(root)/
gcc-13.2.0/
libquadmath/
math/
sincosq_kernel.c
       1  /* Quad-precision floating point sine and cosine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2018 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4     Contributed by Jakub Jelinek <jj@ultra.linux.cz>
       5  
       6     The GNU C Library is free software; you can redistribute it and/or
       7     modify it under the terms of the GNU Lesser General Public
       8     License as published by the Free Software Foundation; either
       9     version 2.1 of the License, or (at your option) any later version.
      10  
      11     The GNU C Library is distributed in the hope that it will be useful,
      12     but WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      14     Lesser General Public License for more details.
      15  
      16     You should have received a copy of the GNU Lesser General Public
      17     License along with the GNU C Library; if not, see
      18     <http://www.gnu.org/licenses/>.  */
      19  
      20  #include "quadmath-imp.h"
      21  
      22  static const __float128 c[] = {
      23  #define ONE c[0]
      24   1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */
      25  
      26  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      27     x in <0,1/256>  */
      28  #define SCOS1 c[1]
      29  #define SCOS2 c[2]
      30  #define SCOS3 c[3]
      31  #define SCOS4 c[4]
      32  #define SCOS5 c[5]
      33  -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */
      34   4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */
      35  -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */
      36   2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
      37  -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */
      38  
      39  /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
      40     x in <0,0.1484375>  */
      41  #define COS1 c[6]
      42  #define COS2 c[7]
      43  #define COS3 c[8]
      44  #define COS4 c[9]
      45  #define COS5 c[10]
      46  #define COS6 c[11]
      47  #define COS7 c[12]
      48  #define COS8 c[13]
      49  -4.99999999999999999999999999999999759E-01Q, /* bffdfffffffffffffffffffffffffffb */
      50   4.16666666666666666666666666651287795E-02Q, /* 3ffa5555555555555555555555516f30 */
      51  -1.38888888888888888888888742314300284E-03Q, /* bff56c16c16c16c16c16c16a463dfd0d */
      52   2.48015873015873015867694002851118210E-05Q, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
      53  -2.75573192239858811636614709689300351E-07Q, /* bfe927e4fb7789f5aa8142a22044b51f */
      54   2.08767569877762248667431926878073669E-09Q, /* 3fe21eed8eff881d1e9262d7adff4373 */
      55  -1.14707451049343817400420280514614892E-11Q, /* bfda9397496922a9601ed3d4ca48944b */
      56   4.77810092804389587579843296923533297E-14Q, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
      57  
      58  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      59     x in <0,1/256>  */
      60  #define SSIN1 c[14]
      61  #define SSIN2 c[15]
      62  #define SSIN3 c[16]
      63  #define SSIN4 c[17]
      64  #define SSIN5 c[18]
      65  -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */
      66   8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */
      67  -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */
      68   2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */
      69  -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */
      70  
      71  /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
      72     x in <0,0.1484375>  */
      73  #define SIN1 c[19]
      74  #define SIN2 c[20]
      75  #define SIN3 c[21]
      76  #define SIN4 c[22]
      77  #define SIN5 c[23]
      78  #define SIN6 c[24]
      79  #define SIN7 c[25]
      80  #define SIN8 c[26]
      81  -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */
      82   8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */
      83  -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */
      84   2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */
      85  -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */
      86   1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */
      87  -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
      88   2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */
      89  };
      90  
      91  #define SINCOSL_COS_HI 0
      92  #define SINCOSL_COS_LO 1
      93  #define SINCOSL_SIN_HI 2
      94  #define SINCOSL_SIN_LO 3
      95  extern const __float128 __sincosq_table[];
      96  
      97  void
      98  __quadmath_kernel_sincosq(__float128 x, __float128 y, __float128 *sinx, __float128 *cosx, int iy)
      99  {
     100    __float128 h, l, z, sin_l, cos_l_m1;
     101    int64_t ix;
     102    uint32_t tix, hix, index;
     103    GET_FLT128_MSW64 (ix, x);
     104    tix = ((uint64_t)ix) >> 32;
     105    tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
     106    if (tix < 0x3ffc3000)			/* |x| < 0.1484375 */
     107      {
     108        /* Argument is small enough to approximate it by a Chebyshev
     109  	 polynomial of degree 16(17).  */
     110        if (tix < 0x3fc60000)		/* |x| < 2^-57 */
     111  	{
     112  	  math_check_force_underflow (x);
     113  	  if (!((int)x))			/* generate inexact */
     114  	    {
     115  	      *sinx = x;
     116  	      *cosx = ONE;
     117  	      return;
     118  	    }
     119  	}
     120        z = x * x;
     121        *sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
     122  			z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
     123        *cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
     124  		     z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
     125      }
     126    else
     127      {
     128        /* So that we don't have to use too large polynomial,  we find
     129  	 l and h such that x = l + h,  where fabsq(l) <= 1.0/256 with 83
     130  	 possible values for h.  We look up cosq(h) and sinq(h) in
     131  	 pre-computed tables,  compute cosq(l) and sinq(l) using a
     132  	 Chebyshev polynomial of degree 10(11) and compute
     133  	 sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l) and
     134  	 cosq(h+l) = cosq(h)cosq(l) - sinq(h)sinq(l).  */
     135        index = 0x3ffe - (tix >> 16);
     136        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     137        if (signbitq (x))
     138  	{
     139  	  x = -x;
     140  	  y = -y;
     141  	}
     142        switch (index)
     143  	{
     144  	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
     145  	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
     146  	default:
     147  	case 2: index = (hix - 0x3ffc3000) >> 10; break;
     148  	}
     149  
     150        SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0);
     151        if (iy)
     152  	l = y - (h - x);
     153        else
     154  	l = x - h;
     155        z = l * l;
     156        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     157        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     158        z = __sincosq_table [index + SINCOSL_SIN_HI]
     159  	  + (__sincosq_table [index + SINCOSL_SIN_LO]
     160  	     + (__sincosq_table [index + SINCOSL_SIN_HI] * cos_l_m1)
     161  	     + (__sincosq_table [index + SINCOSL_COS_HI] * sin_l));
     162        *sinx = (ix < 0) ? -z : z;
     163        *cosx = __sincosq_table [index + SINCOSL_COS_HI]
     164  	      + (__sincosq_table [index + SINCOSL_COS_LO]
     165  		 - (__sincosq_table [index + SINCOSL_SIN_HI] * sin_l
     166  		    - __sincosq_table [index + SINCOSL_COS_HI] * cos_l_m1));
     167      }
     168  }