(root)/
gcc-13.2.0/
libquadmath/
math/
sinq_kernel.c
       1  /* Quad-precision floating point sine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2018 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4     Contributed by Jakub Jelinek <jj@ultra.linux.cz>
       5  
       6     The GNU C Library is free software; you can redistribute it and/or
       7     modify it under the terms of the GNU Lesser General Public
       8     License as published by the Free Software Foundation; either
       9     version 2.1 of the License, or (at your option) any later version.
      10  
      11     The GNU C Library is distributed in the hope that it will be useful,
      12     but WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      14     Lesser General Public License for more details.
      15  
      16     You should have received a copy of the GNU Lesser General Public
      17     License along with the GNU C Library; if not, see
      18     <http://www.gnu.org/licenses/>.  */
      19  
      20  #include "quadmath-imp.h"
      21  
      22  static const __float128 c[] = {
      23  #define ONE c[0]
      24   1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */
      25  
      26  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      27     x in <0,1/256>  */
      28  #define SCOS1 c[1]
      29  #define SCOS2 c[2]
      30  #define SCOS3 c[3]
      31  #define SCOS4 c[4]
      32  #define SCOS5 c[5]
      33  -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */
      34   4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */
      35  -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */
      36   2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
      37  -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */
      38  
      39  /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
      40     x in <0,0.1484375>  */
      41  #define SIN1 c[6]
      42  #define SIN2 c[7]
      43  #define SIN3 c[8]
      44  #define SIN4 c[9]
      45  #define SIN5 c[10]
      46  #define SIN6 c[11]
      47  #define SIN7 c[12]
      48  #define SIN8 c[13]
      49  -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */
      50   8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */
      51  -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */
      52   2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */
      53  -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */
      54   1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */
      55  -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
      56   2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */
      57  
      58  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      59     x in <0,1/256>  */
      60  #define SSIN1 c[14]
      61  #define SSIN2 c[15]
      62  #define SSIN3 c[16]
      63  #define SSIN4 c[17]
      64  #define SSIN5 c[18]
      65  -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */
      66   8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */
      67  -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */
      68   2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */
      69  -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */
      70  };
      71  
      72  #define SINCOSL_COS_HI 0
      73  #define SINCOSL_COS_LO 1
      74  #define SINCOSL_SIN_HI 2
      75  #define SINCOSL_SIN_LO 3
      76  extern const __float128 __sincosq_table[];
      77  
      78  __float128
      79  __quadmath_kernel_sinq(__float128 x, __float128 y, int iy)
      80  {
      81    __float128 h, l, z, sin_l, cos_l_m1;
      82    int64_t ix;
      83    uint32_t tix, hix, index;
      84    GET_FLT128_MSW64 (ix, x);
      85    tix = ((uint64_t)ix) >> 32;
      86    tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
      87    if (tix < 0x3ffc3000)			/* |x| < 0.1484375 */
      88      {
      89        /* Argument is small enough to approximate it by a Chebyshev
      90  	 polynomial of degree 17.  */
      91        if (tix < 0x3fc60000)		/* |x| < 2^-57 */
      92  	{
      93  	  math_check_force_underflow (x);
      94  	  if (!((int)x)) return x;	/* generate inexact */
      95  	}
      96        z = x * x;
      97        return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
      98  		       z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
      99      }
     100    else
     101      {
     102        /* So that we don't have to use too large polynomial,  we find
     103  	 l and h such that x = l + h,  where fabsq(l) <= 1.0/256 with 83
     104  	 possible values for h.  We look up cosq(h) and sinq(h) in
     105  	 pre-computed tables,  compute cosq(l) and sinq(l) using a
     106  	 Chebyshev polynomial of degree 10(11) and compute
     107  	 sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l).  */
     108        index = 0x3ffe - (tix >> 16);
     109        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     110        x = fabsq (x);
     111        switch (index)
     112  	{
     113  	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
     114  	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
     115  	default:
     116  	case 2: index = (hix - 0x3ffc3000) >> 10; break;
     117  	}
     118  
     119        SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0);
     120        if (iy)
     121  	l = (ix < 0 ? -y : y) - (h - x);
     122        else
     123  	l = x - h;
     124        z = l * l;
     125        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     126        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     127        z = __sincosq_table [index + SINCOSL_SIN_HI]
     128  	  + (__sincosq_table [index + SINCOSL_SIN_LO]
     129  	     + (__sincosq_table [index + SINCOSL_SIN_HI] * cos_l_m1)
     130  	     + (__sincosq_table [index + SINCOSL_COS_HI] * sin_l));
     131        return (ix < 0) ? -z : z;
     132      }
     133  }