(root)/
gcc-13.2.0/
zlib/
trees.c
       1  /* trees.c -- output deflated data using Huffman coding
       2   * Copyright (C) 1995-2017 Jean-loup Gailly
       3   * detect_data_type() function provided freely by Cosmin Truta, 2006
       4   * For conditions of distribution and use, see copyright notice in zlib.h
       5   */
       6  
       7  /*
       8   *  ALGORITHM
       9   *
      10   *      The "deflation" process uses several Huffman trees. The more
      11   *      common source values are represented by shorter bit sequences.
      12   *
      13   *      Each code tree is stored in a compressed form which is itself
      14   * a Huffman encoding of the lengths of all the code strings (in
      15   * ascending order by source values).  The actual code strings are
      16   * reconstructed from the lengths in the inflate process, as described
      17   * in the deflate specification.
      18   *
      19   *  REFERENCES
      20   *
      21   *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
      22   *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
      23   *
      24   *      Storer, James A.
      25   *          Data Compression:  Methods and Theory, pp. 49-50.
      26   *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
      27   *
      28   *      Sedgewick, R.
      29   *          Algorithms, p290.
      30   *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
      31   */
      32  
      33  /* @(#) $Id: trees.c,v 1.1.1.2 2002/03/11 21:53:27 tromey Exp $ */
      34  
      35  /* #define GEN_TREES_H */
      36  
      37  #include "deflate.h"
      38  
      39  #ifdef ZLIB_DEBUG
      40  #  include <ctype.h>
      41  #endif
      42  
      43  /* ===========================================================================
      44   * Constants
      45   */
      46  
      47  #define MAX_BL_BITS 7
      48  /* Bit length codes must not exceed MAX_BL_BITS bits */
      49  
      50  #define END_BLOCK 256
      51  /* end of block literal code */
      52  
      53  #define REP_3_6      16
      54  /* repeat previous bit length 3-6 times (2 bits of repeat count) */
      55  
      56  #define REPZ_3_10    17
      57  /* repeat a zero length 3-10 times  (3 bits of repeat count) */
      58  
      59  #define REPZ_11_138  18
      60  /* repeat a zero length 11-138 times  (7 bits of repeat count) */
      61  
      62  local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
      63     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
      64  
      65  local const int extra_dbits[D_CODES] /* extra bits for each distance code */
      66     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
      67  
      68  local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
      69     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
      70  
      71  local const uch bl_order[BL_CODES]
      72     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
      73  /* The lengths of the bit length codes are sent in order of decreasing
      74   * probability, to avoid transmitting the lengths for unused bit length codes.
      75   */
      76  
      77  /* ===========================================================================
      78   * Local data. These are initialized only once.
      79   */
      80  
      81  #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
      82  
      83  #if defined(GEN_TREES_H) || !defined(STDC)
      84  /* non ANSI compilers may not accept trees.h */
      85  
      86  local ct_data static_ltree[L_CODES+2];
      87  /* The static literal tree. Since the bit lengths are imposed, there is no
      88   * need for the L_CODES extra codes used during heap construction. However
      89   * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
      90   * below).
      91   */
      92  
      93  local ct_data static_dtree[D_CODES];
      94  /* The static distance tree. (Actually a trivial tree since all codes use
      95   * 5 bits.)
      96   */
      97  
      98  uch _dist_code[DIST_CODE_LEN];
      99  /* Distance codes. The first 256 values correspond to the distances
     100   * 3 .. 258, the last 256 values correspond to the top 8 bits of
     101   * the 15 bit distances.
     102   */
     103  
     104  uch _length_code[MAX_MATCH-MIN_MATCH+1];
     105  /* length code for each normalized match length (0 == MIN_MATCH) */
     106  
     107  local int base_length[LENGTH_CODES];
     108  /* First normalized length for each code (0 = MIN_MATCH) */
     109  
     110  local int base_dist[D_CODES];
     111  /* First normalized distance for each code (0 = distance of 1) */
     112  
     113  #else
     114  #  include "trees.h"
     115  #endif /* GEN_TREES_H */
     116  
     117  struct static_tree_desc_s {
     118      const ct_data *static_tree;  /* static tree or NULL */
     119      const intf *extra_bits;      /* extra bits for each code or NULL */
     120      int     extra_base;          /* base index for extra_bits */
     121      int     elems;               /* max number of elements in the tree */
     122      int     max_length;          /* max bit length for the codes */
     123  };
     124  
     125  local const static_tree_desc  static_l_desc =
     126  {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
     127  
     128  local const static_tree_desc  static_d_desc =
     129  {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
     130  
     131  local const static_tree_desc  static_bl_desc =
     132  {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
     133  
     134  /* ===========================================================================
     135   * Local (static) routines in this file.
     136   */
     137  
     138  local void tr_static_init OF((void));
     139  local void init_block     OF((deflate_state *s));
     140  local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
     141  local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
     142  local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
     143  local void build_tree     OF((deflate_state *s, tree_desc *desc));
     144  local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     145  local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     146  local int  build_bl_tree  OF((deflate_state *s));
     147  local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
     148                                int blcodes));
     149  local void compress_block OF((deflate_state *s, const ct_data *ltree,
     150                                const ct_data *dtree));
     151  local int  detect_data_type OF((deflate_state *s));
     152  local unsigned bi_reverse OF((unsigned value, int length));
     153  local void bi_windup      OF((deflate_state *s));
     154  local void bi_flush       OF((deflate_state *s));
     155  
     156  #ifdef GEN_TREES_H
     157  local void gen_trees_header OF((void));
     158  #endif
     159  
     160  #ifndef ZLIB_DEBUG
     161  #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
     162     /* Send a code of the given tree. c and tree must not have side effects */
     163  
     164  #else /* !ZLIB_DEBUG */
     165  #  define send_code(s, c, tree) \
     166       { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
     167         send_bits(s, tree[c].Code, tree[c].Len); }
     168  #endif
     169  
     170  /* ===========================================================================
     171   * Output a short LSB first on the stream.
     172   * IN assertion: there is enough room in pendingBuf.
     173   */
     174  #define put_short(s, w) { \
     175      put_byte(s, (uch)((w) & 0xff)); \
     176      put_byte(s, (uch)((ush)(w) >> 8)); \
     177  }
     178  
     179  /* ===========================================================================
     180   * Send a value on a given number of bits.
     181   * IN assertion: length <= 16 and value fits in length bits.
     182   */
     183  #ifdef ZLIB_DEBUG
     184  local void send_bits      OF((deflate_state *s, int value, int length));
     185  
     186  local void send_bits(s, value, length)
     187      deflate_state *s;
     188      int value;  /* value to send */
     189      int length; /* number of bits */
     190  {
     191      Tracevv((stderr," l %2d v %4x ", length, value));
     192      Assert(length > 0 && length <= 15, "invalid length");
     193      s->bits_sent += (ulg)length;
     194  
     195      /* If not enough room in bi_buf, use (valid) bits from bi_buf and
     196       * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
     197       * unused bits in value.
     198       */
     199      if (s->bi_valid > (int)Buf_size - length) {
     200          s->bi_buf |= (ush)value << s->bi_valid;
     201          put_short(s, s->bi_buf);
     202          s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
     203          s->bi_valid += length - Buf_size;
     204      } else {
     205          s->bi_buf |= (ush)value << s->bi_valid;
     206          s->bi_valid += length;
     207      }
     208  }
     209  #else /* !ZLIB_DEBUG */
     210  
     211  #define send_bits(s, value, length) \
     212  { int len = length;\
     213    if (s->bi_valid > (int)Buf_size - len) {\
     214      int val = (int)value;\
     215      s->bi_buf |= (ush)val << s->bi_valid;\
     216      put_short(s, s->bi_buf);\
     217      s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
     218      s->bi_valid += len - Buf_size;\
     219    } else {\
     220      s->bi_buf |= (ush)(value) << s->bi_valid;\
     221      s->bi_valid += len;\
     222    }\
     223  }
     224  #endif /* ZLIB_DEBUG */
     225  
     226  
     227  /* the arguments must not have side effects */
     228  
     229  /* ===========================================================================
     230   * Initialize the various 'constant' tables.
     231   */
     232  local void tr_static_init()
     233  {
     234  #if defined(GEN_TREES_H) || !defined(STDC)
     235      static int static_init_done = 0;
     236      int n;        /* iterates over tree elements */
     237      int bits;     /* bit counter */
     238      int length;   /* length value */
     239      int code;     /* code value */
     240      int dist;     /* distance index */
     241      ush bl_count[MAX_BITS+1];
     242      /* number of codes at each bit length for an optimal tree */
     243  
     244      if (static_init_done) return;
     245  
     246      /* For some embedded targets, global variables are not initialized: */
     247  #ifdef NO_INIT_GLOBAL_POINTERS
     248      static_l_desc.static_tree = static_ltree;
     249      static_l_desc.extra_bits = extra_lbits;
     250      static_d_desc.static_tree = static_dtree;
     251      static_d_desc.extra_bits = extra_dbits;
     252      static_bl_desc.extra_bits = extra_blbits;
     253  #endif
     254  
     255      /* Initialize the mapping length (0..255) -> length code (0..28) */
     256      length = 0;
     257      for (code = 0; code < LENGTH_CODES-1; code++) {
     258          base_length[code] = length;
     259          for (n = 0; n < (1<<extra_lbits[code]); n++) {
     260              _length_code[length++] = (uch)code;
     261          }
     262      }
     263      Assert (length == 256, "tr_static_init: length != 256");
     264      /* Note that the length 255 (match length 258) can be represented
     265       * in two different ways: code 284 + 5 bits or code 285, so we
     266       * overwrite length_code[255] to use the best encoding:
     267       */
     268      _length_code[length-1] = (uch)code;
     269  
     270      /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
     271      dist = 0;
     272      for (code = 0 ; code < 16; code++) {
     273          base_dist[code] = dist;
     274          for (n = 0; n < (1<<extra_dbits[code]); n++) {
     275              _dist_code[dist++] = (uch)code;
     276          }
     277      }
     278      Assert (dist == 256, "tr_static_init: dist != 256");
     279      dist >>= 7; /* from now on, all distances are divided by 128 */
     280      for ( ; code < D_CODES; code++) {
     281          base_dist[code] = dist << 7;
     282          for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
     283              _dist_code[256 + dist++] = (uch)code;
     284          }
     285      }
     286      Assert (dist == 256, "tr_static_init: 256+dist != 512");
     287  
     288      /* Construct the codes of the static literal tree */
     289      for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
     290      n = 0;
     291      while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
     292      while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
     293      while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
     294      while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
     295      /* Codes 286 and 287 do not exist, but we must include them in the
     296       * tree construction to get a canonical Huffman tree (longest code
     297       * all ones)
     298       */
     299      gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
     300  
     301      /* The static distance tree is trivial: */
     302      for (n = 0; n < D_CODES; n++) {
     303          static_dtree[n].Len = 5;
     304          static_dtree[n].Code = bi_reverse((unsigned)n, 5);
     305      }
     306      static_init_done = 1;
     307  
     308  #  ifdef GEN_TREES_H
     309      gen_trees_header();
     310  #  endif
     311  #endif /* defined(GEN_TREES_H) || !defined(STDC) */
     312  }
     313  
     314  /* ===========================================================================
     315   * Genererate the file trees.h describing the static trees.
     316   */
     317  #ifdef GEN_TREES_H
     318  #  ifndef ZLIB_DEBUG
     319  #    include <stdio.h>
     320  #  endif
     321  
     322  #  define SEPARATOR(i, last, width) \
     323        ((i) == (last)? "\n};\n\n" :    \
     324         ((i) % (width) == (width)-1 ? ",\n" : ", "))
     325  
     326  void gen_trees_header()
     327  {
     328      FILE *header = fopen("trees.h", "w");
     329      int i;
     330  
     331      Assert (header != NULL, "Can't open trees.h");
     332      fprintf(header,
     333              "/* header created automatically with -DGEN_TREES_H */\n\n");
     334  
     335      fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
     336      for (i = 0; i < L_CODES+2; i++) {
     337          fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
     338                  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
     339      }
     340  
     341      fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
     342      for (i = 0; i < D_CODES; i++) {
     343          fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
     344                  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
     345      }
     346  
     347      fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
     348      for (i = 0; i < DIST_CODE_LEN; i++) {
     349          fprintf(header, "%2u%s", _dist_code[i],
     350                  SEPARATOR(i, DIST_CODE_LEN-1, 20));
     351      }
     352  
     353      fprintf(header,
     354          "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
     355      for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
     356          fprintf(header, "%2u%s", _length_code[i],
     357                  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
     358      }
     359  
     360      fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
     361      for (i = 0; i < LENGTH_CODES; i++) {
     362          fprintf(header, "%1u%s", base_length[i],
     363                  SEPARATOR(i, LENGTH_CODES-1, 20));
     364      }
     365  
     366      fprintf(header, "local const int base_dist[D_CODES] = {\n");
     367      for (i = 0; i < D_CODES; i++) {
     368          fprintf(header, "%5u%s", base_dist[i],
     369                  SEPARATOR(i, D_CODES-1, 10));
     370      }
     371  
     372      fclose(header);
     373  }
     374  #endif /* GEN_TREES_H */
     375  
     376  /* ===========================================================================
     377   * Initialize the tree data structures for a new zlib stream.
     378   */
     379  void ZLIB_INTERNAL _tr_init(s)
     380      deflate_state *s;
     381  {
     382      tr_static_init();
     383  
     384      s->l_desc.dyn_tree = s->dyn_ltree;
     385      s->l_desc.stat_desc = &static_l_desc;
     386  
     387      s->d_desc.dyn_tree = s->dyn_dtree;
     388      s->d_desc.stat_desc = &static_d_desc;
     389  
     390      s->bl_desc.dyn_tree = s->bl_tree;
     391      s->bl_desc.stat_desc = &static_bl_desc;
     392  
     393      s->bi_buf = 0;
     394      s->bi_valid = 0;
     395  #ifdef ZLIB_DEBUG
     396      s->compressed_len = 0L;
     397      s->bits_sent = 0L;
     398  #endif
     399  
     400      /* Initialize the first block of the first file: */
     401      init_block(s);
     402  }
     403  
     404  /* ===========================================================================
     405   * Initialize a new block.
     406   */
     407  local void init_block(s)
     408      deflate_state *s;
     409  {
     410      int n; /* iterates over tree elements */
     411  
     412      /* Initialize the trees. */
     413      for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
     414      for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
     415      for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
     416  
     417      s->dyn_ltree[END_BLOCK].Freq = 1;
     418      s->opt_len = s->static_len = 0L;
     419      s->last_lit = s->matches = 0;
     420  }
     421  
     422  #define SMALLEST 1
     423  /* Index within the heap array of least frequent node in the Huffman tree */
     424  
     425  
     426  /* ===========================================================================
     427   * Remove the smallest element from the heap and recreate the heap with
     428   * one less element. Updates heap and heap_len.
     429   */
     430  #define pqremove(s, tree, top) \
     431  {\
     432      top = s->heap[SMALLEST]; \
     433      s->heap[SMALLEST] = s->heap[s->heap_len--]; \
     434      pqdownheap(s, tree, SMALLEST); \
     435  }
     436  
     437  /* ===========================================================================
     438   * Compares to subtrees, using the tree depth as tie breaker when
     439   * the subtrees have equal frequency. This minimizes the worst case length.
     440   */
     441  #define smaller(tree, n, m, depth) \
     442     (tree[n].Freq < tree[m].Freq || \
     443     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
     444  
     445  /* ===========================================================================
     446   * Restore the heap property by moving down the tree starting at node k,
     447   * exchanging a node with the smallest of its two sons if necessary, stopping
     448   * when the heap property is re-established (each father smaller than its
     449   * two sons).
     450   */
     451  local void pqdownheap(s, tree, k)
     452      deflate_state *s;
     453      ct_data *tree;  /* the tree to restore */
     454      int k;               /* node to move down */
     455  {
     456      int v = s->heap[k];
     457      int j = k << 1;  /* left son of k */
     458      while (j <= s->heap_len) {
     459          /* Set j to the smallest of the two sons: */
     460          if (j < s->heap_len &&
     461              smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
     462              j++;
     463          }
     464          /* Exit if v is smaller than both sons */
     465          if (smaller(tree, v, s->heap[j], s->depth)) break;
     466  
     467          /* Exchange v with the smallest son */
     468          s->heap[k] = s->heap[j];  k = j;
     469  
     470          /* And continue down the tree, setting j to the left son of k */
     471          j <<= 1;
     472      }
     473      s->heap[k] = v;
     474  }
     475  
     476  /* ===========================================================================
     477   * Compute the optimal bit lengths for a tree and update the total bit length
     478   * for the current block.
     479   * IN assertion: the fields freq and dad are set, heap[heap_max] and
     480   *    above are the tree nodes sorted by increasing frequency.
     481   * OUT assertions: the field len is set to the optimal bit length, the
     482   *     array bl_count contains the frequencies for each bit length.
     483   *     The length opt_len is updated; static_len is also updated if stree is
     484   *     not null.
     485   */
     486  local void gen_bitlen(s, desc)
     487      deflate_state *s;
     488      tree_desc *desc;    /* the tree descriptor */
     489  {
     490      ct_data *tree        = desc->dyn_tree;
     491      int max_code         = desc->max_code;
     492      const ct_data *stree = desc->stat_desc->static_tree;
     493      const intf *extra    = desc->stat_desc->extra_bits;
     494      int base             = desc->stat_desc->extra_base;
     495      int max_length       = desc->stat_desc->max_length;
     496      int h;              /* heap index */
     497      int n, m;           /* iterate over the tree elements */
     498      int bits;           /* bit length */
     499      int xbits;          /* extra bits */
     500      ush f;              /* frequency */
     501      int overflow = 0;   /* number of elements with bit length too large */
     502  
     503      for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
     504  
     505      /* In a first pass, compute the optimal bit lengths (which may
     506       * overflow in the case of the bit length tree).
     507       */
     508      tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
     509  
     510      for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
     511          n = s->heap[h];
     512          bits = tree[tree[n].Dad].Len + 1;
     513          if (bits > max_length) bits = max_length, overflow++;
     514          tree[n].Len = (ush)bits;
     515          /* We overwrite tree[n].Dad which is no longer needed */
     516  
     517          if (n > max_code) continue; /* not a leaf node */
     518  
     519          s->bl_count[bits]++;
     520          xbits = 0;
     521          if (n >= base) xbits = extra[n-base];
     522          f = tree[n].Freq;
     523          s->opt_len += (ulg)f * (unsigned)(bits + xbits);
     524          if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
     525      }
     526      if (overflow == 0) return;
     527  
     528      Tracev((stderr,"\nbit length overflow\n"));
     529      /* This happens for example on obj2 and pic of the Calgary corpus */
     530  
     531      /* Find the first bit length which could increase: */
     532      do {
     533          bits = max_length-1;
     534          while (s->bl_count[bits] == 0) bits--;
     535          s->bl_count[bits]--;      /* move one leaf down the tree */
     536          s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
     537          s->bl_count[max_length]--;
     538          /* The brother of the overflow item also moves one step up,
     539           * but this does not affect bl_count[max_length]
     540           */
     541          overflow -= 2;
     542      } while (overflow > 0);
     543  
     544      /* Now recompute all bit lengths, scanning in increasing frequency.
     545       * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     546       * lengths instead of fixing only the wrong ones. This idea is taken
     547       * from 'ar' written by Haruhiko Okumura.)
     548       */
     549      for (bits = max_length; bits != 0; bits--) {
     550          n = s->bl_count[bits];
     551          while (n != 0) {
     552              m = s->heap[--h];
     553              if (m > max_code) continue;
     554              if ((unsigned) tree[m].Len != (unsigned) bits) {
     555                  Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
     556                  s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
     557                  tree[m].Len = (ush)bits;
     558              }
     559              n--;
     560          }
     561      }
     562  }
     563  
     564  /* ===========================================================================
     565   * Generate the codes for a given tree and bit counts (which need not be
     566   * optimal).
     567   * IN assertion: the array bl_count contains the bit length statistics for
     568   * the given tree and the field len is set for all tree elements.
     569   * OUT assertion: the field code is set for all tree elements of non
     570   *     zero code length.
     571   */
     572  local void gen_codes (tree, max_code, bl_count)
     573      ct_data *tree;             /* the tree to decorate */
     574      int max_code;              /* largest code with non zero frequency */
     575      ushf *bl_count;            /* number of codes at each bit length */
     576  {
     577      ush next_code[MAX_BITS+1]; /* next code value for each bit length */
     578      unsigned code = 0;         /* running code value */
     579      int bits;                  /* bit index */
     580      int n;                     /* code index */
     581  
     582      /* The distribution counts are first used to generate the code values
     583       * without bit reversal.
     584       */
     585      for (bits = 1; bits <= MAX_BITS; bits++) {
     586          code = (code + bl_count[bits-1]) << 1;
     587          next_code[bits] = (ush)code;
     588      }
     589      /* Check that the bit counts in bl_count are consistent. The last code
     590       * must be all ones.
     591       */
     592      Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
     593              "inconsistent bit counts");
     594      Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
     595  
     596      for (n = 0;  n <= max_code; n++) {
     597          int len = tree[n].Len;
     598          if (len == 0) continue;
     599          /* Now reverse the bits */
     600          tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
     601  
     602          Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
     603               n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
     604      }
     605  }
     606  
     607  /* ===========================================================================
     608   * Construct one Huffman tree and assigns the code bit strings and lengths.
     609   * Update the total bit length for the current block.
     610   * IN assertion: the field freq is set for all tree elements.
     611   * OUT assertions: the fields len and code are set to the optimal bit length
     612   *     and corresponding code. The length opt_len is updated; static_len is
     613   *     also updated if stree is not null. The field max_code is set.
     614   */
     615  local void build_tree(s, desc)
     616      deflate_state *s;
     617      tree_desc *desc; /* the tree descriptor */
     618  {
     619      ct_data *tree         = desc->dyn_tree;
     620      const ct_data *stree  = desc->stat_desc->static_tree;
     621      int elems             = desc->stat_desc->elems;
     622      int n, m;          /* iterate over heap elements */
     623      int max_code = -1; /* largest code with non zero frequency */
     624      int node;          /* new node being created */
     625  
     626      /* Construct the initial heap, with least frequent element in
     627       * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     628       * heap[0] is not used.
     629       */
     630      s->heap_len = 0, s->heap_max = HEAP_SIZE;
     631  
     632      for (n = 0; n < elems; n++) {
     633          if (tree[n].Freq != 0) {
     634              s->heap[++(s->heap_len)] = max_code = n;
     635              s->depth[n] = 0;
     636          } else {
     637              tree[n].Len = 0;
     638          }
     639      }
     640  
     641      /* The pkzip format requires that at least one distance code exists,
     642       * and that at least one bit should be sent even if there is only one
     643       * possible code. So to avoid special checks later on we force at least
     644       * two codes of non zero frequency.
     645       */
     646      while (s->heap_len < 2) {
     647          node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
     648          tree[node].Freq = 1;
     649          s->depth[node] = 0;
     650          s->opt_len--; if (stree) s->static_len -= stree[node].Len;
     651          /* node is 0 or 1 so it does not have extra bits */
     652      }
     653      desc->max_code = max_code;
     654  
     655      /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     656       * establish sub-heaps of increasing lengths:
     657       */
     658      for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
     659  
     660      /* Construct the Huffman tree by repeatedly combining the least two
     661       * frequent nodes.
     662       */
     663      node = elems;              /* next internal node of the tree */
     664      do {
     665          pqremove(s, tree, n);  /* n = node of least frequency */
     666          m = s->heap[SMALLEST]; /* m = node of next least frequency */
     667  
     668          s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
     669          s->heap[--(s->heap_max)] = m;
     670  
     671          /* Create a new node father of n and m */
     672          tree[node].Freq = tree[n].Freq + tree[m].Freq;
     673          s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
     674                                  s->depth[n] : s->depth[m]) + 1);
     675          tree[n].Dad = tree[m].Dad = (ush)node;
     676  #ifdef DUMP_BL_TREE
     677          if (tree == s->bl_tree) {
     678              fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
     679                      node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
     680          }
     681  #endif
     682          /* and insert the new node in the heap */
     683          s->heap[SMALLEST] = node++;
     684          pqdownheap(s, tree, SMALLEST);
     685  
     686      } while (s->heap_len >= 2);
     687  
     688      s->heap[--(s->heap_max)] = s->heap[SMALLEST];
     689  
     690      /* At this point, the fields freq and dad are set. We can now
     691       * generate the bit lengths.
     692       */
     693      gen_bitlen(s, (tree_desc *)desc);
     694  
     695      /* The field len is now set, we can generate the bit codes */
     696      gen_codes ((ct_data *)tree, max_code, s->bl_count);
     697  }
     698  
     699  /* ===========================================================================
     700   * Scan a literal or distance tree to determine the frequencies of the codes
     701   * in the bit length tree.
     702   */
     703  local void scan_tree (s, tree, max_code)
     704      deflate_state *s;
     705      ct_data *tree;   /* the tree to be scanned */
     706      int max_code;    /* and its largest code of non zero frequency */
     707  {
     708      int n;                     /* iterates over all tree elements */
     709      int prevlen = -1;          /* last emitted length */
     710      int curlen;                /* length of current code */
     711      int nextlen = tree[0].Len; /* length of next code */
     712      int count = 0;             /* repeat count of the current code */
     713      int max_count = 7;         /* max repeat count */
     714      int min_count = 4;         /* min repeat count */
     715  
     716      if (nextlen == 0) max_count = 138, min_count = 3;
     717      tree[max_code+1].Len = (ush)0xffff; /* guard */
     718  
     719      for (n = 0; n <= max_code; n++) {
     720          curlen = nextlen; nextlen = tree[n+1].Len;
     721          if (++count < max_count && curlen == nextlen) {
     722              continue;
     723          } else if (count < min_count) {
     724              s->bl_tree[curlen].Freq += count;
     725          } else if (curlen != 0) {
     726              if (curlen != prevlen) s->bl_tree[curlen].Freq++;
     727              s->bl_tree[REP_3_6].Freq++;
     728          } else if (count <= 10) {
     729              s->bl_tree[REPZ_3_10].Freq++;
     730          } else {
     731              s->bl_tree[REPZ_11_138].Freq++;
     732          }
     733          count = 0; prevlen = curlen;
     734          if (nextlen == 0) {
     735              max_count = 138, min_count = 3;
     736          } else if (curlen == nextlen) {
     737              max_count = 6, min_count = 3;
     738          } else {
     739              max_count = 7, min_count = 4;
     740          }
     741      }
     742  }
     743  
     744  /* ===========================================================================
     745   * Send a literal or distance tree in compressed form, using the codes in
     746   * bl_tree.
     747   */
     748  local void send_tree (s, tree, max_code)
     749      deflate_state *s;
     750      ct_data *tree; /* the tree to be scanned */
     751      int max_code;       /* and its largest code of non zero frequency */
     752  {
     753      int n;                     /* iterates over all tree elements */
     754      int prevlen = -1;          /* last emitted length */
     755      int curlen;                /* length of current code */
     756      int nextlen = tree[0].Len; /* length of next code */
     757      int count = 0;             /* repeat count of the current code */
     758      int max_count = 7;         /* max repeat count */
     759      int min_count = 4;         /* min repeat count */
     760  
     761      /* tree[max_code+1].Len = -1; */  /* guard already set */
     762      if (nextlen == 0) max_count = 138, min_count = 3;
     763  
     764      for (n = 0; n <= max_code; n++) {
     765          curlen = nextlen; nextlen = tree[n+1].Len;
     766          if (++count < max_count && curlen == nextlen) {
     767              continue;
     768          } else if (count < min_count) {
     769              do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
     770  
     771          } else if (curlen != 0) {
     772              if (curlen != prevlen) {
     773                  send_code(s, curlen, s->bl_tree); count--;
     774              }
     775              Assert(count >= 3 && count <= 6, " 3_6?");
     776              send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
     777  
     778          } else if (count <= 10) {
     779              send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
     780  
     781          } else {
     782              send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
     783          }
     784          count = 0; prevlen = curlen;
     785          if (nextlen == 0) {
     786              max_count = 138, min_count = 3;
     787          } else if (curlen == nextlen) {
     788              max_count = 6, min_count = 3;
     789          } else {
     790              max_count = 7, min_count = 4;
     791          }
     792      }
     793  }
     794  
     795  /* ===========================================================================
     796   * Construct the Huffman tree for the bit lengths and return the index in
     797   * bl_order of the last bit length code to send.
     798   */
     799  local int build_bl_tree(s)
     800      deflate_state *s;
     801  {
     802      int max_blindex;  /* index of last bit length code of non zero freq */
     803  
     804      /* Determine the bit length frequencies for literal and distance trees */
     805      scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
     806      scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
     807  
     808      /* Build the bit length tree: */
     809      build_tree(s, (tree_desc *)(&(s->bl_desc)));
     810      /* opt_len now includes the length of the tree representations, except
     811       * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     812       */
     813  
     814      /* Determine the number of bit length codes to send. The pkzip format
     815       * requires that at least 4 bit length codes be sent. (appnote.txt says
     816       * 3 but the actual value used is 4.)
     817       */
     818      for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
     819          if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
     820      }
     821      /* Update opt_len to include the bit length tree and counts */
     822      s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
     823      Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
     824              s->opt_len, s->static_len));
     825  
     826      return max_blindex;
     827  }
     828  
     829  /* ===========================================================================
     830   * Send the header for a block using dynamic Huffman trees: the counts, the
     831   * lengths of the bit length codes, the literal tree and the distance tree.
     832   * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
     833   */
     834  local void send_all_trees(s, lcodes, dcodes, blcodes)
     835      deflate_state *s;
     836      int lcodes, dcodes, blcodes; /* number of codes for each tree */
     837  {
     838      int rank;                    /* index in bl_order */
     839  
     840      Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
     841      Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
     842              "too many codes");
     843      Tracev((stderr, "\nbl counts: "));
     844      send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
     845      send_bits(s, dcodes-1,   5);
     846      send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
     847      for (rank = 0; rank < blcodes; rank++) {
     848          Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
     849          send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
     850      }
     851      Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
     852  
     853      send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
     854      Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
     855  
     856      send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
     857      Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
     858  }
     859  
     860  /* ===========================================================================
     861   * Send a stored block
     862   */
     863  void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
     864      deflate_state *s;
     865      charf *buf;       /* input block */
     866      ulg stored_len;   /* length of input block */
     867      int last;         /* one if this is the last block for a file */
     868  {
     869      send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
     870      bi_windup(s);        /* align on byte boundary */
     871      put_short(s, (ush)stored_len);
     872      put_short(s, (ush)~stored_len);
     873      zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
     874      s->pending += stored_len;
     875  #ifdef ZLIB_DEBUG
     876      s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
     877      s->compressed_len += (stored_len + 4) << 3;
     878      s->bits_sent += 2*16;
     879      s->bits_sent += stored_len<<3;
     880  #endif
     881  }
     882  
     883  /* ===========================================================================
     884   * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
     885   */
     886  void ZLIB_INTERNAL _tr_flush_bits(s)
     887      deflate_state *s;
     888  {
     889      bi_flush(s);
     890  }
     891  
     892  /* ===========================================================================
     893   * Send one empty static block to give enough lookahead for inflate.
     894   * This takes 10 bits, of which 7 may remain in the bit buffer.
     895   */
     896  void ZLIB_INTERNAL _tr_align(s)
     897      deflate_state *s;
     898  {
     899      send_bits(s, STATIC_TREES<<1, 3);
     900      send_code(s, END_BLOCK, static_ltree);
     901  #ifdef ZLIB_DEBUG
     902      s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
     903  #endif
     904      bi_flush(s);
     905  }
     906  
     907  /* ===========================================================================
     908   * Determine the best encoding for the current block: dynamic trees, static
     909   * trees or store, and write out the encoded block.
     910   */
     911  void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
     912      deflate_state *s;
     913      charf *buf;       /* input block, or NULL if too old */
     914      ulg stored_len;   /* length of input block */
     915      int last;         /* one if this is the last block for a file */
     916  {
     917      ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
     918      int max_blindex = 0;  /* index of last bit length code of non zero freq */
     919  
     920      /* Build the Huffman trees unless a stored block is forced */
     921      if (s->level > 0) {
     922  
     923          /* Check if the file is binary or text */
     924          if (s->strm->data_type == Z_UNKNOWN)
     925              s->strm->data_type = detect_data_type(s);
     926  
     927          /* Construct the literal and distance trees */
     928          build_tree(s, (tree_desc *)(&(s->l_desc)));
     929          Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
     930                  s->static_len));
     931  
     932          build_tree(s, (tree_desc *)(&(s->d_desc)));
     933          Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
     934                  s->static_len));
     935          /* At this point, opt_len and static_len are the total bit lengths of
     936           * the compressed block data, excluding the tree representations.
     937           */
     938  
     939          /* Build the bit length tree for the above two trees, and get the index
     940           * in bl_order of the last bit length code to send.
     941           */
     942          max_blindex = build_bl_tree(s);
     943  
     944          /* Determine the best encoding. Compute the block lengths in bytes. */
     945          opt_lenb = (s->opt_len+3+7)>>3;
     946          static_lenb = (s->static_len+3+7)>>3;
     947  
     948          Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
     949                  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
     950                  s->last_lit));
     951  
     952          if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
     953  
     954      } else {
     955          Assert(buf != (char*)0, "lost buf");
     956          opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
     957      }
     958  
     959  #ifdef FORCE_STORED
     960      if (buf != (char*)0) { /* force stored block */
     961  #else
     962      if (stored_len+4 <= opt_lenb && buf != (char*)0) {
     963                         /* 4: two words for the lengths */
     964  #endif
     965          /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     966           * Otherwise we can't have processed more than WSIZE input bytes since
     967           * the last block flush, because compression would have been
     968           * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     969           * transform a block into a stored block.
     970           */
     971          _tr_stored_block(s, buf, stored_len, last);
     972  
     973  #ifdef FORCE_STATIC
     974      } else if (static_lenb >= 0) { /* force static trees */
     975  #else
     976      } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
     977  #endif
     978          send_bits(s, (STATIC_TREES<<1)+last, 3);
     979          compress_block(s, (const ct_data *)static_ltree,
     980                         (const ct_data *)static_dtree);
     981  #ifdef ZLIB_DEBUG
     982          s->compressed_len += 3 + s->static_len;
     983  #endif
     984      } else {
     985          send_bits(s, (DYN_TREES<<1)+last, 3);
     986          send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
     987                         max_blindex+1);
     988          compress_block(s, (const ct_data *)s->dyn_ltree,
     989                         (const ct_data *)s->dyn_dtree);
     990  #ifdef ZLIB_DEBUG
     991          s->compressed_len += 3 + s->opt_len;
     992  #endif
     993      }
     994      Assert (s->compressed_len == s->bits_sent, "bad compressed size");
     995      /* The above check is made mod 2^32, for files larger than 512 MB
     996       * and uLong implemented on 32 bits.
     997       */
     998      init_block(s);
     999  
    1000      if (last) {
    1001          bi_windup(s);
    1002  #ifdef ZLIB_DEBUG
    1003          s->compressed_len += 7;  /* align on byte boundary */
    1004  #endif
    1005      }
    1006      Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
    1007             s->compressed_len-7*last));
    1008  }
    1009  
    1010  /* ===========================================================================
    1011   * Save the match info and tally the frequency counts. Return true if
    1012   * the current block must be flushed.
    1013   */
    1014  int ZLIB_INTERNAL _tr_tally (s, dist, lc)
    1015      deflate_state *s;
    1016      unsigned dist;  /* distance of matched string */
    1017      unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
    1018  {
    1019      s->d_buf[s->last_lit] = (ush)dist;
    1020      s->l_buf[s->last_lit++] = (uch)lc;
    1021      if (dist == 0) {
    1022          /* lc is the unmatched char */
    1023          s->dyn_ltree[lc].Freq++;
    1024      } else {
    1025          s->matches++;
    1026          /* Here, lc is the match length - MIN_MATCH */
    1027          dist--;             /* dist = match distance - 1 */
    1028          Assert((ush)dist < (ush)MAX_DIST(s) &&
    1029                 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
    1030                 (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
    1031  
    1032          s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
    1033          s->dyn_dtree[d_code(dist)].Freq++;
    1034      }
    1035  
    1036  #ifdef TRUNCATE_BLOCK
    1037      /* Try to guess if it is profitable to stop the current block here */
    1038      if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
    1039          /* Compute an upper bound for the compressed length */
    1040          ulg out_length = (ulg)s->last_lit*8L;
    1041          ulg in_length = (ulg)((long)s->strstart - s->block_start);
    1042          int dcode;
    1043          for (dcode = 0; dcode < D_CODES; dcode++) {
    1044              out_length += (ulg)s->dyn_dtree[dcode].Freq *
    1045                  (5L+extra_dbits[dcode]);
    1046          }
    1047          out_length >>= 3;
    1048          Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
    1049                 s->last_lit, in_length, out_length,
    1050                 100L - out_length*100L/in_length));
    1051          if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
    1052      }
    1053  #endif
    1054      return (s->last_lit == s->lit_bufsize-1);
    1055      /* We avoid equality with lit_bufsize because of wraparound at 64K
    1056       * on 16 bit machines and because stored blocks are restricted to
    1057       * 64K-1 bytes.
    1058       */
    1059  }
    1060  
    1061  /* ===========================================================================
    1062   * Send the block data compressed using the given Huffman trees
    1063   */
    1064  local void compress_block(s, ltree, dtree)
    1065      deflate_state *s;
    1066      const ct_data *ltree; /* literal tree */
    1067      const ct_data *dtree; /* distance tree */
    1068  {
    1069      unsigned dist;      /* distance of matched string */
    1070      int lc;             /* match length or unmatched char (if dist == 0) */
    1071      unsigned lx = 0;    /* running index in l_buf */
    1072      unsigned code;      /* the code to send */
    1073      int extra;          /* number of extra bits to send */
    1074  
    1075      if (s->last_lit != 0) do {
    1076          dist = s->d_buf[lx];
    1077          lc = s->l_buf[lx++];
    1078          if (dist == 0) {
    1079              send_code(s, lc, ltree); /* send a literal byte */
    1080              Tracecv(isgraph(lc), (stderr," '%c' ", lc));
    1081          } else {
    1082              /* Here, lc is the match length - MIN_MATCH */
    1083              code = _length_code[lc];
    1084              send_code(s, code+LITERALS+1, ltree); /* send the length code */
    1085              extra = extra_lbits[code];
    1086              if (extra != 0) {
    1087                  lc -= base_length[code];
    1088                  send_bits(s, lc, extra);       /* send the extra length bits */
    1089              }
    1090              dist--; /* dist is now the match distance - 1 */
    1091              code = d_code(dist);
    1092              Assert (code < D_CODES, "bad d_code");
    1093  
    1094              send_code(s, code, dtree);       /* send the distance code */
    1095              extra = extra_dbits[code];
    1096              if (extra != 0) {
    1097                  dist -= (unsigned)base_dist[code];
    1098                  send_bits(s, dist, extra);   /* send the extra distance bits */
    1099              }
    1100          } /* literal or match pair ? */
    1101  
    1102          /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
    1103          Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
    1104                 "pendingBuf overflow");
    1105  
    1106      } while (lx < s->last_lit);
    1107  
    1108      send_code(s, END_BLOCK, ltree);
    1109  }
    1110  
    1111  /* ===========================================================================
    1112   * Check if the data type is TEXT or BINARY, using the following algorithm:
    1113   * - TEXT if the two conditions below are satisfied:
    1114   *    a) There are no non-portable control characters belonging to the
    1115   *       "black list" (0..6, 14..25, 28..31).
    1116   *    b) There is at least one printable character belonging to the
    1117   *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
    1118   * - BINARY otherwise.
    1119   * - The following partially-portable control characters form a
    1120   *   "gray list" that is ignored in this detection algorithm:
    1121   *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
    1122   * IN assertion: the fields Freq of dyn_ltree are set.
    1123   */
    1124  local int detect_data_type(s)
    1125      deflate_state *s;
    1126  {
    1127      /* black_mask is the bit mask of black-listed bytes
    1128       * set bits 0..6, 14..25, and 28..31
    1129       * 0xf3ffc07f = binary 11110011111111111100000001111111
    1130       */
    1131      unsigned long black_mask = 0xf3ffc07fUL;
    1132      int n;
    1133  
    1134      /* Check for non-textual ("black-listed") bytes. */
    1135      for (n = 0; n <= 31; n++, black_mask >>= 1)
    1136          if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
    1137              return Z_BINARY;
    1138  
    1139      /* Check for textual ("white-listed") bytes. */
    1140      if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
    1141              || s->dyn_ltree[13].Freq != 0)
    1142          return Z_TEXT;
    1143      for (n = 32; n < LITERALS; n++)
    1144          if (s->dyn_ltree[n].Freq != 0)
    1145              return Z_TEXT;
    1146  
    1147      /* There are no "black-listed" or "white-listed" bytes:
    1148       * this stream either is empty or has tolerated ("gray-listed") bytes only.
    1149       */
    1150      return Z_BINARY;
    1151  }
    1152  
    1153  /* ===========================================================================
    1154   * Reverse the first len bits of a code, using straightforward code (a faster
    1155   * method would use a table)
    1156   * IN assertion: 1 <= len <= 15
    1157   */
    1158  local unsigned bi_reverse(code, len)
    1159      unsigned code; /* the value to invert */
    1160      int len;       /* its bit length */
    1161  {
    1162      register unsigned res = 0;
    1163      do {
    1164          res |= code & 1;
    1165          code >>= 1, res <<= 1;
    1166      } while (--len > 0);
    1167      return res >> 1;
    1168  }
    1169  
    1170  /* ===========================================================================
    1171   * Flush the bit buffer, keeping at most 7 bits in it.
    1172   */
    1173  local void bi_flush(s)
    1174      deflate_state *s;
    1175  {
    1176      if (s->bi_valid == 16) {
    1177          put_short(s, s->bi_buf);
    1178          s->bi_buf = 0;
    1179          s->bi_valid = 0;
    1180      } else if (s->bi_valid >= 8) {
    1181          put_byte(s, (Byte)s->bi_buf);
    1182          s->bi_buf >>= 8;
    1183          s->bi_valid -= 8;
    1184      }
    1185  }
    1186  
    1187  /* ===========================================================================
    1188   * Flush the bit buffer and align the output on a byte boundary
    1189   */
    1190  local void bi_windup(s)
    1191      deflate_state *s;
    1192  {
    1193      if (s->bi_valid > 8) {
    1194          put_short(s, s->bi_buf);
    1195      } else if (s->bi_valid > 0) {
    1196          put_byte(s, (Byte)s->bi_buf);
    1197      }
    1198      s->bi_buf = 0;
    1199      s->bi_valid = 0;
    1200  #ifdef ZLIB_DEBUG
    1201      s->bits_sent = (s->bits_sent+7) & ~7;
    1202  #endif
    1203  }