(root)/
gcc-13.2.0/
zlib/
contrib/
blast/
blast.c
       1  /* blast.c
       2   * Copyright (C) 2003, 2012, 2013 Mark Adler
       3   * For conditions of distribution and use, see copyright notice in blast.h
       4   * version 1.3, 24 Aug 2013
       5   *
       6   * blast.c decompresses data compressed by the PKWare Compression Library.
       7   * This function provides functionality similar to the explode() function of
       8   * the PKWare library, hence the name "blast".
       9   *
      10   * This decompressor is based on the excellent format description provided by
      11   * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the
      12   * example Ben provided in the post is incorrect.  The distance 110001 should
      13   * instead be 111000.  When corrected, the example byte stream becomes:
      14   *
      15   *    00 04 82 24 25 8f 80 7f
      16   *
      17   * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
      18   */
      19  
      20  /*
      21   * Change history:
      22   *
      23   * 1.0  12 Feb 2003     - First version
      24   * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data
      25   * 1.2  24 Oct 2012     - Add note about using binary mode in stdio
      26   *                      - Fix comparisons of differently signed integers
      27   * 1.3  24 Aug 2013     - Return unused input from blast()
      28   *                      - Fix test code to correctly report unused input
      29   *                      - Enable the provision of initial input to blast()
      30   */
      31  
      32  #include <stddef.h>             /* for NULL */
      33  #include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */
      34  #include "blast.h"              /* prototype for blast() */
      35  
      36  #define local static            /* for local function definitions */
      37  #define MAXBITS 13              /* maximum code length */
      38  #define MAXWIN 4096             /* maximum window size */
      39  
      40  /* input and output state */
      41  struct state {
      42      /* input state */
      43      blast_in infun;             /* input function provided by user */
      44      void *inhow;                /* opaque information passed to infun() */
      45      unsigned char *in;          /* next input location */
      46      unsigned left;              /* available input at in */
      47      int bitbuf;                 /* bit buffer */
      48      int bitcnt;                 /* number of bits in bit buffer */
      49  
      50      /* input limit error return state for bits() and decode() */
      51      jmp_buf env;
      52  
      53      /* output state */
      54      blast_out outfun;           /* output function provided by user */
      55      void *outhow;               /* opaque information passed to outfun() */
      56      unsigned next;              /* index of next write location in out[] */
      57      int first;                  /* true to check distances (for first 4K) */
      58      unsigned char out[MAXWIN];  /* output buffer and sliding window */
      59  };
      60  
      61  /*
      62   * Return need bits from the input stream.  This always leaves less than
      63   * eight bits in the buffer.  bits() works properly for need == 0.
      64   *
      65   * Format notes:
      66   *
      67   * - Bits are stored in bytes from the least significant bit to the most
      68   *   significant bit.  Therefore bits are dropped from the bottom of the bit
      69   *   buffer, using shift right, and new bytes are appended to the top of the
      70   *   bit buffer, using shift left.
      71   */
      72  local int bits(struct state *s, int need)
      73  {
      74      int val;            /* bit accumulator */
      75  
      76      /* load at least need bits into val */
      77      val = s->bitbuf;
      78      while (s->bitcnt < need) {
      79          if (s->left == 0) {
      80              s->left = s->infun(s->inhow, &(s->in));
      81              if (s->left == 0) longjmp(s->env, 1);       /* out of input */
      82          }
      83          val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */
      84          s->left--;
      85          s->bitcnt += 8;
      86      }
      87  
      88      /* drop need bits and update buffer, always zero to seven bits left */
      89      s->bitbuf = val >> need;
      90      s->bitcnt -= need;
      91  
      92      /* return need bits, zeroing the bits above that */
      93      return val & ((1 << need) - 1);
      94  }
      95  
      96  /*
      97   * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of
      98   * each length, which for a canonical code are stepped through in order.
      99   * symbol[] are the symbol values in canonical order, where the number of
     100   * entries is the sum of the counts in count[].  The decoding process can be
     101   * seen in the function decode() below.
     102   */
     103  struct huffman {
     104      short *count;       /* number of symbols of each length */
     105      short *symbol;      /* canonically ordered symbols */
     106  };
     107  
     108  /*
     109   * Decode a code from the stream s using huffman table h.  Return the symbol or
     110   * a negative value if there is an error.  If all of the lengths are zero, i.e.
     111   * an empty code, or if the code is incomplete and an invalid code is received,
     112   * then -9 is returned after reading MAXBITS bits.
     113   *
     114   * Format notes:
     115   *
     116   * - The codes as stored in the compressed data are bit-reversed relative to
     117   *   a simple integer ordering of codes of the same lengths.  Hence below the
     118   *   bits are pulled from the compressed data one at a time and used to
     119   *   build the code value reversed from what is in the stream in order to
     120   *   permit simple integer comparisons for decoding.
     121   *
     122   * - The first code for the shortest length is all ones.  Subsequent codes of
     123   *   the same length are simply integer decrements of the previous code.  When
     124   *   moving up a length, a one bit is appended to the code.  For a complete
     125   *   code, the last code of the longest length will be all zeros.  To support
     126   *   this ordering, the bits pulled during decoding are inverted to apply the
     127   *   more "natural" ordering starting with all zeros and incrementing.
     128   */
     129  local int decode(struct state *s, struct huffman *h)
     130  {
     131      int len;            /* current number of bits in code */
     132      int code;           /* len bits being decoded */
     133      int first;          /* first code of length len */
     134      int count;          /* number of codes of length len */
     135      int index;          /* index of first code of length len in symbol table */
     136      int bitbuf;         /* bits from stream */
     137      int left;           /* bits left in next or left to process */
     138      short *next;        /* next number of codes */
     139  
     140      bitbuf = s->bitbuf;
     141      left = s->bitcnt;
     142      code = first = index = 0;
     143      len = 1;
     144      next = h->count + 1;
     145      while (1) {
     146          while (left--) {
     147              code |= (bitbuf & 1) ^ 1;   /* invert code */
     148              bitbuf >>= 1;
     149              count = *next++;
     150              if (code < first + count) { /* if length len, return symbol */
     151                  s->bitbuf = bitbuf;
     152                  s->bitcnt = (s->bitcnt - len) & 7;
     153                  return h->symbol[index + (code - first)];
     154              }
     155              index += count;             /* else update for next length */
     156              first += count;
     157              first <<= 1;
     158              code <<= 1;
     159              len++;
     160          }
     161          left = (MAXBITS+1) - len;
     162          if (left == 0) break;
     163          if (s->left == 0) {
     164              s->left = s->infun(s->inhow, &(s->in));
     165              if (s->left == 0) longjmp(s->env, 1);       /* out of input */
     166          }
     167          bitbuf = *(s->in)++;
     168          s->left--;
     169          if (left > 8) left = 8;
     170      }
     171      return -9;                          /* ran out of codes */
     172  }
     173  
     174  /*
     175   * Given a list of repeated code lengths rep[0..n-1], where each byte is a
     176   * count (high four bits + 1) and a code length (low four bits), generate the
     177   * list of code lengths.  This compaction reduces the size of the object code.
     178   * Then given the list of code lengths length[0..n-1] representing a canonical
     179   * Huffman code for n symbols, construct the tables required to decode those
     180   * codes.  Those tables are the number of codes of each length, and the symbols
     181   * sorted by length, retaining their original order within each length.  The
     182   * return value is zero for a complete code set, negative for an over-
     183   * subscribed code set, and positive for an incomplete code set.  The tables
     184   * can be used if the return value is zero or positive, but they cannot be used
     185   * if the return value is negative.  If the return value is zero, it is not
     186   * possible for decode() using that table to return an error--any stream of
     187   * enough bits will resolve to a symbol.  If the return value is positive, then
     188   * it is possible for decode() using that table to return an error for received
     189   * codes past the end of the incomplete lengths.
     190   */
     191  local int construct(struct huffman *h, const unsigned char *rep, int n)
     192  {
     193      int symbol;         /* current symbol when stepping through length[] */
     194      int len;            /* current length when stepping through h->count[] */
     195      int left;           /* number of possible codes left of current length */
     196      short offs[MAXBITS+1];      /* offsets in symbol table for each length */
     197      short length[256];  /* code lengths */
     198  
     199      /* convert compact repeat counts into symbol bit length list */
     200      symbol = 0;
     201      do {
     202          len = *rep++;
     203          left = (len >> 4) + 1;
     204          len &= 15;
     205          do {
     206              length[symbol++] = len;
     207          } while (--left);
     208      } while (--n);
     209      n = symbol;
     210  
     211      /* count number of codes of each length */
     212      for (len = 0; len <= MAXBITS; len++)
     213          h->count[len] = 0;
     214      for (symbol = 0; symbol < n; symbol++)
     215          (h->count[length[symbol]])++;   /* assumes lengths are within bounds */
     216      if (h->count[0] == n)               /* no codes! */
     217          return 0;                       /* complete, but decode() will fail */
     218  
     219      /* check for an over-subscribed or incomplete set of lengths */
     220      left = 1;                           /* one possible code of zero length */
     221      for (len = 1; len <= MAXBITS; len++) {
     222          left <<= 1;                     /* one more bit, double codes left */
     223          left -= h->count[len];          /* deduct count from possible codes */
     224          if (left < 0) return left;      /* over-subscribed--return negative */
     225      }                                   /* left > 0 means incomplete */
     226  
     227      /* generate offsets into symbol table for each length for sorting */
     228      offs[1] = 0;
     229      for (len = 1; len < MAXBITS; len++)
     230          offs[len + 1] = offs[len] + h->count[len];
     231  
     232      /*
     233       * put symbols in table sorted by length, by symbol order within each
     234       * length
     235       */
     236      for (symbol = 0; symbol < n; symbol++)
     237          if (length[symbol] != 0)
     238              h->symbol[offs[length[symbol]]++] = symbol;
     239  
     240      /* return zero for complete set, positive for incomplete set */
     241      return left;
     242  }
     243  
     244  /*
     245   * Decode PKWare Compression Library stream.
     246   *
     247   * Format notes:
     248   *
     249   * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second
     250   *   byte is 4, 5, or 6 for the number of extra bits in the distance code.
     251   *   This is the base-2 logarithm of the dictionary size minus six.
     252   *
     253   * - Compressed data is a combination of literals and length/distance pairs
     254   *   terminated by an end code.  Literals are either Huffman coded or
     255   *   uncoded bytes.  A length/distance pair is a coded length followed by a
     256   *   coded distance to represent a string that occurs earlier in the
     257   *   uncompressed data that occurs again at the current location.
     258   *
     259   * - A bit preceding a literal or length/distance pair indicates which comes
     260   *   next, 0 for literals, 1 for length/distance.
     261   *
     262   * - If literals are uncoded, then the next eight bits are the literal, in the
     263   *   normal bit order in the stream, i.e. no bit-reversal is needed. Similarly,
     264   *   no bit reversal is needed for either the length extra bits or the distance
     265   *   extra bits.
     266   *
     267   * - Literal bytes are simply written to the output.  A length/distance pair is
     268   *   an instruction to copy previously uncompressed bytes to the output.  The
     269   *   copy is from distance bytes back in the output stream, copying for length
     270   *   bytes.
     271   *
     272   * - Distances pointing before the beginning of the output data are not
     273   *   permitted.
     274   *
     275   * - Overlapped copies, where the length is greater than the distance, are
     276   *   allowed and common.  For example, a distance of one and a length of 518
     277   *   simply copies the last byte 518 times.  A distance of four and a length of
     278   *   twelve copies the last four bytes three times.  A simple forward copy
     279   *   ignoring whether the length is greater than the distance or not implements
     280   *   this correctly.
     281   */
     282  local int decomp(struct state *s)
     283  {
     284      int lit;            /* true if literals are coded */
     285      int dict;           /* log2(dictionary size) - 6 */
     286      int symbol;         /* decoded symbol, extra bits for distance */
     287      int len;            /* length for copy */
     288      unsigned dist;      /* distance for copy */
     289      int copy;           /* copy counter */
     290      unsigned char *from, *to;   /* copy pointers */
     291      static int virgin = 1;                              /* build tables once */
     292      static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */
     293      static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */
     294      static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */
     295      static struct huffman litcode = {litcnt, litsym};   /* length code */
     296      static struct huffman lencode = {lencnt, lensym};   /* length code */
     297      static struct huffman distcode = {distcnt, distsym};/* distance code */
     298          /* bit lengths of literal codes */
     299      static const unsigned char litlen[] = {
     300          11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
     301          9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
     302          7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
     303          8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
     304          44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
     305          44, 173};
     306          /* bit lengths of length codes 0..15 */
     307      static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
     308          /* bit lengths of distance codes 0..63 */
     309      static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
     310      static const short base[16] = {     /* base for length codes */
     311          3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
     312      static const char extra[16] = {     /* extra bits for length codes */
     313          0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
     314  
     315      /* set up decoding tables (once--might not be thread-safe) */
     316      if (virgin) {
     317          construct(&litcode, litlen, sizeof(litlen));
     318          construct(&lencode, lenlen, sizeof(lenlen));
     319          construct(&distcode, distlen, sizeof(distlen));
     320          virgin = 0;
     321      }
     322  
     323      /* read header */
     324      lit = bits(s, 8);
     325      if (lit > 1) return -1;
     326      dict = bits(s, 8);
     327      if (dict < 4 || dict > 6) return -2;
     328  
     329      /* decode literals and length/distance pairs */
     330      do {
     331          if (bits(s, 1)) {
     332              /* get length */
     333              symbol = decode(s, &lencode);
     334              len = base[symbol] + bits(s, extra[symbol]);
     335              if (len == 519) break;              /* end code */
     336  
     337              /* get distance */
     338              symbol = len == 2 ? 2 : dict;
     339              dist = decode(s, &distcode) << symbol;
     340              dist += bits(s, symbol);
     341              dist++;
     342              if (s->first && dist > s->next)
     343                  return -3;              /* distance too far back */
     344  
     345              /* copy length bytes from distance bytes back */
     346              do {
     347                  to = s->out + s->next;
     348                  from = to - dist;
     349                  copy = MAXWIN;
     350                  if (s->next < dist) {
     351                      from += copy;
     352                      copy = dist;
     353                  }
     354                  copy -= s->next;
     355                  if (copy > len) copy = len;
     356                  len -= copy;
     357                  s->next += copy;
     358                  do {
     359                      *to++ = *from++;
     360                  } while (--copy);
     361                  if (s->next == MAXWIN) {
     362                      if (s->outfun(s->outhow, s->out, s->next)) return 1;
     363                      s->next = 0;
     364                      s->first = 0;
     365                  }
     366              } while (len != 0);
     367          }
     368          else {
     369              /* get literal and write it */
     370              symbol = lit ? decode(s, &litcode) : bits(s, 8);
     371              s->out[s->next++] = symbol;
     372              if (s->next == MAXWIN) {
     373                  if (s->outfun(s->outhow, s->out, s->next)) return 1;
     374                  s->next = 0;
     375                  s->first = 0;
     376              }
     377          }
     378      } while (1);
     379      return 0;
     380  }
     381  
     382  /* See comments in blast.h */
     383  int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow,
     384            unsigned *left, unsigned char **in)
     385  {
     386      struct state s;             /* input/output state */
     387      int err;                    /* return value */
     388  
     389      /* initialize input state */
     390      s.infun = infun;
     391      s.inhow = inhow;
     392      if (left != NULL && *left) {
     393          s.left = *left;
     394          s.in = *in;
     395      }
     396      else
     397          s.left = 0;
     398      s.bitbuf = 0;
     399      s.bitcnt = 0;
     400  
     401      /* initialize output state */
     402      s.outfun = outfun;
     403      s.outhow = outhow;
     404      s.next = 0;
     405      s.first = 1;
     406  
     407      /* return if bits() or decode() tries to read past available input */
     408      if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */
     409          err = 2;                        /*  then skip decomp(), return error */
     410      else
     411          err = decomp(&s);               /* decompress */
     412  
     413      /* return unused input */
     414      if (left != NULL)
     415          *left = s.left;
     416      if (in != NULL)
     417          *in = s.left ? s.in : NULL;
     418  
     419      /* write any leftover output and update the error code if needed */
     420      if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
     421          err = 1;
     422      return err;
     423  }
     424  
     425  #ifdef TEST
     426  /* Example of how to use blast() */
     427  #include <stdio.h>
     428  #include <stdlib.h>
     429  
     430  #define CHUNK 16384
     431  
     432  local unsigned inf(void *how, unsigned char **buf)
     433  {
     434      static unsigned char hold[CHUNK];
     435  
     436      *buf = hold;
     437      return fread(hold, 1, CHUNK, (FILE *)how);
     438  }
     439  
     440  local int outf(void *how, unsigned char *buf, unsigned len)
     441  {
     442      return fwrite(buf, 1, len, (FILE *)how) != len;
     443  }
     444  
     445  /* Decompress a PKWare Compression Library stream from stdin to stdout */
     446  int main(void)
     447  {
     448      int ret;
     449      unsigned left;
     450  
     451      /* decompress to stdout */
     452      left = 0;
     453      ret = blast(inf, stdin, outf, stdout, &left, NULL);
     454      if (ret != 0)
     455          fprintf(stderr, "blast error: %d\n", ret);
     456  
     457      /* count any leftover bytes */
     458      while (getchar() != EOF)
     459          left++;
     460      if (left)
     461          fprintf(stderr, "blast warning: %u unused bytes of input\n", left);
     462  
     463      /* return blast() error code */
     464      return ret;
     465  }
     466  #endif