 and 287 do not exist, but we must include them in the
     399       * tree construction to get a canonical Huffman tree (longest code
     400       * all ones)
     401       */
     402      gen_codes((ct_data near *)static_ltree, L_CODES+1);
     403  
     404      /* The static distance tree is trivial: */
     405      for (n = 0; n < D_CODES; n++) {
     406          static_dtree[n].Len = 5;
     407          static_dtree[n].Code = bi_reverse(n, 5);
     408      }
     409  
     410      /* Initialize the first block of the first file: */
     411      init_block();
     412  }
     413  
     414  /* ===========================================================================
     415   * Initialize a new block.
     416   */
     417  static void
     418  init_block ()
     419  {
     420      int n; /* iterates over tree elements */
     421  
     422      /* Initialize the trees. */
     423      for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;
     424      for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;
     425      for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
     426  
     427      dyn_ltree[END_BLOCK].Freq = 1;
     428      opt_len = static_len = 0L;
     429      last_lit = last_dist = last_flags = 0;
     430      flags = 0; flag_bit = 1;
     431  }
     432  
     433  #define SMALLEST 1
     434  /* Index within the heap array of least frequent node in the Huffman tree */
     435  
     436  
     437  /* ===========================================================================
     438   * Remove the smallest element from the heap and recreate the heap with
     439   * one less element. Updates heap and heap_len.
     440   */
     441  #define pqremove(tree, top) \
     442  {\
     443      top = heap[SMALLEST]; \
     444      heap[SMALLEST] = heap[heap_len--]; \
     445      pqdownheap(tree, SMALLEST); \
     446  }
     447  
     448  /* ===========================================================================
     449   * Compares to subtrees, using the tree depth as tie breaker when
     450   * the subtrees have equal frequency. This minimizes the worst case length.
     451   */
     452  #define smaller(tree, n, m) \
     453     (tree[n].Freq < tree[m].Freq || \
     454     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
     455  
     456  /* ===========================================================================
     457   * Restore the heap property by moving down the tree starting at node k,
     458   * exchanging a node with the smallest of its two sons if necessary, stopping
     459   * when the heap property is re-established (each father smaller than its
     460   * two sons).
     461   * TREE is the tree to restore.
     462   * K is the node to move down.
     463   */
     464  static void
     465  pqdownheap (ct_data near *tree, int k)
     466  {
     467      int v = heap[k];
     468      int j = k << 1;  /* left son of k */
     469      while (j <= heap_len) {
     470          /* Set j to the smallest of the two sons: */
     471          if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
     472  
     473          /* Exit if v is smaller than both sons */
     474          if (smaller(tree, v, heap[j])) break;
     475  
     476          /* Exchange v with the smallest son */
     477          heap[k] = heap[j];  k = j;
     478  
     479          /* And continue down the tree, setting j to the left son of k */
     480          j <<= 1;
     481      }
     482      heap[k] = v;
     483  }
     484  
     485  /* ===========================================================================
     486   * Compute the optimal bit lengths for a tree and update the total bit length
     487   * for the current block.
     488   * IN assertion: the fields freq and dad are set, heap[heap_max] and
     489   *    above are the tree nodes sorted by increasing frequency.
     490   * OUT assertions: the field len is set to the optimal bit length, the
     491   *     array bl_count contains the frequencies for each bit length.
     492   *     The length opt_len is updated; static_len is also updated if stree is
     493   *     not null.
     494   * DESC is the tree descriptor.
     495   */
     496  static void
     497  gen_bitlen (tree_desc near *desc)
     498  {
     499      ct_data near *tree  = desc->dyn_tree;
     500      int near *extra     = desc->extra_bits;
     501      int base            = desc->extra_base;
     502      int max_code        = desc->max_code;
     503      int max_length      = desc->max_length;
     504      ct_data near *stree = desc->static_tree;
     505      int h;              /* heap index */
     506      int n, m;           /* iterate over the tree elements */
     507      int bits;           /* bit length */
     508      int xbits;          /* extra bits */
     509      ush f;              /* frequency */
     510      int overflow = 0;   /* number of elements with bit length too large */
     511  
     512      for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
     513  
     514      /* In a first pass, compute the optimal bit lengths (which may
     515       * overflow in the case of the bit length tree).
     516       */
     517      tree[heap[heap_max]].Len = 0; /* root of the heap */
     518  
     519      for (h = heap_max+1; h < HEAP_SIZE; h++) {
     520          n = heap[h];
     521          bits = tree[tree[n].Dad].Len + 1;
     522          if (bits > max_length) bits = max_length, overflow++;
     523          tree[n].Len = (ush)bits;
     524          /* We overwrite tree[n].Dad which is no longer needed */
     525  
     526          if (n > max_code) continue; /* not a leaf node */
     527  
     528          bl_count[bits]++;
     529          xbits = 0;
     530          if (n >= base) xbits = extra[n-base];
     531          f = tree[n].Freq;
     532          opt_len += (ulg)f * (bits + xbits);
     533          if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
     534      }
     535      if (overflow == 0) return;
     536  
     537      Trace((stderr,"\nbit length overflow\n"));
     538      /* This happens for example on obj2 and pic of the Calgary corpus */
     539  
     540      /* Find the first bit length which could increase: */
     541      do {
     542          bits = max_length-1;
     543          while (bl_count[bits] == 0) bits--;
     544          bl_count[bits]--;      /* move one leaf down the tree */
     545          bl_count[bits+1] += 2; /* move one overflow item as its brother */
     546          bl_count[max_length]--;
     547          /* The brother of the overflow item also moves one step up,
     548           * but this does not affect bl_count[max_length]
     549           */
     550          overflow -= 2;
     551      } while (overflow > 0);
     552  
     553      /* Now recompute all bit lengths, scanning in increasing frequency.
     554       * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     555       * lengths instead of fixing only the wrong ones. This idea is taken
     556       * from 'ar' written by Haruhiko Okumura.)
     557       */
     558      for (bits = max_length; bits != 0; bits--) {
     559          n = bl_count[bits];
     560          while (n != 0) {
     561              m = heap[--h];
     562              if (m > max_code) continue;
     563              if (tree[m].Len != (unsigned) bits) {
     564                  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
     565                  opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
     566                  tree[m].Len = (ush)bits;
     567              }
     568              n--;
     569          }
     570      }
     571  }
     572  
     573  /* ===========================================================================
     574   * Generate the codes for a given tree and bit counts (which need not be
     575   * optimal).
     576   * IN assertion: the array bl_count contains the bit length statistics for
     577   * the given tree and the field len is set for all tree elements.
     578   * OUT assertion: the field code is set for all tree elements of non
     579   *     zero code length.
     580   * TREE is the tree to decorate.
     581   * MAX_CODE is the largest code with non zero frequency.
     582   */
     583  static void
     584  gen_codes (ct_data near *tree, int max_code)
     585  {
     586      ush next_code[MAX_BITS+1]; /* next code value for each bit length */
     587      ush code = 0;              /* running code value */
     588      int bits;                  /* bit index */
     589      int n;                     /* code index */
     590  
     591      /* The distribution counts are first used to generate the code values
     592       * without bit reversal.
     593       */
     594      for (bits = 1; bits <= MAX_BITS; bits++) {
     595          next_code[bits] = code = (code + bl_count[bits-1]) << 1;
     596      }
     597      /* Check that the bit counts in bl_count are consistent. The last code
     598       * must be all ones.
     599       */
     600      Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
     601              "inconsistent bit counts");
     602      Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
     603  
     604      for (n = 0;  n <= max_code; n++) {
     605          int len = tree[n].Len;
     606          if (len == 0) continue;
     607          /* Now reverse the bits */
     608          tree[n].Code = bi_reverse(next_code[len]++, len);
     609  
     610          Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
     611               n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1u));
     612      }
     613  }
     614  
     615  /* ===========================================================================
     616   * Construct one Huffman tree and assigns the code bit strings and lengths.
     617   * Update the total bit length for the current block.
     618   * IN assertion: the field freq is set for all tree elements.
     619   * OUT assertions: the fields len and code are set to the optimal bit length
     620   *     and corresponding code. The length opt_len is updated; static_len is
     621   *     also updated if stree is not null. The field max_code is set.
     622   * DESC is the tree descriptor.
     623   */
     624  static void
     625  build_tree(tree_desc near *desc)
     626  {
     627      ct_data near *tree   = desc->dyn_tree;
     628      ct_data near *stree  = desc->static_tree;
     629      int elems            = desc->elems;
     630      int n, m;          /* iterate over heap elements */
     631      int max_code = -1; /* largest code with non zero frequency */
     632      int node = elems;  /* next internal node of the tree */
     633  
     634      /* Construct the initial heap, with least frequent element in
     635       * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     636       * heap[0] is not used.
     637       */
     638      heap_len = 0, heap_max = HEAP_SIZE;
     639  
     640      for (n = 0; n < elems; n++) {
     641          if (tree[n].Freq != 0) {
     642              heap[++heap_len] = max_code = n;
     643              depth[n] = 0;
     644          } else {
     645              tree[n].Len = 0;
     646          }
     647      }
     648  
     649      /* The pkzip format requires that at least one distance code exists,
     650       * and that at least one bit should be sent even if there is only one
     651       * possible code. So to avoid special checks later on we force at least
     652       * two codes of non zero frequency.
     653       */
     654      while (heap_len < 2) {
     655          int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
     656          tree[new].Freq = 1;
     657          depth[new] = 0;
     658          opt_len--; if (stree) static_len -= stree[new].Len;
     659          /* new is 0 or 1 so it does not have extra bits */
     660      }
     661      desc->max_code = max_code;
     662  
     663      /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     664       * establish sub-heaps of increasing lengths:
     665       */
     666      for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
     667  
     668      /* Construct the Huffman tree by repeatedly combining the least two
     669       * frequent nodes.
     670       */
     671      do {
     672          pqremove(tree, n);   /* n = node of least frequency */
     673          m = heap[SMALLEST];  /* m = node of next least frequency */
     674  
     675          heap[--heap_max] = n; /* keep the nodes sorted by frequency */
     676          heap[--heap_max] = m;
     677  
     678          /* Create a new node father of n and m */
     679          tree[node].Freq = tree[n].Freq + tree[m].Freq;
     680          depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
     681          tree[n].Dad = tree[m].Dad = (ush)node;
     682  #ifdef DUMP_BL_TREE
     683          if (tree == bl_tree) {
     684              fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
     685                      node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
     686          }
     687  #endif
     688          /* and insert the new node in the heap */
     689          heap[SMALLEST] = node++;
     690          pqdownheap(tree, SMALLEST);
     691  
     692      } while (heap_len >= 2);
     693  
     694      heap[--heap_max] = heap[SMALLEST];
     695  
     696      /* At this point, the fields freq and dad are set. We can now
     697       * generate the bit lengths.
     698       */
     699      gen_bitlen((tree_desc near *)desc);
     700  
     701      /* The field len is now set, we can generate the bit codes */
     702      gen_codes ((ct_data near *)tree, max_code);
     703  }
     704  
     705  /* ===========================================================================
     706   * Scan a literal or distance tree to determine the frequencies of the codes
     707   * in the bit length tree. Updates opt_len to take into account the repeat
     708   * counts. (The contribution of the bit length codes will be added later
     709   * during the construction of bl_tree.)
     710   * TREE is the tree to be scanned.
     711   * MAX_CODE is its largest code of non zero frequency.
     712   */
     713  static void
     714  scan_tree (ct_data near *tree, int max_code)
     715  {
     716      int n;                     /* iterates over all tree elements */
     717      int prevlen = -1;          /* last emitted length */
     718      int curlen;                /* length of current code */
     719      int nextlen = tree[0].Len; /* length of next code */
     720      int count = 0;             /* repeat count of the current code */
     721      int max_count = 7;         /* max repeat count */
     722      int min_count = 4;         /* min repeat count */
     723  
     724      if (nextlen == 0) max_count = 138, min_count = 3;
     725      tree[max_code+1].Len = (ush)0xffff; /* guard */
     726  
     727      for (n = 0; n <= max_code; n++) {
     728          curlen = nextlen; nextlen = tree[n+1].Len;
     729          if (++count < max_count && curlen == nextlen) {
     730              continue;
     731          } else if (count < min_count) {
     732              bl_tree[curlen].Freq += count;
     733          } else if (curlen != 0) {
     734              if (curlen != prevlen) bl_tree[curlen].Freq++;
     735              bl_tree[REP_3_6].Freq++;
     736          } else if (count <= 10) {
     737              bl_tree[REPZ_3_10].Freq++;
     738          } else {
     739              bl_tree[REPZ_11_138].Freq++;
     740          }
     741          count = 0; prevlen = curlen;
     742          if (nextlen == 0) {
     743              max_count = 138, min_count = 3;
     744          } else if (curlen == nextlen) {
     745              max_count = 6, min_count = 3;
     746          } else {
     747              max_count = 7, min_count = 4;
     748          }
     749      }
     750  }
     751  
     752  /* ===========================================================================
     753   * Send a literal or distance tree in compressed form, using the codes in
     754   * bl_tree.
     755   * TREE is the tree to be scanned.
     756   * MAX_CODE is its largest code of non zero frequency.
     757   */
     758  static void
     759  send_tree (ct_data near *tree, int max_code)
     760  {
     761      int n;                     /* iterates over all tree elements */
     762      int prevlen = -1;          /* last emitted length */
     763      int curlen;                /* length of current code */
     764      int nextlen = tree[0].Len; /* length of next code */
     765      int count = 0;             /* repeat count of the current code */
     766      int max_count = 7;         /* max repeat count */
     767      int min_count = 4;         /* min repeat count */
     768  
     769      /* tree[max_code+1].Len = -1; */  /* guard already set */
     770      if (nextlen == 0) max_count = 138, min_count = 3;
     771  
     772      for (n = 0; n <= max_code; n++) {
     773          curlen = nextlen; nextlen = tree[n+1].Len;
     774          if (++count < max_count && curlen == nextlen) {
     775              continue;
     776          } else if (count < min_count) {
     777              do { send_code(curlen, bl_tree); } while (--count != 0);
     778  
     779          } else if (curlen != 0) {
     780              if (curlen != prevlen) {
     781                  send_code(curlen, bl_tree); count--;
     782              }
     783              Assert(count >= 3 && count <= 6, " 3_6?");
     784              send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
     785  
     786          } else if (count <= 10) {
     787              send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
     788  
     789          } else {
     790              send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
     791          }
     792          count = 0; prevlen = curlen;
     793          if (nextlen == 0) {
     794              max_count = 138, min_count = 3;
     795          } else if (curlen == nextlen) {
     796              max_count = 6, min_count = 3;
     797          } else {
     798              max_count = 7, min_count = 4;
     799          }
     800      }
     801  }
     802  
     803  /* ===========================================================================
     804   * Construct the Huffman tree for the bit lengths and return the index in
     805   * bl_order of the last bit length code to send.
     806   */
     807  static int
     808  build_bl_tree ()
     809  {
     810      int max_blindex;  /* index of last bit length code of non zero freq */
     811  
     812      /* Determine the bit length frequencies for literal and distance trees */
     813      scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
     814      scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
     815  
     816      /* Build the bit length tree: */
     817      build_tree((tree_desc near *)(&bl_desc));
     818      /* opt_len now includes the length of the tree representations, except
     819       * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     820       */
     821  
     822      /* Determine the number of bit length codes to send. The pkzip format
     823       * requires that at least 4 bit length codes be sent. (appnote.txt says
     824       * 3 but the actual value used is 4.)
     825       */
     826      for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
     827          if (bl_tree[bl_order[max_blindex]].Len != 0) break;
     828      }
     829      /* Update opt_len to include the bit length tree and counts */
     830      opt_len += 3*(max_blindex+1) + 5+5+4;
     831      Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", opt_len, static_len));
     832  
     833      return max_blindex;
     834  }
     835  
     836  /* ===========================================================================
     837   * Send the header for a block using dynamic Huffman trees: the counts, the
     838   * lengths of the bit length codes, the literal tree and the distance tree.
     839   * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
     840   * LCODES, DCODES and BLCODES are the number of codes for each tree.
     841   */
     842  static void
     843  send_all_trees (int lcodes, int dcodes, int blcodes)
     844  {
     845      int rank;                    /* index in bl_order */
     846  
     847      Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
     848      Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
     849              "too many codes");
     850      Tracev((stderr, "\nbl counts: "));
     851      send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
     852      send_bits(dcodes-1,   5);
     853      send_bits(blcodes-4,  4); /* not -3 as stated in appnote.txt */
     854      for (rank = 0; rank < blcodes; rank++) {
     855          Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
     856          send_bits(bl_tree[bl_order[rank]].Len, 3);
     857      }
     858  
     859      send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
     860  
     861      send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
     862  }
     863  
     864  /* ===========================================================================
     865   * Determine the best encoding for the current block: dynamic trees, static
     866   * trees or store, and output the encoded block to the zip file. This function
     867   * returns the total compressed length for the file so far.
     868   * BUF is the input block, or NULL if too old.
     869   * STORED_LEN is BUF's length.
     870   * PAD means pad output to byte boundary.
     871   * EOF means this is the last block for a file.
     872   */
     873  off_t
     874  flush_block (char *buf, ulg stored_len, int pad, int eof)
     875  {
     876      ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
     877      int max_blindex;  /* index of last bit length code of non zero freq */
     878  
     879      flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
     880  
     881       /* Check if the file is ascii or binary */
     882      if (*file_type == (ush)UNKNOWN) set_file_type();
     883  
     884      /* Construct the literal and distance trees */
     885      build_tree((tree_desc near *)(&l_desc));
     886      Tracev((stderr, "\nlit data: dyn %lu, stat %lu", opt_len, static_len));
     887  
     888      build_tree((tree_desc near *)(&d_desc));
     889      Tracev((stderr, "\ndist data: dyn %lu, stat %lu", opt_len, static_len));
     890      /* At this point, opt_len and static_len are the total bit lengths of
     891       * the compressed block data, excluding the tree representations.
     892       */
     893  
     894      /* Build the bit length tree for the above two trees, and get the index
     895       * in bl_order of the last bit length code to send.
     896       */
     897      max_blindex = build_bl_tree();
     898  
     899      /* Determine the best encoding. Compute first the block length in bytes */
     900      opt_lenb = (opt_len+3+7)>>3;
     901      static_lenb = (static_len+3+7)>>3;
     902      input_len += stored_len; /* for debugging only */
     903  
     904      Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
     905              opt_lenb, opt_len, static_lenb, static_len, stored_len,
     906              last_lit, last_dist));
     907  
     908      if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
     909  
     910      /* If compression failed and this is the first and last block,
     911       * and if we can seek through the zip file (to rewrite the local header),
     912       * the whole file is transformed into a stored file:
     913       */
     914  #ifdef FORCE_METHOD
     915      if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
     916  #else
     917      if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
     918  #endif
     919          /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
     920          if (!buf)
     921            gzip_error ("block vanished");
     922  
     923          copy_block(buf, (unsigned)stored_len, 0); /* without header */
     924          compressed_len = stored_len << 3;
     925          *file_method = STORED;
     926  
     927  #ifdef FORCE_METHOD
     928      } else if (level == 2 && buf != (char*)0) { /* force stored block */
     929  #else
     930      } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
     931                         /* 4: two words for the lengths */
     932  #endif
     933          /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     934           * Otherwise we can't have processed more than WSIZE input bytes since
     935           * the last block flush, because compression would have been
     936           * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     937           * transform a block into a stored block.
     938           */
     939          send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
     940          compressed_len = (compressed_len + 3 + 7) & ~7L;
     941          compressed_len += (stored_len + 4) << 3;
     942  
     943          copy_block(buf, (unsigned)stored_len, 1); /* with header */
     944  
     945  #ifdef FORCE_METHOD
     946      } else if (level == 3) { /* force static trees */
     947  #else
     948      } else if (static_lenb == opt_lenb) {
     949  #endif
     950          send_bits((STATIC_TREES<<1)+eof, 3);
     951          compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
     952          compressed_len += 3 + static_len;
     953      } else {
     954          send_bits((DYN_TREES<<1)+eof, 3);
     955          send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
     956          compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
     957          compressed_len += 3 + opt_len;
     958      }
     959      Assert (compressed_len == bits_sent, "bad compressed size");
     960      init_block();
     961  
     962      if (eof) {
     963          Assert (input_len == bytes_in, "bad input size");
     964          bi_windup();
     965          compressed_len += 7;  /* align on byte boundary */
     966      } else if (pad && (compressed_len % 8) != 0) {
     967          send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
     968          compressed_len = (compressed_len + 3 + 7) & ~7L;
     969          copy_block(buf, 0, 1); /* with header */
     970      }
     971  
     972      return compressed_len >> 3;
     973  }
     974  
     975  /* ===========================================================================
     976   * Save the match info and tally the frequency counts. Return true if
     977   * the current block must be flushed.
     978   * DIST is the distance of matched string.
     979   * LC is match length - MIN_MATCH or unmatched char (if DIST==0).
     980   */
     981  int
     982  ct_tally (int dist, int lc)
     983  {
     984      l_buf[last_lit++] = (uch)lc;
     985      if (dist == 0) {
     986          /* lc is the unmatched char */
     987          dyn_ltree[lc].Freq++;
     988      } else {
     989          /* Here, lc is the match length - MIN_MATCH */
     990          dist--;             /* dist = match distance - 1 */
     991          Assert((ush)dist < (ush)MAX_DIST &&
     992                 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
     993                 (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
     994  
     995          dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
     996          dyn_dtree[d_code(dist)].Freq++;
     997  
     998          d_buf[last_dist++] = (ush)dist;
     999          flags |= flag_bit;
    1000      }
    1001      flag_bit <<= 1;
    1002  
    1003      /* Output the flags if they fill a byte: */
    1004      if ((last_lit & 7) == 0) {
    1005          flag_buf[last_flags++] = flags;
    1006          flags = 0, flag_bit = 1;
    1007      }
    1008      /* Try to guess if it is profitable to stop the current block here */
    1009      if (level > 2 && (last_lit & 0xfff) == 0) {
    1010          /* Compute an upper bound for the compressed length */
    1011          ulg out_length = (ulg)last_lit*8L;
    1012          ulg in_length = (ulg)strstart-block_start;
    1013          int dcode;
    1014          for (dcode = 0; dcode < D_CODES; dcode++) {
    1015              out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
    1016          }
    1017          out_length >>= 3;
    1018          Trace((stderr,"\nlast_lit %u, last_dist %u, in %lu, out ~%lu(%lu%%) ",
    1019                 last_lit, last_dist, in_length, out_length,
    1020                 100L - out_length*100L/in_length));
    1021          if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
    1022      }
    1023      return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
    1024      /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
    1025       * on 16 bit machines and because stored blocks are restricted to
    1026       * 64K-1 bytes.
    1027       */
    1028  }
    1029  
    1030  /* ===========================================================================
    1031   * Send the block data compressed using the given Huffman trees
    1032   * LTREE is the literal tree, DTREE the distance tree.
    1033   */
    1034  static void
    1035  compress_block (ct_data near *ltree, ct_data near *dtree)
    1036  {
    1037      unsigned dist;      /* distance of matched string */
    1038      int lc;             /* match length or unmatched char (if dist == 0) */
    1039      unsigned lx = 0;    /* running index in l_buf */
    1040      unsigned dx = 0;    /* running index in d_buf */
    1041      unsigned fx = 0;    /* running index in flag_buf */
    1042      uch flag = 0;       /* current flags */
    1043      unsigned code;      /* the code to send */
    1044      int extra;          /* number of extra bits to send */
    1045  
    1046      if (last_lit != 0) do {
    1047          if ((lx & 7) == 0) flag = flag_buf[fx++];
    1048          lc = l_buf[lx++];
    1049          if ((flag & 1) == 0) {
    1050              send_code(lc, ltree); /* send a literal byte */
    1051              Tracecv(isgraph(lc), (stderr," '%c' ", lc));
    1052          } else {
    1053              /* Here, lc is the match length - MIN_MATCH */
    1054              code = length_code[lc];
    1055              send_code(code+LITERALS+1, ltree); /* send the length code */
    1056              extra = extra_lbits[code];
    1057              if (extra != 0) {
    1058                  lc -= base_length[code];
    1059                  send_bits(lc, extra);        /* send the extra length bits */
    1060              }
    1061              dist = d_buf[dx++];
    1062              /* Here, dist is the match distance - 1 */
    1063              code = d_code(dist);
    1064              Assert (code < D_CODES, "bad d_code");
    1065  
    1066              send_code(code, dtree);       /* send the distance code */
    1067              extra = extra_dbits[code];
    1068              if (extra != 0) {
    1069                  dist -= base_dist[code];
    1070                  send_bits(dist, extra);   /* send the extra distance bits */
    1071              }
    1072          } /* literal or match pair ? */
    1073          flag >>= 1;
    1074      } while (lx < last_lit);
    1075  
    1076      send_code(END_BLOCK, ltree);
    1077  }
    1078  
    1079  /* ===========================================================================
    1080   * Set the file type to ASCII or BINARY, using a crude approximation:
    1081   * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
    1082   * IN assertion: the fields freq of dyn_ltree are set and the total of all
    1083   * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
    1084   */
    1085  static void
    1086  set_file_type ()
    1087  {
    1088      int n = 0;
    1089      unsigned ascii_freq = 0;
    1090      unsigned bin_freq = 0;
    1091      while (n < 7)        bin_freq += dyn_ltree[n++].Freq;
    1092      while (n < 128)    ascii_freq += dyn_ltree[n++].Freq;
    1093      while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
    1094      *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
    1095      if (*file_type == BINARY && translate_eol) {
    1096          warning ("-l used on binary file");
    1097      }
    1098  }