1  // Copyright 2018 Ulf Adams
       2  //
       3  // The contents of this file may be used under the terms of the Apache License,
       4  // Version 2.0.
       5  //
       6  //    (See accompanying file LICENSE-Apache or copy at
       7  //     http://www.apache.org/licenses/LICENSE-2.0)
       8  //
       9  // Alternatively, the contents of this file may be used under the terms of
      10  // the Boost Software License, Version 1.0.
      11  //    (See accompanying file LICENSE-Boost or copy at
      12  //     https://www.boost.org/LICENSE_1_0.txt)
      13  //
      14  // Unless required by applicable law or agreed to in writing, this software
      15  // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
      16  // KIND, either express or implied.
      17  
      18  // Runtime compiler options:
      19  // -DRYU_DEBUG Generate verbose debugging output to stdout.
      20  //
      21  // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
      22  //     depending on your compiler.
      23  //
      24  // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
      25  //     required power of 5, only store every 26th entry, and compute
      26  //     intermediate values with a multiplication. This reduces the lookup table
      27  //     size by about 10x (only one case, and only double) at the cost of some
      28  //     performance. Currently requires MSVC intrinsics.
      29  
      30  
      31  
      32  #ifdef RYU_DEBUG
      33  #endif
      34  
      35  
      36  // Include either the small or the full lookup tables depending on the mode.
      37  #if defined(RYU_OPTIMIZE_SIZE)
      38  #else
      39  #endif
      40  
      41  #define DOUBLE_MANTISSA_BITS 52
      42  #define DOUBLE_EXPONENT_BITS 11
      43  #define DOUBLE_BIAS 1023
      44  
      45  static inline uint32_t decimalLength17(const uint64_t v) {
      46    // This is slightly faster than a loop.
      47    // The average output length is 16.38 digits, so we check high-to-low.
      48    // Function precondition: v is not an 18, 19, or 20-digit number.
      49    // (17 digits are sufficient for round-tripping.)
      50    assert(v < 100000000000000000L);
      51    if (v >= 10000000000000000L) { return 17; }
      52    if (v >= 1000000000000000L) { return 16; }
      53    if (v >= 100000000000000L) { return 15; }
      54    if (v >= 10000000000000L) { return 14; }
      55    if (v >= 1000000000000L) { return 13; }
      56    if (v >= 100000000000L) { return 12; }
      57    if (v >= 10000000000L) { return 11; }
      58    if (v >= 1000000000L) { return 10; }
      59    if (v >= 100000000L) { return 9; }
      60    if (v >= 10000000L) { return 8; }
      61    if (v >= 1000000L) { return 7; }
      62    if (v >= 100000L) { return 6; }
      63    if (v >= 10000L) { return 5; }
      64    if (v >= 1000L) { return 4; }
      65    if (v >= 100L) { return 3; }
      66    if (v >= 10L) { return 2; }
      67    return 1;
      68  }
      69  
      70  // A floating decimal representing m * 10^e.
      71  typedef struct floating_decimal_64 {
      72    uint64_t mantissa;
      73    // Decimal exponent's range is -324 to 308
      74    // inclusive, and can fit in a short if needed.
      75    int32_t exponent;
      76    bool sign;
      77  } floating_decimal_64;
      78  
      79  static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
      80    int32_t e2;
      81    uint64_t m2;
      82    if (ieeeExponent == 0) {
      83      // We subtract 2 so that the bounds computation has 2 additional bits.
      84      e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
      85      m2 = ieeeMantissa;
      86    } else {
      87      e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
      88      m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
      89    }
      90    const bool even = (m2 & 1) == 0;
      91    const bool acceptBounds = even;
      92  
      93  #ifdef RYU_DEBUG
      94    printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
      95  #endif
      96  
      97    // Step 2: Determine the interval of valid decimal representations.
      98    const uint64_t mv = 4 * m2;
      99    // Implicit bool -> int conversion. True is 1, false is 0.
     100    const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
     101    // We would compute mp and mm like this:
     102    // uint64_t mp = 4 * m2 + 2;
     103    // uint64_t mm = mv - 1 - mmShift;
     104  
     105    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
     106    uint64_t vr, vp, vm;
     107    int32_t e10;
     108    bool vmIsTrailingZeros = false;
     109    bool vrIsTrailingZeros = false;
     110    if (e2 >= 0) {
     111      // I tried special-casing q == 0, but there was no effect on performance.
     112      // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
     113      const uint32_t q = log10Pow2(e2) - (e2 > 3);
     114      e10 = (int32_t) q;
     115      const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
     116      const int32_t i = -e2 + (int32_t) q + k;
     117  #if defined(RYU_OPTIMIZE_SIZE)
     118      uint64_t pow5[2];
     119      double_computeInvPow5(q, pow5);
     120      vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
     121  #else
     122      vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
     123  #endif
     124  #ifdef RYU_DEBUG
     125      printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
     126      printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     127  #endif
     128      if (q <= 21) {
     129        // This should use q <= 22, but I think 21 is also safe. Smaller values
     130        // may still be safe, but it's more difficult to reason about them.
     131        // Only one of mp, mv, and mm can be a multiple of 5, if any.
     132        const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
     133        if (mvMod5 == 0) {
     134          vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
     135        } else if (acceptBounds) {
     136          // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
     137          // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
     138          // <=> true && pow5Factor(mm) >= q, since e2 >= q.
     139          vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
     140        } else {
     141          // Same as min(e2 + 1, pow5Factor(mp)) >= q.
     142          vp -= multipleOfPowerOf5(mv + 2, q);
     143        }
     144      }
     145    } else {
     146      // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
     147      const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
     148      e10 = (int32_t) q + e2;
     149      const int32_t i = -e2 - (int32_t) q;
     150      const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
     151      const int32_t j = (int32_t) q - k;
     152  #if defined(RYU_OPTIMIZE_SIZE)
     153      uint64_t pow5[2];
     154      double_computePow5(i, pow5);
     155      vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
     156  #else
     157      vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
     158  #endif
     159  #ifdef RYU_DEBUG
     160      printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
     161      printf("%u %d %d %d\n", q, i, k, j);
     162      printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     163  #endif
     164      if (q <= 1) {
     165        // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
     166        // mv = 4 * m2, so it always has at least two trailing 0 bits.
     167        vrIsTrailingZeros = true;
     168        if (acceptBounds) {
     169          // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
     170          vmIsTrailingZeros = mmShift == 1;
     171        } else {
     172          // mp = mv + 2, so it always has at least one trailing 0 bit.
     173          --vp;
     174        }
     175      } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
     176        // We want to know if the full product has at least q trailing zeros.
     177        // We need to compute min(p2(mv), p5(mv) - e2) >= q
     178        // <=> p2(mv) >= q && p5(mv) - e2 >= q
     179        // <=> p2(mv) >= q (because -e2 >= q)
     180        vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
     181  #ifdef RYU_DEBUG
     182        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     183  #endif
     184      }
     185    }
     186  #ifdef RYU_DEBUG
     187    printf("e10=%d\n", e10);
     188    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     189    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
     190    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     191  #endif
     192  
     193    // Step 4: Find the shortest decimal representation in the interval of valid representations.
     194    int32_t removed = 0;
     195    uint8_t lastRemovedDigit = 0;
     196    uint64_t output;
     197    // On average, we remove ~2 digits.
     198    if (vmIsTrailingZeros || vrIsTrailingZeros) {
     199      // General case, which happens rarely (~0.7%).
     200      for (;;) {
     201        const uint64_t vpDiv10 = div10(vp);
     202        const uint64_t vmDiv10 = div10(vm);
     203        if (vpDiv10 <= vmDiv10) {
     204          break;
     205        }
     206        const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
     207        const uint64_t vrDiv10 = div10(vr);
     208        const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
     209        vmIsTrailingZeros &= vmMod10 == 0;
     210        vrIsTrailingZeros &= lastRemovedDigit == 0;
     211        lastRemovedDigit = (uint8_t) vrMod10;
     212        vr = vrDiv10;
     213        vp = vpDiv10;
     214        vm = vmDiv10;
     215        ++removed;
     216      }
     217  #ifdef RYU_DEBUG
     218      printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     219      printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
     220  #endif
     221      if (vmIsTrailingZeros) {
     222        for (;;) {
     223          const uint64_t vmDiv10 = div10(vm);
     224          const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
     225          if (vmMod10 != 0) {
     226            break;
     227          }
     228          const uint64_t vpDiv10 = div10(vp);
     229          const uint64_t vrDiv10 = div10(vr);
     230          const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
     231          vrIsTrailingZeros &= lastRemovedDigit == 0;
     232          lastRemovedDigit = (uint8_t) vrMod10;
     233          vr = vrDiv10;
     234          vp = vpDiv10;
     235          vm = vmDiv10;
     236          ++removed;
     237        }
     238      }
     239  #ifdef RYU_DEBUG
     240      printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
     241      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     242  #endif
     243      if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
     244        // Round even if the exact number is .....50..0.
     245        lastRemovedDigit = 4;
     246      }
     247      // We need to take vr + 1 if vr is outside bounds or we need to round up.
     248      output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
     249    } else {
     250      // Specialized for the common case (~99.3%). Percentages below are relative to this.
     251      bool roundUp = false;
     252      const uint64_t vpDiv100 = div100(vp);
     253      const uint64_t vmDiv100 = div100(vm);
     254      if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
     255        const uint64_t vrDiv100 = div100(vr);
     256        const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
     257        roundUp = vrMod100 >= 50;
     258        vr = vrDiv100;
     259        vp = vpDiv100;
     260        vm = vmDiv100;
     261        removed += 2;
     262      }
     263      // Loop iterations below (approximately), without optimization above:
     264      // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
     265      // Loop iterations below (approximately), with optimization above:
     266      // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
     267      for (;;) {
     268        const uint64_t vpDiv10 = div10(vp);
     269        const uint64_t vmDiv10 = div10(vm);
     270        if (vpDiv10 <= vmDiv10) {
     271          break;
     272        }
     273        const uint64_t vrDiv10 = div10(vr);
     274        const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
     275        roundUp = vrMod10 >= 5;
     276        vr = vrDiv10;
     277        vp = vpDiv10;
     278        vm = vmDiv10;
     279        ++removed;
     280      }
     281  #ifdef RYU_DEBUG
     282      printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
     283      printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     284  #endif
     285      // We need to take vr + 1 if vr is outside bounds or we need to round up.
     286      output = vr + (vr == vm || roundUp);
     287    }
     288    const int32_t exp = e10 + removed;
     289  
     290  #ifdef RYU_DEBUG
     291    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     292    printf("O=%" PRIu64 "\n", output);
     293    printf("EXP=%d\n", exp);
     294  #endif
     295  
     296    floating_decimal_64 fd;
     297    fd.exponent = exp;
     298    fd.mantissa = output;
     299    fd.sign = ieeeSign;
     300    return fd;
     301  }
     302  
     303  static inline int to_chars(const floating_decimal_64 v, char* const result) {
     304    // Step 5: Print the decimal representation.
     305    int index = 0;
     306    if (v.sign) {
     307      result[index++] = '-';
     308    }
     309  
     310    uint64_t output = v.mantissa;
     311    const uint32_t olength = decimalLength17(output);
     312  
     313  #ifdef RYU_DEBUG
     314    printf("DIGITS=%" PRIu64 "\n", v.mantissa);
     315    printf("OLEN=%u\n", olength);
     316    printf("EXP=%u\n", v.exponent + olength);
     317  #endif
     318  
     319    // Print the decimal digits.
     320    // The following code is equivalent to:
     321    // for (uint32_t i = 0; i < olength - 1; ++i) {
     322    //   const uint32_t c = output % 10; output /= 10;
     323    //   result[index + olength - i] = (char) ('0' + c);
     324    // }
     325    // result[index] = '0' + output % 10;
     326  
     327    uint32_t i = 0;
     328    // We prefer 32-bit operations, even on 64-bit platforms.
     329    // We have at most 17 digits, and uint32_t can store 9 digits.
     330    // If output doesn't fit into uint32_t, we cut off 8 digits,
     331    // so the rest will fit into uint32_t.
     332    if ((output >> 32) != 0) {
     333      // Expensive 64-bit division.
     334      const uint64_t q = div1e8(output);
     335      uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
     336      output = q;
     337  
     338      const uint32_t c = output2 % 10000;
     339      output2 /= 10000;
     340      const uint32_t d = output2 % 10000;
     341      const uint32_t c0 = (c % 100) << 1;
     342      const uint32_t c1 = (c / 100) << 1;
     343      const uint32_t d0 = (d % 100) << 1;
     344      const uint32_t d1 = (d / 100) << 1;
     345      memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
     346      memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
     347      memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
     348      memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
     349      i += 8;
     350    }
     351    uint32_t output2 = (uint32_t) output;
     352    while (output2 >= 10000) {
     353  #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
     354      const uint32_t c = output2 - 10000 * (output2 / 10000);
     355  #else
     356      const uint32_t c = output2 % 10000;
     357  #endif
     358      output2 /= 10000;
     359      const uint32_t c0 = (c % 100) << 1;
     360      const uint32_t c1 = (c / 100) << 1;
     361      memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
     362      memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
     363      i += 4;
     364    }
     365    if (output2 >= 100) {
     366      const uint32_t c = (output2 % 100) << 1;
     367      output2 /= 100;
     368      memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
     369      i += 2;
     370    }
     371    if (output2 >= 10) {
     372      const uint32_t c = output2 << 1;
     373      // We can't use memcpy here: the decimal dot goes between these two digits.
     374      result[index + olength - i] = DIGIT_TABLE[c + 1];
     375      result[index] = DIGIT_TABLE[c];
     376    } else {
     377      result[index] = (char) ('0' + output2);
     378    }
     379  
     380    // Print decimal point if needed.
     381    if (olength > 1) {
     382      result[index + 1] = '.';
     383      index += olength + 1;
     384    } else {
     385      ++index;
     386    }
     387  
     388    // Print the exponent.
     389    result[index++] = 'e';
     390    int32_t exp = v.exponent + (int32_t) olength - 1;
     391    if (exp < 0) {
     392      result[index++] = '-';
     393      exp = -exp;
     394    } else
     395      result[index++] = '+';
     396  
     397    if (exp >= 100) {
     398      const int32_t c = exp % 10;
     399      memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
     400      result[index + 2] = (char) ('0' + c);
     401      index += 3;
     402    } else {
     403      memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
     404      index += 2;
     405    }
     406  
     407    return index;
     408  }
     409  
     410  static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign,
     411    floating_decimal_64* const v) {
     412    const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
     413    const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
     414  
     415    if (e2 > 0) {
     416      // f = m2 * 2^e2 >= 2^53 is an integer.
     417      // Ignore this case for now.
     418      return false;
     419    }
     420  
     421    if (e2 < -52) {
     422      // f < 1.
     423      return false;
     424    }
     425  
     426    // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
     427    // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
     428    const uint64_t mask = (1ull << -e2) - 1;
     429    const uint64_t fraction = m2 & mask;
     430    if (fraction != 0) {
     431      return false;
     432    }
     433  
     434    // f is an integer in the range [1, 2^53).
     435    // Note: mantissa might contain trailing (decimal) 0's.
     436    // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
     437    v->mantissa = m2 >> -e2;
     438    v->exponent = 0;
     439    v->sign = ieeeSign;
     440    return true;
     441  }
     442  
     443  floating_decimal_64 floating_to_fd64(double f) {
     444    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
     445    const uint64_t bits = double_to_bits(f);
     446  
     447  #ifdef RYU_DEBUG
     448    printf("IN=");
     449    for (int32_t bit = 63; bit >= 0; --bit) {
     450      printf("%d", (int) ((bits >> bit) & 1));
     451    }
     452    printf("\n");
     453  #endif
     454  
     455    // Decode bits into sign, mantissa, and exponent.
     456    const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
     457    const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
     458    const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
     459    // Case distinction; exit early for the easy cases.
     460    if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
     461      __builtin_abort();
     462    }
     463  
     464    floating_decimal_64 v;
     465    const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, ieeeSign, &v);
     466    if (isSmallInt) {
     467      // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
     468      // For scientific notation we need to move these zeros into the exponent.
     469      // (This is not needed for fixed-point notation, so it might be beneficial to trim
     470      // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
     471      for (;;) {
     472        const uint64_t q = div10(v.mantissa);
     473        const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
     474        if (r != 0) {
     475          break;
     476        }
     477        v.mantissa = q;
     478        ++v.exponent;
     479      }
     480    } else {
     481      v = d2d(ieeeMantissa, ieeeExponent, ieeeSign);
     482    }
     483  
     484    return v;
     485  }