(root)/
gcc-13.2.0/
libquadmath/
math/
tanq_kernel.c
       1  /*
       2   * ====================================================
       3   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       4   *
       5   * Developed at SunPro, a Sun Microsystems, Inc. business.
       6   * Permission to use, copy, modify, and distribute this
       7   * software is freely granted, provided that this notice
       8   * is preserved.
       9   * ====================================================
      10   */
      11  
      12  /*
      13    Long double expansions are
      14    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
      15    and are incorporated herein by permission of the author.  The author
      16    reserves the right to distribute this material elsewhere under different
      17    copying permissions.  These modifications are distributed here under
      18    the following terms:
      19  
      20      This library is free software; you can redistribute it and/or
      21      modify it under the terms of the GNU Lesser General Public
      22      License as published by the Free Software Foundation; either
      23      version 2.1 of the License, or (at your option) any later version.
      24  
      25      This library is distributed in the hope that it will be useful,
      26      but WITHOUT ANY WARRANTY; without even the implied warranty of
      27      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      28      Lesser General Public License for more details.
      29  
      30      You should have received a copy of the GNU Lesser General Public
      31      License along with this library; if not, see
      32      <http://www.gnu.org/licenses/>.  */
      33  
      34  /* __quadmath_kernel_tanq( x, y, k )
      35   * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
      36   * Input x is assumed to be bounded by ~pi/4 in magnitude.
      37   * Input y is the tail of x.
      38   * Input k indicates whether tan (if k=1) or
      39   * -1/tan (if k= -1) is returned.
      40   *
      41   * Algorithm
      42   *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
      43   *	2. if x < 2^-57, return x with inexact if x!=0.
      44   *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
      45   *          on [0,0.67433].
      46   *
      47   *	   Note: tan(x+y) = tan(x) + tan'(x)*y
      48   *		          ~ tan(x) + (1+x*x)*y
      49   *	   Therefore, for better accuracy in computing tan(x+y), let
      50   *		r = x^3 * R(x^2)
      51   *	   then
      52   *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
      53   *
      54   *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
      55   *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
      56   *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
      57   */
      58  
      59  #include "quadmath-imp.h"
      60  
      61  static const __float128
      62    one = 1,
      63    pio4hi = 7.8539816339744830961566084581987569936977E-1Q,
      64    pio4lo = 2.1679525325309452561992610065108379921906E-35Q,
      65  
      66    /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
      67       0 <= x <= 0.6743316650390625
      68       Peak relative error 8.0e-36  */
      69   TH =  3.333333333333333333333333333333333333333E-1Q,
      70   T0 = -1.813014711743583437742363284336855889393E7Q,
      71   T1 =  1.320767960008972224312740075083259247618E6Q,
      72   T2 = -2.626775478255838182468651821863299023956E4Q,
      73   T3 =  1.764573356488504935415411383687150199315E2Q,
      74   T4 = -3.333267763822178690794678978979803526092E-1Q,
      75  
      76   U0 = -1.359761033807687578306772463253710042010E8Q,
      77   U1 =  6.494370630656893175666729313065113194784E7Q,
      78   U2 = -4.180787672237927475505536849168729386782E6Q,
      79   U3 =  8.031643765106170040139966622980914621521E4Q,
      80   U4 = -5.323131271912475695157127875560667378597E2Q;
      81    /* 1.000000000000000000000000000000000000000E0 */
      82  
      83  
      84  __float128
      85  __quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
      86  {
      87    __float128 z, r, v, w, s;
      88    int32_t ix, sign;
      89    ieee854_float128 u, u1;
      90  
      91    u.value = x;
      92    ix = u.words32.w0 & 0x7fffffff;
      93    if (ix < 0x3fc60000)		/* x < 2**-57 */
      94      {
      95        if ((int) x == 0)
      96  	{			/* generate inexact */
      97  	  if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
      98  	       | (iy + 1)) == 0)
      99  	    return one / fabsq (x);
     100  	  else if (iy == 1)
     101  	    {
     102  	      math_check_force_underflow (x);
     103  	      return x;
     104  	    }
     105  	  else
     106  	    return -one / x;
     107  	}
     108      }
     109    if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
     110      {
     111        if ((u.words32.w0 & 0x80000000) != 0)
     112  	{
     113  	  x = -x;
     114  	  y = -y;
     115  	  sign = -1;
     116  	}
     117        else
     118  	sign = 1;
     119        z = pio4hi - x;
     120        w = pio4lo - y;
     121        x = z + w;
     122        y = 0.0;
     123      }
     124    z = x * x;
     125    r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
     126    v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
     127    r = r / v;
     128  
     129    s = z * x;
     130    r = y + z * (s * r + y);
     131    r += TH * s;
     132    w = x + r;
     133    if (ix >= 0x3ffe5942)
     134      {
     135        v = (__float128) iy;
     136        w = (v - 2.0 * (x - (w * w / (w + v) - r)));
     137        /* SIGN is set for arguments that reach this code, but not
     138  	 otherwise, resulting in warnings that it may be used
     139  	 uninitialized although in the cases where it is used it has
     140  	 always been set.  */
     141  
     142  
     143        if (sign < 0)
     144  	w = -w;
     145  
     146        return w;
     147      }
     148    if (iy == 1)
     149      return w;
     150    else
     151      {				/* if allow error up to 2 ulp,
     152  				   simply return -1.0/(x+r) here */
     153        /*  compute -1.0/(x+r) accurately */
     154        u1.value = w;
     155        u1.words32.w2 = 0;
     156        u1.words32.w3 = 0;
     157        v = r - (u1.value - x);		/* u1+v = r+x */
     158        z = -1.0 / w;
     159        u.value = z;
     160        u.words32.w2 = 0;
     161        u.words32.w3 = 0;
     162        s = 1.0 + u.value * u1.value;
     163        return u.value + z * (s + u.value * v);
     164      }
     165  }