1  // Copyright 2018 Ulf Adams
       2  //
       3  // The contents of this file may be used under the terms of the Apache License,
       4  // Version 2.0.
       5  //
       6  //    (See accompanying file LICENSE-Apache or copy at
       7  //     http://www.apache.org/licenses/LICENSE-2.0)
       8  //
       9  // Alternatively, the contents of this file may be used under the terms of
      10  // the Boost Software License, Version 1.0.
      11  //    (See accompanying file LICENSE-Boost or copy at
      12  //     https://www.boost.org/LICENSE_1_0.txt)
      13  //
      14  // Unless required by applicable law or agreed to in writing, this software
      15  // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
      16  // KIND, either express or implied.
      17  
      18  // Runtime compiler options:
      19  // -DRYU_DEBUG Generate verbose debugging output to stdout.
      20  
      21  
      22  
      23  #ifdef RYU_DEBUG
      24  #endif
      25  
      26  
      27  #define FLOAT_MANTISSA_BITS 23
      28  #define FLOAT_EXPONENT_BITS 8
      29  #define FLOAT_BIAS 127
      30  
      31  // A floating decimal representing m * 10^e.
      32  typedef struct floating_decimal_32 {
      33    uint32_t mantissa;
      34    // Decimal exponent's range is -45 to 38
      35    // inclusive, and can fit in a short if needed.
      36    int32_t exponent;
      37    bool sign;
      38  } floating_decimal_32;
      39  
      40  static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
      41    int32_t e2;
      42    uint32_t m2;
      43    if (ieeeExponent == 0) {
      44      // We subtract 2 so that the bounds computation has 2 additional bits.
      45      e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
      46      m2 = ieeeMantissa;
      47    } else {
      48      e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
      49      m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
      50    }
      51    const bool even = (m2 & 1) == 0;
      52    const bool acceptBounds = even;
      53  
      54  #ifdef RYU_DEBUG
      55    printf("-> %u * 2^%d\n", m2, e2 + 2);
      56  #endif
      57  
      58    // Step 2: Determine the interval of valid decimal representations.
      59    const uint32_t mv = 4 * m2;
      60    const uint32_t mp = 4 * m2 + 2;
      61    // Implicit bool -> int conversion. True is 1, false is 0.
      62    const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
      63    const uint32_t mm = 4 * m2 - 1 - mmShift;
      64  
      65    // Step 3: Convert to a decimal power base using 64-bit arithmetic.
      66    uint32_t vr, vp, vm;
      67    int32_t e10;
      68    bool vmIsTrailingZeros = false;
      69    bool vrIsTrailingZeros = false;
      70    uint8_t lastRemovedDigit = 0;
      71    if (e2 >= 0) {
      72      const uint32_t q = log10Pow2(e2);
      73      e10 = (int32_t) q;
      74      const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
      75      const int32_t i = -e2 + (int32_t) q + k;
      76      vr = mulPow5InvDivPow2(mv, q, i);
      77      vp = mulPow5InvDivPow2(mp, q, i);
      78      vm = mulPow5InvDivPow2(mm, q, i);
      79  #ifdef RYU_DEBUG
      80      printf("%u * 2^%d / 10^%u\n", mv, e2, q);
      81      printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
      82  #endif
      83      if (q != 0 && (vp - 1) / 10 <= vm / 10) {
      84        // We need to know one removed digit even if we are not going to loop below. We could use
      85        // q = X - 1 above, except that would require 33 bits for the result, and we've found that
      86        // 32-bit arithmetic is faster even on 64-bit machines.
      87        const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1;
      88        lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10);
      89      }
      90      if (q <= 9) {
      91        // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
      92        // Only one of mp, mv, and mm can be a multiple of 5, if any.
      93        if (mv % 5 == 0) {
      94          vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q);
      95        } else if (acceptBounds) {
      96          vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q);
      97        } else {
      98          vp -= multipleOfPowerOf5_32(mp, q);
      99        }
     100      }
     101    } else {
     102      const uint32_t q = log10Pow5(-e2);
     103      e10 = (int32_t) q + e2;
     104      const int32_t i = -e2 - (int32_t) q;
     105      const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
     106      int32_t j = (int32_t) q - k;
     107      vr = mulPow5divPow2(mv, (uint32_t) i, j);
     108      vp = mulPow5divPow2(mp, (uint32_t) i, j);
     109      vm = mulPow5divPow2(mm, (uint32_t) i, j);
     110  #ifdef RYU_DEBUG
     111      printf("%u * 5^%d / 10^%u\n", mv, -e2, q);
     112      printf("%u %d %d %d\n", q, i, k, j);
     113      printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
     114  #endif
     115      if (q != 0 && (vp - 1) / 10 <= vm / 10) {
     116        j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
     117        lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10);
     118      }
     119      if (q <= 1) {
     120        // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
     121        // mv = 4 * m2, so it always has at least two trailing 0 bits.
     122        vrIsTrailingZeros = true;
     123        if (acceptBounds) {
     124          // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
     125          vmIsTrailingZeros = mmShift == 1;
     126        } else {
     127          // mp = mv + 2, so it always has at least one trailing 0 bit.
     128          --vp;
     129        }
     130      } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here.
     131        vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1);
     132  #ifdef RYU_DEBUG
     133        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     134  #endif
     135      }
     136    }
     137  #ifdef RYU_DEBUG
     138    printf("e10=%d\n", e10);
     139    printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
     140    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
     141    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     142  #endif
     143  
     144    // Step 4: Find the shortest decimal representation in the interval of valid representations.
     145    int32_t removed = 0;
     146    uint32_t output;
     147    if (vmIsTrailingZeros || vrIsTrailingZeros) {
     148      // General case, which happens rarely (~4.0%).
     149      while (vp / 10 > vm / 10) {
     150  #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106
     151        // The compiler does not realize that vm % 10 can be computed from vm / 10
     152        // as vm - (vm / 10) * 10.
     153        vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
     154  #else
     155        vmIsTrailingZeros &= vm % 10 == 0;
     156  #endif
     157        vrIsTrailingZeros &= lastRemovedDigit == 0;
     158        lastRemovedDigit = (uint8_t) (vr % 10);
     159        vr /= 10;
     160        vp /= 10;
     161        vm /= 10;
     162        ++removed;
     163      }
     164  #ifdef RYU_DEBUG
     165      printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
     166      printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
     167  #endif
     168      if (vmIsTrailingZeros) {
     169        while (vm % 10 == 0) {
     170          vrIsTrailingZeros &= lastRemovedDigit == 0;
     171          lastRemovedDigit = (uint8_t) (vr % 10);
     172          vr /= 10;
     173          vp /= 10;
     174          vm /= 10;
     175          ++removed;
     176        }
     177      }
     178  #ifdef RYU_DEBUG
     179      printf("%u %d\n", vr, lastRemovedDigit);
     180      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     181  #endif
     182      if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
     183        // Round even if the exact number is .....50..0.
     184        lastRemovedDigit = 4;
     185      }
     186      // We need to take vr + 1 if vr is outside bounds or we need to round up.
     187      output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
     188    } else {
     189      // Specialized for the common case (~96.0%). Percentages below are relative to this.
     190      // Loop iterations below (approximately):
     191      // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
     192      while (vp / 10 > vm / 10) {
     193        lastRemovedDigit = (uint8_t) (vr % 10);
     194        vr /= 10;
     195        vp /= 10;
     196        vm /= 10;
     197        ++removed;
     198      }
     199  #ifdef RYU_DEBUG
     200      printf("%u %d\n", vr, lastRemovedDigit);
     201      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     202  #endif
     203      // We need to take vr + 1 if vr is outside bounds or we need to round up.
     204      output = vr + (vr == vm || lastRemovedDigit >= 5);
     205    }
     206    const int32_t exp = e10 + removed;
     207  
     208  #ifdef RYU_DEBUG
     209    printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
     210    printf("O=%u\n", output);
     211    printf("EXP=%d\n", exp);
     212  #endif
     213  
     214    floating_decimal_32 fd;
     215    fd.exponent = exp;
     216    fd.mantissa = output;
     217    fd.sign = ieeeSign;
     218    return fd;
     219  }
     220  
     221  static inline int to_chars(const floating_decimal_32 v, char* const result) {
     222    // Step 5: Print the decimal representation.
     223    int index = 0;
     224    if (v.sign) {
     225      result[index++] = '-';
     226    }
     227  
     228    uint32_t output = v.mantissa;
     229    const uint32_t olength = decimalLength9(output);
     230  
     231  #ifdef RYU_DEBUG
     232    printf("DIGITS=%u\n", v.mantissa);
     233    printf("OLEN=%u\n", olength);
     234    printf("EXP=%u\n", v.exponent + olength);
     235  #endif
     236  
     237    // Print the decimal digits.
     238    // The following code is equivalent to:
     239    // for (uint32_t i = 0; i < olength - 1; ++i) {
     240    //   const uint32_t c = output % 10; output /= 10;
     241    //   result[index + olength - i] = (char) ('0' + c);
     242    // }
     243    // result[index] = '0' + output % 10;
     244    uint32_t i = 0;
     245    while (output >= 10000) {
     246  #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
     247      const uint32_t c = output - 10000 * (output / 10000);
     248  #else
     249      const uint32_t c = output % 10000;
     250  #endif
     251      output /= 10000;
     252      const uint32_t c0 = (c % 100) << 1;
     253      const uint32_t c1 = (c / 100) << 1;
     254      memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
     255      memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
     256      i += 4;
     257    }
     258    if (output >= 100) {
     259      const uint32_t c = (output % 100) << 1;
     260      output /= 100;
     261      memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
     262      i += 2;
     263    }
     264    if (output >= 10) {
     265      const uint32_t c = output << 1;
     266      // We can't use memcpy here: the decimal dot goes between these two digits.
     267      result[index + olength - i] = DIGIT_TABLE[c + 1];
     268      result[index] = DIGIT_TABLE[c];
     269    } else {
     270      result[index] = (char) ('0' + output);
     271    }
     272  
     273    // Print decimal point if needed.
     274    if (olength > 1) {
     275      result[index + 1] = '.';
     276      index += olength + 1;
     277    } else {
     278      ++index;
     279    }
     280  
     281    // Print the exponent.
     282    result[index++] = 'e';
     283    int32_t exp = v.exponent + (int32_t) olength - 1;
     284    if (exp < 0) {
     285      result[index++] = '-';
     286      exp = -exp;
     287    } else {
     288      result[index++] = '+';
     289    }
     290  
     291    memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
     292    index += 2;
     293  
     294    return index;
     295  }
     296  
     297  floating_decimal_32 floating_to_fd32(float f) {
     298    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
     299    const uint32_t bits = float_to_bits(f);
     300  
     301  #ifdef RYU_DEBUG
     302    printf("IN=");
     303    for (int32_t bit = 31; bit >= 0; --bit) {
     304      printf("%u", (bits >> bit) & 1);
     305    }
     306    printf("\n");
     307  #endif
     308  
     309    // Decode bits into sign, mantissa, and exponent.
     310    const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
     311    const uint32_t ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
     312    const uint32_t ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);
     313  
     314    // Case distinction; exit early for the easy cases.
     315    if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
     316      __builtin_abort();
     317    }
     318  
     319    const floating_decimal_32 v = f2d(ieeeMantissa, ieeeExponent, ieeeSign);
     320    return v;
     321  }