(root)/
gcc-13.2.0/
libquadmath/
printf/
mul.c
       1  /* mpn_mul -- Multiply two natural numbers.
       2  
       3  Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
       4  
       5  This file is part of the GNU MP Library.
       6  
       7  The GNU MP Library is free software; you can redistribute it and/or modify
       8  it under the terms of the GNU Lesser General Public License as published by
       9  the Free Software Foundation; either version 2.1 of the License, or (at your
      10  option) any later version.
      11  
      12  The GNU MP Library is distributed in the hope that it will be useful, but
      13  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      14  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      15  License for more details.
      16  
      17  You should have received a copy of the GNU Lesser General Public License
      18  along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
      19  the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
      20  MA 02111-1307, USA. */
      21  
      22  #include <config.h>
      23  #include "gmp-impl.h"
      24  
      25  /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
      26     and v (pointed to by VP, with VSIZE limbs), and store the result at
      27     PRODP.  USIZE + VSIZE limbs are always stored, but if the input
      28     operands are normalized.  Return the most significant limb of the
      29     result.
      30  
      31     NOTE: The space pointed to by PRODP is overwritten before finished
      32     with U and V, so overlap is an error.
      33  
      34     Argument constraints:
      35     1. USIZE >= VSIZE.
      36     2. PRODP != UP and PRODP != VP, i.e. the destination
      37        must be distinct from the multiplier and the multiplicand.  */
      38  
      39  /* If KARATSUBA_THRESHOLD is not already defined, define it to a
      40     value which is good on most machines.  */
      41  #ifndef KARATSUBA_THRESHOLD
      42  #define KARATSUBA_THRESHOLD 32
      43  #endif
      44  
      45  mp_limb_t
      46  #if __STDC__
      47  mpn_mul (mp_ptr prodp,
      48  	 mp_srcptr up, mp_size_t usize,
      49  	 mp_srcptr vp, mp_size_t vsize)
      50  #else
      51  mpn_mul (prodp, up, usize, vp, vsize)
      52       mp_ptr prodp;
      53       mp_srcptr up;
      54       mp_size_t usize;
      55       mp_srcptr vp;
      56       mp_size_t vsize;
      57  #endif
      58  {
      59    mp_ptr prod_endp = prodp + usize + vsize - 1;
      60    mp_limb_t cy;
      61    mp_ptr tspace;
      62  
      63    if (vsize < KARATSUBA_THRESHOLD)
      64      {
      65        /* Handle simple cases with traditional multiplication.
      66  
      67  	 This is the most critical code of the entire function.  All
      68  	 multiplies rely on this, both small and huge.  Small ones arrive
      69  	 here immediately.  Huge ones arrive here as this is the base case
      70  	 for Karatsuba's recursive algorithm below.  */
      71        mp_size_t i;
      72        mp_limb_t cy_limb;
      73        mp_limb_t v_limb;
      74  
      75        if (vsize == 0)
      76  	return 0;
      77  
      78        /* Multiply by the first limb in V separately, as the result can be
      79  	 stored (not added) to PROD.  We also avoid a loop for zeroing.  */
      80        v_limb = vp[0];
      81        if (v_limb <= 1)
      82  	{
      83  	  if (v_limb == 1)
      84  	    MPN_COPY (prodp, up, usize);
      85  	  else
      86  	    MPN_ZERO (prodp, usize);
      87  	  cy_limb = 0;
      88  	}
      89        else
      90  	cy_limb = mpn_mul_1 (prodp, up, usize, v_limb);
      91  
      92        prodp[usize] = cy_limb;
      93        prodp++;
      94  
      95        /* For each iteration in the outer loop, multiply one limb from
      96  	 U with one limb from V, and add it to PROD.  */
      97        for (i = 1; i < vsize; i++)
      98  	{
      99  	  v_limb = vp[i];
     100  	  if (v_limb <= 1)
     101  	    {
     102  	      cy_limb = 0;
     103  	      if (v_limb == 1)
     104  		cy_limb = mpn_add_n (prodp, prodp, up, usize);
     105  	    }
     106  	  else
     107  	    cy_limb = mpn_addmul_1 (prodp, up, usize, v_limb);
     108  
     109  	  prodp[usize] = cy_limb;
     110  	  prodp++;
     111  	}
     112        return cy_limb;
     113      }
     114  
     115    tspace = (mp_ptr) alloca (2 * vsize * BYTES_PER_MP_LIMB);
     116    MPN_MUL_N_RECURSE (prodp, up, vp, vsize, tspace);
     117  
     118    prodp += vsize;
     119    up += vsize;
     120    usize -= vsize;
     121    if (usize >= vsize)
     122      {
     123        mp_ptr tp = (mp_ptr) alloca (2 * vsize * BYTES_PER_MP_LIMB);
     124        do
     125  	{
     126  	  MPN_MUL_N_RECURSE (tp, up, vp, vsize, tspace);
     127  	  cy = mpn_add_n (prodp, prodp, tp, vsize);
     128  	  mpn_add_1 (prodp + vsize, tp + vsize, vsize, cy);
     129  	  prodp += vsize;
     130  	  up += vsize;
     131  	  usize -= vsize;
     132  	}
     133        while (usize >= vsize);
     134      }
     135  
     136    /* True: usize < vsize.  */
     137  
     138    /* Make life simple: Recurse.  */
     139  
     140    if (usize != 0)
     141      {
     142        mpn_mul (tspace, vp, vsize, up, usize);
     143        cy = mpn_add_n (prodp, prodp, tspace, vsize);
     144        mpn_add_1 (prodp + vsize, tspace + vsize, usize, cy);
     145      }
     146  
     147    return *prod_endp;
     148  }