(root)/
gcc-13.2.0/
libstdc++-v3/
include/
tr1/
hashtable_policy.h
       1  // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
       2  
       3  // Copyright (C) 2010-2023 Free Software Foundation, Inc.
       4  //
       5  // This file is part of the GNU ISO C++ Library.  This library is free
       6  // software; you can redistribute it and/or modify it under the
       7  // terms of the GNU General Public License as published by the
       8  // Free Software Foundation; either version 3, or (at your option)
       9  // any later version.
      10  
      11  // This library is distributed in the hope that it will be useful,
      12  // but WITHOUT ANY WARRANTY; without even the implied warranty of
      13  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14  // GNU General Public License for more details.
      15  
      16  // Under Section 7 of GPL version 3, you are granted additional
      17  // permissions described in the GCC Runtime Library Exception, version
      18  // 3.1, as published by the Free Software Foundation.
      19  
      20  // You should have received a copy of the GNU General Public License and
      21  // a copy of the GCC Runtime Library Exception along with this program;
      22  // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      23  // <http://www.gnu.org/licenses/>.
      24  
      25  /** @file tr1/hashtable_policy.h
      26   *  This is an internal header file, included by other library headers.
      27   *  Do not attempt to use it directly. 
      28   *  @headername{tr1/unordered_map, tr1/unordered_set}
      29   */
      30  
      31  namespace std _GLIBCXX_VISIBILITY(default)
      32  { 
      33  _GLIBCXX_BEGIN_NAMESPACE_VERSION
      34  
      35  namespace tr1
      36  {
      37  namespace __detail
      38  {
      39    // Helper function: return distance(first, last) for forward
      40    // iterators, or 0 for input iterators.
      41    template<class _Iterator>
      42      inline typename std::iterator_traits<_Iterator>::difference_type
      43      __distance_fw(_Iterator __first, _Iterator __last,
      44  		  std::input_iterator_tag)
      45      { return 0; }
      46  
      47    template<class _Iterator>
      48      inline typename std::iterator_traits<_Iterator>::difference_type
      49      __distance_fw(_Iterator __first, _Iterator __last,
      50  		  std::forward_iterator_tag)
      51      { return std::distance(__first, __last); }
      52  
      53    template<class _Iterator>
      54      inline typename std::iterator_traits<_Iterator>::difference_type
      55      __distance_fw(_Iterator __first, _Iterator __last)
      56      {
      57        typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
      58        return __distance_fw(__first, __last, _Tag());
      59      }
      60  
      61    // Auxiliary types used for all instantiations of _Hashtable: nodes
      62    // and iterators.
      63    
      64    // Nodes, used to wrap elements stored in the hash table.  A policy
      65    // template parameter of class template _Hashtable controls whether
      66    // nodes also store a hash code. In some cases (e.g. strings) this
      67    // may be a performance win.
      68    template<typename _Value, bool __cache_hash_code>
      69      struct _Hash_node;
      70  
      71    template<typename _Value>
      72      struct _Hash_node<_Value, true>
      73      {
      74        _Value       _M_v;
      75        std::size_t  _M_hash_code;
      76        _Hash_node*  _M_next;
      77      };
      78  
      79    template<typename _Value>
      80      struct _Hash_node<_Value, false>
      81      {
      82        _Value       _M_v;
      83        _Hash_node*  _M_next;
      84      };
      85  
      86    // Local iterators, used to iterate within a bucket but not between
      87    // buckets.
      88    template<typename _Value, bool __cache>
      89      struct _Node_iterator_base
      90      {
      91        _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
      92        : _M_cur(__p) { }
      93        
      94        void
      95        _M_incr()
      96        { _M_cur = _M_cur->_M_next; }
      97  
      98        _Hash_node<_Value, __cache>*  _M_cur;
      99      };
     100  
     101    template<typename _Value, bool __cache>
     102      inline bool
     103      operator==(const _Node_iterator_base<_Value, __cache>& __x,
     104  	       const _Node_iterator_base<_Value, __cache>& __y)
     105      { return __x._M_cur == __y._M_cur; }
     106  
     107    template<typename _Value, bool __cache>
     108      inline bool
     109      operator!=(const _Node_iterator_base<_Value, __cache>& __x,
     110  	       const _Node_iterator_base<_Value, __cache>& __y)
     111      { return __x._M_cur != __y._M_cur; }
     112  
     113    template<typename _Value, bool __constant_iterators, bool __cache>
     114      struct _Node_iterator
     115      : public _Node_iterator_base<_Value, __cache>
     116      {
     117        typedef _Value                                   value_type;
     118        typedef typename
     119        __gnu_cxx::__conditional_type<__constant_iterators,
     120  				    const _Value*, _Value*>::__type
     121                                                         pointer;
     122        typedef typename
     123        __gnu_cxx::__conditional_type<__constant_iterators,
     124  				    const _Value&, _Value&>::__type
     125                                                         reference;
     126        typedef std::ptrdiff_t                           difference_type;
     127        typedef std::forward_iterator_tag                iterator_category;
     128  
     129        _Node_iterator()
     130        : _Node_iterator_base<_Value, __cache>(0) { }
     131  
     132        explicit
     133        _Node_iterator(_Hash_node<_Value, __cache>* __p)
     134        : _Node_iterator_base<_Value, __cache>(__p) { }
     135  
     136        reference
     137        operator*() const
     138        { return this->_M_cur->_M_v; }
     139    
     140        pointer
     141        operator->() const
     142        { return std::__addressof(this->_M_cur->_M_v); }
     143  
     144        _Node_iterator&
     145        operator++()
     146        { 
     147  	this->_M_incr();
     148  	return *this; 
     149        }
     150    
     151        _Node_iterator
     152        operator++(int)
     153        { 
     154  	_Node_iterator __tmp(*this);
     155  	this->_M_incr();
     156  	return __tmp;
     157        }
     158      };
     159  
     160    template<typename _Value, bool __constant_iterators, bool __cache>
     161      struct _Node_const_iterator
     162      : public _Node_iterator_base<_Value, __cache>
     163      {
     164        typedef _Value                                   value_type;
     165        typedef const _Value*                            pointer;
     166        typedef const _Value&                            reference;
     167        typedef std::ptrdiff_t                           difference_type;
     168        typedef std::forward_iterator_tag                iterator_category;
     169  
     170        _Node_const_iterator()
     171        : _Node_iterator_base<_Value, __cache>(0) { }
     172  
     173        explicit
     174        _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
     175        : _Node_iterator_base<_Value, __cache>(__p) { }
     176  
     177        _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
     178  			   __cache>& __x)
     179        : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
     180  
     181        reference
     182        operator*() const
     183        { return this->_M_cur->_M_v; }
     184    
     185        pointer
     186        operator->() const
     187        { return std::__addressof(this->_M_cur->_M_v); }
     188  
     189        _Node_const_iterator&
     190        operator++()
     191        { 
     192  	this->_M_incr();
     193  	return *this; 
     194        }
     195    
     196        _Node_const_iterator
     197        operator++(int)
     198        { 
     199  	_Node_const_iterator __tmp(*this);
     200  	this->_M_incr();
     201  	return __tmp;
     202        }
     203      };
     204  
     205    template<typename _Value, bool __cache>
     206      struct _Hashtable_iterator_base
     207      {
     208        _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
     209  			       _Hash_node<_Value, __cache>** __bucket)
     210        : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
     211  
     212        void
     213        _M_incr()
     214        {
     215  	_M_cur_node = _M_cur_node->_M_next;
     216  	if (!_M_cur_node)
     217  	  _M_incr_bucket();
     218        }
     219  
     220        void
     221        _M_incr_bucket();
     222  
     223        _Hash_node<_Value, __cache>*   _M_cur_node;
     224        _Hash_node<_Value, __cache>**  _M_cur_bucket;
     225      };
     226  
     227    // Global iterators, used for arbitrary iteration within a hash
     228    // table.  Larger and more expensive than local iterators.
     229    template<typename _Value, bool __cache>
     230      void
     231      _Hashtable_iterator_base<_Value, __cache>::
     232      _M_incr_bucket()
     233      {
     234        ++_M_cur_bucket;
     235  
     236        // This loop requires the bucket array to have a non-null sentinel.
     237        while (!*_M_cur_bucket)
     238  	++_M_cur_bucket;
     239        _M_cur_node = *_M_cur_bucket;
     240      }
     241  
     242    template<typename _Value, bool __cache>
     243      inline bool
     244      operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
     245  	       const _Hashtable_iterator_base<_Value, __cache>& __y)
     246      { return __x._M_cur_node == __y._M_cur_node; }
     247  
     248    template<typename _Value, bool __cache>
     249      inline bool
     250      operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
     251  	       const _Hashtable_iterator_base<_Value, __cache>& __y)
     252      { return __x._M_cur_node != __y._M_cur_node; }
     253  
     254    template<typename _Value, bool __constant_iterators, bool __cache>
     255      struct _Hashtable_iterator
     256      : public _Hashtable_iterator_base<_Value, __cache>
     257      {
     258        typedef _Value                                   value_type;
     259        typedef typename
     260        __gnu_cxx::__conditional_type<__constant_iterators,
     261  				    const _Value*, _Value*>::__type
     262                                                         pointer;
     263        typedef typename
     264        __gnu_cxx::__conditional_type<__constant_iterators,
     265  				    const _Value&, _Value&>::__type
     266                                                         reference;
     267        typedef std::ptrdiff_t                           difference_type;
     268        typedef std::forward_iterator_tag                iterator_category;
     269  
     270        _Hashtable_iterator()
     271        : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
     272  
     273        _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
     274  			  _Hash_node<_Value, __cache>** __b)
     275        : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
     276  
     277        explicit
     278        _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
     279        : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
     280  
     281        reference
     282        operator*() const
     283        { return this->_M_cur_node->_M_v; }
     284    
     285        pointer
     286        operator->() const
     287        { return std::__addressof(this->_M_cur_node->_M_v); }
     288  
     289        _Hashtable_iterator&
     290        operator++()
     291        { 
     292  	this->_M_incr();
     293  	return *this;
     294        }
     295    
     296        _Hashtable_iterator
     297        operator++(int)
     298        { 
     299  	_Hashtable_iterator __tmp(*this);
     300  	this->_M_incr();
     301  	return __tmp;
     302        }
     303      };
     304  
     305    template<typename _Value, bool __constant_iterators, bool __cache>
     306      struct _Hashtable_const_iterator
     307      : public _Hashtable_iterator_base<_Value, __cache>
     308      {
     309        typedef _Value                                   value_type;
     310        typedef const _Value*                            pointer;
     311        typedef const _Value&                            reference;
     312        typedef std::ptrdiff_t                           difference_type;
     313        typedef std::forward_iterator_tag                iterator_category;
     314  
     315        _Hashtable_const_iterator()
     316        : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
     317  
     318        _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
     319  				_Hash_node<_Value, __cache>** __b)
     320        : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
     321  
     322        explicit
     323        _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
     324        : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
     325  
     326        _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
     327  				__constant_iterators, __cache>& __x)
     328        : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
     329  						  __x._M_cur_bucket) { }
     330  
     331        reference
     332        operator*() const
     333        { return this->_M_cur_node->_M_v; }
     334    
     335        pointer
     336        operator->() const
     337        { return std::__addressof(this->_M_cur_node->_M_v); }
     338  
     339        _Hashtable_const_iterator&
     340        operator++()
     341        { 
     342  	this->_M_incr();
     343  	return *this;
     344        }
     345    
     346        _Hashtable_const_iterator
     347        operator++(int)
     348        { 
     349  	_Hashtable_const_iterator __tmp(*this);
     350  	this->_M_incr();
     351  	return __tmp;
     352        }
     353      };
     354  
     355  
     356    // Many of class template _Hashtable's template parameters are policy
     357    // classes.  These are defaults for the policies.
     358  
     359    // Default range hashing function: use division to fold a large number
     360    // into the range [0, N).
     361    struct _Mod_range_hashing
     362    {
     363      typedef std::size_t first_argument_type;
     364      typedef std::size_t second_argument_type;
     365      typedef std::size_t result_type;
     366  
     367      result_type
     368      operator()(first_argument_type __num, second_argument_type __den) const
     369      { return __num % __den; }
     370    };
     371  
     372    // Default ranged hash function H.  In principle it should be a
     373    // function object composed from objects of type H1 and H2 such that
     374    // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
     375    // h1 and h2.  So instead we'll just use a tag to tell class template
     376    // hashtable to do that composition.
     377    struct _Default_ranged_hash { };
     378  
     379    // Default value for rehash policy.  Bucket size is (usually) the
     380    // smallest prime that keeps the load factor small enough.
     381    struct _Prime_rehash_policy
     382    {
     383      _Prime_rehash_policy(float __z = 1.0)
     384      : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
     385  
     386      float
     387      max_load_factor() const
     388      { return _M_max_load_factor; }      
     389  
     390      // Return a bucket size no smaller than n.
     391      std::size_t
     392      _M_next_bkt(std::size_t __n) const;
     393      
     394      // Return a bucket count appropriate for n elements
     395      std::size_t
     396      _M_bkt_for_elements(std::size_t __n) const;
     397      
     398      // __n_bkt is current bucket count, __n_elt is current element count,
     399      // and __n_ins is number of elements to be inserted.  Do we need to
     400      // increase bucket count?  If so, return make_pair(true, n), where n
     401      // is the new bucket count.  If not, return make_pair(false, 0).
     402      std::pair<bool, std::size_t>
     403      _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
     404  		   std::size_t __n_ins) const;
     405  
     406      enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
     407  
     408      float                _M_max_load_factor;
     409      float                _M_growth_factor;
     410      mutable std::size_t  _M_next_resize;
     411    };
     412  
     413    extern const unsigned long __prime_list[];
     414  
     415    // XXX This is a hack.  There's no good reason for any of
     416    // _Prime_rehash_policy's member functions to be inline.  
     417  
     418    // Return a prime no smaller than n.
     419    inline std::size_t
     420    _Prime_rehash_policy::
     421    _M_next_bkt(std::size_t __n) const
     422    {
     423      // Don't include the last prime in the search, so that anything
     424      // higher than the second-to-last prime returns a past-the-end
     425      // iterator that can be dereferenced to get the last prime.
     426      const unsigned long* __p
     427        = std::lower_bound(__prime_list, __prime_list + _S_n_primes - 1, __n);
     428      _M_next_resize = 
     429        static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
     430      return *__p;
     431    }
     432  
     433    // Return the smallest prime p such that alpha p >= n, where alpha
     434    // is the load factor.
     435    inline std::size_t
     436    _Prime_rehash_policy::
     437    _M_bkt_for_elements(std::size_t __n) const
     438    {
     439      const float __min_bkts = __n / _M_max_load_factor;
     440      return _M_next_bkt(__builtin_ceil(__min_bkts));
     441    }
     442  
     443    // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
     444    // If p > __n_bkt, return make_pair(true, p); otherwise return
     445    // make_pair(false, 0).  In principle this isn't very different from 
     446    // _M_bkt_for_elements.
     447  
     448    // The only tricky part is that we're caching the element count at
     449    // which we need to rehash, so we don't have to do a floating-point
     450    // multiply for every insertion.
     451  
     452    inline std::pair<bool, std::size_t>
     453    _Prime_rehash_policy::
     454    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
     455  		 std::size_t __n_ins) const
     456    {
     457      if (__n_elt + __n_ins > _M_next_resize)
     458        {
     459  	float __min_bkts = ((float(__n_ins) + float(__n_elt))
     460  			    / _M_max_load_factor);
     461  	if (__min_bkts > __n_bkt)
     462  	  {
     463  	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
     464  	    return std::make_pair(true,
     465  				  _M_next_bkt(__builtin_ceil(__min_bkts)));
     466  	  }
     467  	else 
     468  	  {
     469  	    _M_next_resize = static_cast<std::size_t>
     470  	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
     471  	    return std::make_pair(false, 0);
     472  	  }
     473        }
     474      else
     475        return std::make_pair(false, 0);
     476    }
     477  
     478    // Base classes for std::tr1::_Hashtable.  We define these base
     479    // classes because in some cases we want to do different things
     480    // depending on the value of a policy class.  In some cases the
     481    // policy class affects which member functions and nested typedefs
     482    // are defined; we handle that by specializing base class templates.
     483    // Several of the base class templates need to access other members
     484    // of class template _Hashtable, so we use the "curiously recurring
     485    // template pattern" for them.
     486  
     487    // class template _Map_base.  If the hashtable has a value type of the
     488    // form pair<T1, T2> and a key extraction policy that returns the
     489    // first part of the pair, the hashtable gets a mapped_type typedef.
     490    // If it satisfies those criteria and also has unique keys, then it
     491    // also gets an operator[].  
     492    template<typename _Key, typename _Value, typename _Ex, bool __unique,
     493  	   typename _Hashtable>
     494      struct _Map_base { };
     495  	  
     496    template<typename _Key, typename _Pair, typename _Hashtable>
     497      struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
     498      {
     499        typedef typename _Pair::second_type mapped_type;
     500      };
     501  
     502    template<typename _Key, typename _Pair, typename _Hashtable>
     503      struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
     504      {
     505        typedef typename _Pair::second_type mapped_type;
     506        
     507        mapped_type&
     508        operator[](const _Key& __k);
     509      };
     510  
     511    template<typename _Key, typename _Pair, typename _Hashtable>
     512      typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
     513  		       true, _Hashtable>::mapped_type&
     514      _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
     515      operator[](const _Key& __k)
     516      {
     517        _Hashtable* __h = static_cast<_Hashtable*>(this);
     518        typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
     519        std::size_t __n = __h->_M_bucket_index(__k, __code,
     520  					     __h->_M_bucket_count);
     521  
     522        typename _Hashtable::_Node* __p =
     523  	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
     524        if (!__p)
     525  	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
     526  				     __n, __code)->second;
     527        return (__p->_M_v).second;
     528      }
     529  
     530    // class template _Rehash_base.  Give hashtable the max_load_factor
     531    // functions iff the rehash policy is _Prime_rehash_policy.
     532    template<typename _RehashPolicy, typename _Hashtable>
     533      struct _Rehash_base { };
     534  
     535    template<typename _Hashtable>
     536      struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
     537      {
     538        float
     539        max_load_factor() const
     540        {
     541  	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
     542  	return __this->__rehash_policy().max_load_factor();
     543        }
     544  
     545        void
     546        max_load_factor(float __z)
     547        {
     548  	_Hashtable* __this = static_cast<_Hashtable*>(this);
     549  	__this->__rehash_policy(_Prime_rehash_policy(__z));
     550        }
     551      };
     552  
     553    // Class template _Hash_code_base.  Encapsulates two policy issues that
     554    // aren't quite orthogonal.
     555    //   (1) the difference between using a ranged hash function and using
     556    //       the combination of a hash function and a range-hashing function.
     557    //       In the former case we don't have such things as hash codes, so
     558    //       we have a dummy type as placeholder.
     559    //   (2) Whether or not we cache hash codes.  Caching hash codes is
     560    //       meaningless if we have a ranged hash function.
     561    // We also put the key extraction and equality comparison function 
     562    // objects here, for convenience.
     563    
     564    // Primary template: unused except as a hook for specializations.  
     565    template<typename _Key, typename _Value,
     566  	   typename _ExtractKey, typename _Equal,
     567  	   typename _H1, typename _H2, typename _Hash,
     568  	   bool __cache_hash_code>
     569      struct _Hash_code_base;
     570  
     571    // Specialization: ranged hash function, no caching hash codes.  H1
     572    // and H2 are provided but ignored.  We define a dummy hash code type.
     573    template<typename _Key, typename _Value,
     574  	   typename _ExtractKey, typename _Equal,
     575  	   typename _H1, typename _H2, typename _Hash>
     576      struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
     577  			   _Hash, false>
     578      {
     579      protected:
     580        _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
     581  		      const _H1&, const _H2&, const _Hash& __h)
     582        : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
     583  
     584        typedef void* _Hash_code_type;
     585    
     586        _Hash_code_type
     587        _M_hash_code(const _Key& __key) const
     588        { return 0; }
     589    
     590        std::size_t
     591        _M_bucket_index(const _Key& __k, _Hash_code_type,
     592  		      std::size_t __n) const
     593        { return _M_ranged_hash(__k, __n); }
     594  
     595        std::size_t
     596        _M_bucket_index(const _Hash_node<_Value, false>* __p,
     597  		      std::size_t __n) const
     598        { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
     599    
     600        bool
     601        _M_compare(const _Key& __k, _Hash_code_type,
     602  		 _Hash_node<_Value, false>* __n) const
     603        { return _M_eq(__k, _M_extract(__n->_M_v)); }
     604  
     605        void
     606        _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
     607        { }
     608  
     609        void
     610        _M_copy_code(_Hash_node<_Value, false>*,
     611  		   const _Hash_node<_Value, false>*) const
     612        { }
     613        
     614        void
     615        _M_swap(_Hash_code_base& __x)
     616        {
     617  	std::swap(_M_extract, __x._M_extract);
     618  	std::swap(_M_eq, __x._M_eq);
     619  	std::swap(_M_ranged_hash, __x._M_ranged_hash);
     620        }
     621  
     622      protected:
     623        _ExtractKey  _M_extract;
     624        _Equal       _M_eq;
     625        _Hash        _M_ranged_hash;
     626      };
     627  
     628  
     629    // No specialization for ranged hash function while caching hash codes.
     630    // That combination is meaningless, and trying to do it is an error.
     631    
     632    
     633    // Specialization: ranged hash function, cache hash codes.  This
     634    // combination is meaningless, so we provide only a declaration
     635    // and no definition.  
     636    template<typename _Key, typename _Value,
     637  	   typename _ExtractKey, typename _Equal,
     638  	   typename _H1, typename _H2, typename _Hash>
     639      struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
     640  			   _Hash, true>;
     641  
     642    // Specialization: hash function and range-hashing function, no
     643    // caching of hash codes.  H is provided but ignored.  Provides
     644    // typedef and accessor required by TR1.  
     645    template<typename _Key, typename _Value,
     646  	   typename _ExtractKey, typename _Equal,
     647  	   typename _H1, typename _H2>
     648      struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
     649  			   _Default_ranged_hash, false>
     650      {
     651        typedef _H1 hasher;
     652  
     653        hasher
     654        hash_function() const
     655        { return _M_h1; }
     656  
     657      protected:
     658        _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
     659  		      const _H1& __h1, const _H2& __h2,
     660  		      const _Default_ranged_hash&)
     661        : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
     662  
     663        typedef std::size_t _Hash_code_type;
     664  
     665        _Hash_code_type
     666        _M_hash_code(const _Key& __k) const
     667        { return _M_h1(__k); }
     668        
     669        std::size_t
     670        _M_bucket_index(const _Key&, _Hash_code_type __c,
     671  		      std::size_t __n) const
     672        { return _M_h2(__c, __n); }
     673  
     674        std::size_t
     675        _M_bucket_index(const _Hash_node<_Value, false>* __p,
     676  		      std::size_t __n) const
     677        { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
     678  
     679        bool
     680        _M_compare(const _Key& __k, _Hash_code_type,
     681  		 _Hash_node<_Value, false>* __n) const
     682        { return _M_eq(__k, _M_extract(__n->_M_v)); }
     683  
     684        void
     685        _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
     686        { }
     687  
     688        void
     689        _M_copy_code(_Hash_node<_Value, false>*,
     690  		   const _Hash_node<_Value, false>*) const
     691        { }
     692  
     693        void
     694        _M_swap(_Hash_code_base& __x)
     695        {
     696  	std::swap(_M_extract, __x._M_extract);
     697  	std::swap(_M_eq, __x._M_eq);
     698  	std::swap(_M_h1, __x._M_h1);
     699  	std::swap(_M_h2, __x._M_h2);
     700        }
     701  
     702      protected:
     703        _ExtractKey  _M_extract;
     704        _Equal       _M_eq;
     705        _H1          _M_h1;
     706        _H2          _M_h2;
     707      };
     708  
     709    // Specialization: hash function and range-hashing function, 
     710    // caching hash codes.  H is provided but ignored.  Provides
     711    // typedef and accessor required by TR1.
     712    template<typename _Key, typename _Value,
     713  	   typename _ExtractKey, typename _Equal,
     714  	   typename _H1, typename _H2>
     715      struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
     716  			   _Default_ranged_hash, true>
     717      {
     718        typedef _H1 hasher;
     719        
     720        hasher
     721        hash_function() const
     722        { return _M_h1; }
     723  
     724      protected:
     725        _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
     726  		      const _H1& __h1, const _H2& __h2,
     727  		      const _Default_ranged_hash&)
     728        : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
     729  
     730        typedef std::size_t _Hash_code_type;
     731    
     732        _Hash_code_type
     733        _M_hash_code(const _Key& __k) const
     734        { return _M_h1(__k); }
     735    
     736        std::size_t
     737        _M_bucket_index(const _Key&, _Hash_code_type __c,
     738  		      std::size_t __n) const
     739        { return _M_h2(__c, __n); }
     740  
     741        std::size_t
     742        _M_bucket_index(const _Hash_node<_Value, true>* __p,
     743  		      std::size_t __n) const
     744        { return _M_h2(__p->_M_hash_code, __n); }
     745  
     746        bool
     747        _M_compare(const _Key& __k, _Hash_code_type __c,
     748  		 _Hash_node<_Value, true>* __n) const
     749        { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
     750  
     751        void
     752        _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
     753        { __n->_M_hash_code = __c; }
     754  
     755        void
     756        _M_copy_code(_Hash_node<_Value, true>* __to,
     757  		   const _Hash_node<_Value, true>* __from) const
     758        { __to->_M_hash_code = __from->_M_hash_code; }
     759  
     760        void
     761        _M_swap(_Hash_code_base& __x)
     762        {
     763  	std::swap(_M_extract, __x._M_extract);
     764  	std::swap(_M_eq, __x._M_eq);
     765  	std::swap(_M_h1, __x._M_h1);
     766  	std::swap(_M_h2, __x._M_h2);
     767        }
     768        
     769      protected:
     770        _ExtractKey  _M_extract;
     771        _Equal       _M_eq;
     772        _H1          _M_h1;
     773        _H2          _M_h2;
     774      };
     775  } // namespace __detail
     776  }
     777  
     778  _GLIBCXX_END_NAMESPACE_VERSION
     779  }