(root)/
gcc-13.2.0/
libquadmath/
printf/
mul_n.c
       1  /* mpn_mul_n -- Multiply two natural numbers of length n.
       2  
       3  Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
       4  
       5  This file is part of the GNU MP Library.
       6  
       7  The GNU MP Library is free software; you can redistribute it and/or modify
       8  it under the terms of the GNU Lesser General Public License as published by
       9  the Free Software Foundation; either version 2.1 of the License, or (at your
      10  option) any later version.
      11  
      12  The GNU MP Library is distributed in the hope that it will be useful, but
      13  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      14  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      15  License for more details.
      16  
      17  You should have received a copy of the GNU Lesser General Public License
      18  along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
      19  the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
      20  MA 02111-1307, USA. */
      21  
      22  #include <config.h>
      23  #include "gmp-impl.h"
      24  
      25  /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
      26     both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
      27     always stored.  Return the most significant limb.
      28  
      29     Argument constraints:
      30     1. PRODP != UP and PRODP != VP, i.e. the destination
      31        must be distinct from the multiplier and the multiplicand.  */
      32  
      33  /* If KARATSUBA_THRESHOLD is not already defined, define it to a
      34     value which is good on most machines.  */
      35  #ifndef KARATSUBA_THRESHOLD
      36  #define KARATSUBA_THRESHOLD 32
      37  #endif
      38  
      39  /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
      40  #if KARATSUBA_THRESHOLD < 2
      41  #undef KARATSUBA_THRESHOLD
      42  #define KARATSUBA_THRESHOLD 2
      43  #endif
      44  
      45  /* Handle simple cases with traditional multiplication.
      46  
      47     This is the most critical code of multiplication.  All multiplies rely
      48     on this, both small and huge.  Small ones arrive here immediately.  Huge
      49     ones arrive here as this is the base case for Karatsuba's recursive
      50     algorithm below.  */
      51  
      52  void
      53  #if __STDC__
      54  impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
      55  #else
      56  impn_mul_n_basecase (prodp, up, vp, size)
      57       mp_ptr prodp;
      58       mp_srcptr up;
      59       mp_srcptr vp;
      60       mp_size_t size;
      61  #endif
      62  {
      63    mp_size_t i;
      64    mp_limb_t cy_limb;
      65    mp_limb_t v_limb;
      66  
      67    /* Multiply by the first limb in V separately, as the result can be
      68       stored (not added) to PROD.  We also avoid a loop for zeroing.  */
      69    v_limb = vp[0];
      70    if (v_limb <= 1)
      71      {
      72        if (v_limb == 1)
      73  	MPN_COPY (prodp, up, size);
      74        else
      75  	MPN_ZERO (prodp, size);
      76        cy_limb = 0;
      77      }
      78    else
      79      cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
      80  
      81    prodp[size] = cy_limb;
      82    prodp++;
      83  
      84    /* For each iteration in the outer loop, multiply one limb from
      85       U with one limb from V, and add it to PROD.  */
      86    for (i = 1; i < size; i++)
      87      {
      88        v_limb = vp[i];
      89        if (v_limb <= 1)
      90  	{
      91  	  cy_limb = 0;
      92  	  if (v_limb == 1)
      93  	    cy_limb = mpn_add_n (prodp, prodp, up, size);
      94  	}
      95        else
      96  	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
      97  
      98        prodp[size] = cy_limb;
      99        prodp++;
     100      }
     101  }
     102  
     103  void
     104  #if __STDC__
     105  impn_mul_n (mp_ptr prodp,
     106  	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
     107  #else
     108  impn_mul_n (prodp, up, vp, size, tspace)
     109       mp_ptr prodp;
     110       mp_srcptr up;
     111       mp_srcptr vp;
     112       mp_size_t size;
     113       mp_ptr tspace;
     114  #endif
     115  {
     116    if ((size & 1) != 0)
     117      {
     118        /* The size is odd, the code code below doesn't handle that.
     119  	 Multiply the least significant (size - 1) limbs with a recursive
     120  	 call, and handle the most significant limb of S1 and S2
     121  	 separately.  */
     122        /* A slightly faster way to do this would be to make the Karatsuba
     123  	 code below behave as if the size were even, and let it check for
     124  	 odd size in the end.  I.e., in essence move this code to the end.
     125  	 Doing so would save us a recursive call, and potentially make the
     126  	 stack grow a lot less.  */
     127  
     128        mp_size_t esize = size - 1;	/* even size */
     129        mp_limb_t cy_limb;
     130  
     131        MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
     132        cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
     133        prodp[esize + esize] = cy_limb;
     134        cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
     135  
     136        prodp[esize + size] = cy_limb;
     137      }
     138    else
     139      {
     140        /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
     141  
     142  	 Split U in two pieces, U1 and U0, such that
     143  	 U = U0 + U1*(B**n),
     144  	 and V in V1 and V0, such that
     145  	 V = V0 + V1*(B**n).
     146  
     147  	 UV is then computed recursively using the identity
     148  
     149  		2n   n          n                     n
     150  	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
     151  			1 1        1  0   0  1              0 0
     152  
     153  	 Where B = 2**BITS_PER_MP_LIMB.  */
     154  
     155        mp_size_t hsize = size >> 1;
     156        mp_limb_t cy;
     157        int negflg;
     158  
     159        /*** Product H.	 ________________  ________________
     160  			|_____U1 x V1____||____U0 x V0_____|  */
     161        /* Put result in upper part of PROD and pass low part of TSPACE
     162  	 as new TSPACE.  */
     163        MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
     164  
     165        /*** Product M.	 ________________
     166  			|_(U1-U0)(V0-V1)_|  */
     167        if (mpn_cmp (up + hsize, up, hsize) >= 0)
     168  	{
     169  	  mpn_sub_n (prodp, up + hsize, up, hsize);
     170  	  negflg = 0;
     171  	}
     172        else
     173  	{
     174  	  mpn_sub_n (prodp, up, up + hsize, hsize);
     175  	  negflg = 1;
     176  	}
     177        if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
     178  	{
     179  	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
     180  	  negflg ^= 1;
     181  	}
     182        else
     183  	{
     184  	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
     185  	  /* No change of NEGFLG.  */
     186  	}
     187        /* Read temporary operands from low part of PROD.
     188  	 Put result in low part of TSPACE using upper part of TSPACE
     189  	 as new TSPACE.  */
     190        MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
     191  
     192        /*** Add/copy product H.  */
     193        MPN_COPY (prodp + hsize, prodp + size, hsize);
     194        cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
     195  
     196        /*** Add product M (if NEGFLG M is a negative number).  */
     197        if (negflg)
     198  	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
     199        else
     200  	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
     201  
     202        /*** Product L.	 ________________  ________________
     203  			|________________||____U0 x V0_____|  */
     204        /* Read temporary operands from low part of PROD.
     205  	 Put result in low part of TSPACE using upper part of TSPACE
     206  	 as new TSPACE.  */
     207        MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
     208  
     209        /*** Add/copy Product L (twice).  */
     210  
     211        cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
     212        if (cy)
     213  	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
     214  
     215        MPN_COPY (prodp, tspace, hsize);
     216        cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
     217        if (cy)
     218  	mpn_add_1 (prodp + size, prodp + size, size, 1);
     219      }
     220  }