(root)/
gcc-13.2.0/
libquadmath/
printf/
flt1282mpn.c
       1  /* Copyright (C) 1995,1996,1997,1998,1999,2002,2003
       2  	Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, write to the Free
      17     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
      18     02111-1307 USA.  */
      19  
      20  #include <float.h>
      21  #include <math.h>
      22  #include <stdlib.h>
      23  #include "gmp-impl.h"
      24  
      25  /* Convert a `__float128' in IEEE854 quad-precision format to a
      26     multi-precision integer representing the significand scaled up by its
      27     number of bits (113 for long double) and an integral power of two
      28     (MPN frexpl). */
      29  
      30  mp_size_t
      31  mpn_extract_flt128 (mp_ptr res_ptr, mp_size_t size,
      32  		      int *expt, int *is_neg,
      33  		      __float128 value)
      34  {
      35    ieee854_float128 u;
      36    u.value = value;
      37  
      38    *is_neg = u.ieee.negative;
      39    *expt = (int) u.ieee.exponent - IEEE854_FLOAT128_BIAS;
      40  
      41  #if BITS_PER_MP_LIMB == 32
      42    res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction.  */
      43    res_ptr[1] = u.ieee.mantissa2;
      44    res_ptr[2] = u.ieee.mantissa1;
      45    res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits.  */
      46    #define N 4
      47  #elif BITS_PER_MP_LIMB == 64
      48    res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
      49    res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
      50    #define N 2
      51  #else
      52    #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
      53  #endif
      54  /* The format does not fill the last limb.  There are some zeros.  */
      55  #define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
      56  			   - (FLT128_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
      57  
      58    if (u.ieee.exponent == 0)
      59      {
      60        /* A biased exponent of zero is a special case.
      61  	 Either it is a zero or it is a denormal number.  */
      62        if (res_ptr[0] == 0 && res_ptr[1] == 0
      63  	  && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4.  */
      64  	/* It's zero.  */
      65  	*expt = 0;
      66        else
      67  	{
      68  	  /* It is a denormal number, meaning it has no implicit leading
      69    	     one bit, and its exponent is in fact the format minimum.  */
      70  	  int cnt;
      71  
      72  #if N == 2
      73  	  if (res_ptr[N - 1] != 0)
      74  	    {
      75  	      count_leading_zeros (cnt, res_ptr[N - 1]);
      76  	      cnt -= NUM_LEADING_ZEROS;
      77  	      res_ptr[N - 1] = res_ptr[N - 1] << cnt
      78  			       | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
      79  	      res_ptr[0] <<= cnt;
      80  	      *expt = FLT128_MIN_EXP - 1 - cnt;
      81  	    }
      82  	  else
      83  	    {
      84  	      count_leading_zeros (cnt, res_ptr[0]);
      85  	      if (cnt >= NUM_LEADING_ZEROS)
      86  		{
      87  		  res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
      88  		  res_ptr[0] = 0;
      89  		}
      90  	      else
      91  		{
      92  		  res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
      93  		  res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
      94  		}
      95  	      *expt = FLT128_MIN_EXP - 1
      96  		- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
      97  	    }
      98  #else
      99  	  int j, k, l;
     100  
     101  	  for (j = N - 1; j > 0; j--)
     102  	    if (res_ptr[j] != 0)
     103  	      break;
     104  
     105  	  count_leading_zeros (cnt, res_ptr[j]);
     106  	  cnt -= NUM_LEADING_ZEROS;
     107  	  l = N - 1 - j;
     108  	  if (cnt < 0)
     109  	    {
     110  	      cnt += BITS_PER_MP_LIMB;
     111  	      l--;
     112  	    }
     113  	  if (!cnt)
     114  	    for (k = N - 1; k >= l; k--)
     115  	      res_ptr[k] = res_ptr[k-l];
     116  	  else
     117  	    {
     118  	      for (k = N - 1; k > l; k--)
     119  		res_ptr[k] = res_ptr[k-l] << cnt
     120  			     | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
     121  	      res_ptr[k--] = res_ptr[0] << cnt;
     122  	    }
     123  
     124  	  for (; k >= 0; k--)
     125  	    res_ptr[k] = 0;
     126  	  *expt = FLT128_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
     127  #endif
     128  	}
     129      }
     130    else
     131      /* Add the implicit leading one bit for a normalized number.  */
     132      res_ptr[N - 1] |= (mp_limb_t) 1 << (FLT128_MANT_DIG - 1
     133  					- ((N - 1) * BITS_PER_MP_LIMB));
     134  
     135    return N;
     136  }