(root)/
gcc-13.2.0/
libquadmath/
math/
rem_pio2q.c
       1  #include "quadmath-imp.h"
       2  #include <math.h>
       3  
       4  
       5  /* @(#)k_rem_pio2.c 5.1 93/09/24 */
       6  /*
       7   * ====================================================
       8   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       9   *
      10   * Developed at SunPro, a Sun Microsystems, Inc. business.
      11   * Permission to use, copy, modify, and distribute this
      12   * software is freely granted, provided that this notice
      13   * is preserved.
      14   * ====================================================
      15   */
      16  
      17  /*
      18   * __quadmath_kernel_rem_pio2 (x,y,e0,nx,prec,ipio2)
      19   * double x[],y[]; int e0,nx,prec; int ipio2[];
      20   *
      21   * __quadmath_kernel_rem_pio2  return the last three digits of N with
      22   *		y = x - N*pi/2
      23   * so that |y| < pi/2.
      24   *
      25   * The method is to compute the integer (mod 8) and fraction parts of
      26   * (2/pi)*x without doing the full multiplication. In general we
      27   * skip the part of the product that are known to be a huge integer (
      28   * more accurately, = 0 mod 8 ). Thus the number of operations are
      29   * independent of the exponent of the input.
      30   *
      31   * (2/pi) is represented by an array of 24-bit integers in ipio2[].
      32   *
      33   * Input parameters:
      34   * 	x[]	The input value (must be positive) is broken into nx
      35   *		pieces of 24-bit integers in double precision format.
      36   *		x[i] will be the i-th 24 bit of x. The scaled exponent
      37   *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
      38   *		match x's up to 24 bits.
      39   *
      40   *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
      41   *			e0 = ilogb(z)-23
      42   *			z  = scalbn(z,-e0)
      43   *		for i = 0,1,2
      44   *			x[i] = floor(z)
      45   *			z    = (z-x[i])*2**24
      46   *
      47   *
      48   *	y[]	ouput result in an array of double precision numbers.
      49   *		The dimension of y[] is:
      50   *			24-bit  precision	1
      51   *			53-bit  precision	2
      52   *			64-bit  precision	2
      53   *			113-bit precision	3
      54   *		The actual value is the sum of them. Thus for 113-bit
      55   *		precision, one may have to do something like:
      56   *
      57   *		long double t,w,r_head, r_tail;
      58   *		t = (long double)y[2] + (long double)y[1];
      59   *		w = (long double)y[0];
      60   *		r_head = t+w;
      61   *		r_tail = w - (r_head - t);
      62   *
      63   *	e0	The exponent of x[0]
      64   *
      65   *	nx	dimension of x[]
      66   *
      67   *  	prec	an integer indicating the precision:
      68   *			0	24  bits (single)
      69   *			1	53  bits (double)
      70   *			2	64  bits (extended)
      71   *			3	113 bits (quad)
      72   *
      73   *	ipio2[]
      74   *		integer array, contains the (24*i)-th to (24*i+23)-th
      75   *		bit of 2/pi after binary point. The corresponding
      76   *		floating value is
      77   *
      78   *			ipio2[i] * 2^(-24(i+1)).
      79   *
      80   * External function:
      81   *	double scalbn(), floor();
      82   *
      83   *
      84   * Here is the description of some local variables:
      85   *
      86   * 	jk	jk+1 is the initial number of terms of ipio2[] needed
      87   *		in the computation. The recommended value is 2,3,4,
      88   *		6 for single, double, extended,and quad.
      89   *
      90   * 	jz	local integer variable indicating the number of
      91   *		terms of ipio2[] used.
      92   *
      93   *	jx	nx - 1
      94   *
      95   *	jv	index for pointing to the suitable ipio2[] for the
      96   *		computation. In general, we want
      97   *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
      98   *		is an integer. Thus
      99   *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
     100   *		Hence jv = max(0,(e0-3)/24).
     101   *
     102   *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
     103   *
     104   * 	q[]	double array with integral value, representing the
     105   *		24-bits chunk of the product of x and 2/pi.
     106   *
     107   *	q0	the corresponding exponent of q[0]. Note that the
     108   *		exponent for q[i] would be q0-24*i.
     109   *
     110   *	PIo2[]	double precision array, obtained by cutting pi/2
     111   *		into 24 bits chunks.
     112   *
     113   *	f[]	ipio2[] in floating point
     114   *
     115   *	iq[]	integer array by breaking up q[] in 24-bits chunk.
     116   *
     117   *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
     118   *
     119   *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
     120   *		it also indicates the *sign* of the result.
     121   *
     122   */
     123  
     124  /*
     125   * Constants:
     126   * The hexadecimal values are the intended ones for the following
     127   * constants. The decimal values may be used, provided that the
     128   * compiler will convert from decimal to binary accurately enough
     129   * to produce the hexadecimal values shown.
     130   */
     131  
     132  
     133  static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
     134  
     135  static const double PIo2[] = {
     136    1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
     137    7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
     138    5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
     139    3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
     140    1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
     141    1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
     142    2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
     143    2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
     144  };
     145  
     146  static const double
     147    zero   = 0.0,
     148    one    = 1.0,
     149    two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
     150    twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
     151  
     152  
     153  static int
     154  __quadmath_kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
     155  {
     156  	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
     157  	double z,fw,f[20],fq[20],q[20];
     158  
     159      /* initialize jk*/
     160  	jk = init_jk[prec];
     161  	jp = jk;
     162  
     163      /* determine jx,jv,q0, note that 3>q0 */
     164  	jx =  nx-1;
     165  	jv = (e0-3)/24; if(jv<0) jv=0;
     166  	q0 =  e0-24*(jv+1);
     167  
     168      /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
     169  	j = jv-jx; m = jx+jk;
     170  	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
     171  
     172      /* compute q[0],q[1],...q[jk] */
     173  	for (i=0;i<=jk;i++) {
     174  	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
     175  	}
     176  
     177  	jz = jk;
     178  recompute:
     179      /* distill q[] into iq[] reversingly */
     180  	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
     181  	    fw    =  (double)((int32_t)(twon24* z));
     182  	    iq[i] =  (int32_t)(z-two24*fw);
     183  	    z     =  q[j-1]+fw;
     184  	}
     185  
     186      /* compute n */
     187  	z  = scalbn(z,q0);		/* actual value of z */
     188  	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
     189  	n  = (int32_t) z;
     190  	z -= (double)n;
     191  	ih = 0;
     192  	if(q0>0) {	/* need iq[jz-1] to determine n */
     193  	    i  = (iq[jz-1]>>(24-q0)); n += i;
     194  	    iq[jz-1] -= i<<(24-q0);
     195  	    ih = iq[jz-1]>>(23-q0);
     196  	}
     197  	else if(q0==0) ih = iq[jz-1]>>23;
     198  	else if(z>=0.5) ih=2;
     199  
     200  	if(ih>0) {	/* q > 0.5 */
     201  	    n += 1; carry = 0;
     202  	    for(i=0;i<jz ;i++) {	/* compute 1-q */
     203  		j = iq[i];
     204  		if(carry==0) {
     205  		    if(j!=0) {
     206  			carry = 1; iq[i] = 0x1000000- j;
     207  		    }
     208  		} else  iq[i] = 0xffffff - j;
     209  	    }
     210  	    if(q0>0) {		/* rare case: chance is 1 in 12 */
     211  	        switch(q0) {
     212  	        case 1:
     213  	    	   iq[jz-1] &= 0x7fffff; break;
     214  	    	case 2:
     215  	    	   iq[jz-1] &= 0x3fffff; break;
     216  	        }
     217  	    }
     218  	    if(ih==2) {
     219  		z = one - z;
     220  		if(carry!=0) z -= scalbn(one,q0);
     221  	    }
     222  	}
     223  
     224      /* check if recomputation is needed */
     225  	if(z==zero) {
     226  	    j = 0;
     227  	    for (i=jz-1;i>=jk;i--) j |= iq[i];
     228  	    if(j==0) { /* need recomputation */
     229  		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
     230  
     231  		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
     232  		    f[jx+i] = (double) ipio2[jv+i];
     233  		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
     234  		    q[i] = fw;
     235  		}
     236  		jz += k;
     237  		goto recompute;
     238  	    }
     239  	}
     240  
     241      /* chop off zero terms */
     242  	if(z==0.0) {
     243  	    jz -= 1; q0 -= 24;
     244  	    while(iq[jz]==0) { jz--; q0-=24;}
     245  	} else { /* break z into 24-bit if necessary */
     246  	    z = scalbn(z,-q0);
     247  	    if(z>=two24) {
     248  		fw = (double)((int32_t)(twon24*z));
     249  		iq[jz] = (int32_t)(z-two24*fw);
     250  		jz += 1; q0 += 24;
     251  		iq[jz] = (int32_t) fw;
     252  	    } else iq[jz] = (int32_t) z ;
     253  	}
     254  
     255      /* convert integer "bit" chunk to floating-point value */
     256  	fw = scalbn(one,q0);
     257  	for(i=jz;i>=0;i--) {
     258  	    q[i] = fw*(double)iq[i]; fw*=twon24;
     259  	}
     260  
     261      /* compute PIo2[0,...,jp]*q[jz,...,0] */
     262  	for(i=jz;i>=0;i--) {
     263  	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
     264  	    fq[jz-i] = fw;
     265  	}
     266  
     267      /* compress fq[] into y[] */
     268  	switch(prec) {
     269  	    case 0:
     270  		fw = 0.0;
     271  		for (i=jz;i>=0;i--) fw += fq[i];
     272  		y[0] = (ih==0)? fw: -fw;
     273  		break;
     274  	    case 1:
     275  	    case 2:
     276  		fw = 0.0;
     277  		for (i=jz;i>=0;i--) fw += fq[i];
     278  		y[0] = (ih==0)? fw: -fw;
     279  		fw = fq[0]-fw;
     280  		for (i=1;i<=jz;i++) fw += fq[i];
     281  		y[1] = (ih==0)? fw: -fw;
     282  		break;
     283  	    case 3:	/* painful */
     284  		for (i=jz;i>0;i--) {
     285  #if __FLT_EVAL_METHOD__ != 0
     286  		    volatile
     287  #endif
     288  		    double fv = (double)(fq[i-1]+fq[i]);
     289  		    fq[i]  += fq[i-1]-fv;
     290  		    fq[i-1] = fv;
     291  		}
     292  		for (i=jz;i>1;i--) {
     293  #if __FLT_EVAL_METHOD__ != 0
     294  		    volatile
     295  #endif
     296  		    double fv = (double)(fq[i-1]+fq[i]);
     297  		    fq[i]  += fq[i-1]-fv;
     298  		    fq[i-1] = fv;
     299  		}
     300  		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
     301  		if(ih==0) {
     302  		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
     303  		} else {
     304  		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
     305  		}
     306  	}
     307  	return n&7;
     308  }
     309  
     310  
     311  
     312  
     313  
     314  /* Quad-precision floating point argument reduction.
     315     Copyright (C) 1999-2017 Free Software Foundation, Inc.
     316     This file is part of the GNU C Library.
     317     Contributed by Jakub Jelinek <jj@ultra.linux.cz>
     318  
     319     The GNU C Library is free software; you can redistribute it and/or
     320     modify it under the terms of the GNU Lesser General Public
     321     License as published by the Free Software Foundation; either
     322     version 2.1 of the License, or (at your option) any later version.
     323  
     324     The GNU C Library is distributed in the hope that it will be useful,
     325     but WITHOUT ANY WARRANTY; without even the implied warranty of
     326     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     327     Lesser General Public License for more details.
     328  
     329     You should have received a copy of the GNU Lesser General Public
     330     License along with the GNU C Library; if not, write to the Free
     331     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
     332     02111-1307 USA.  */
     333  
     334  /*
     335   * Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi
     336   */
     337  static const int32_t two_over_pi[] = {
     338  0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
     339  0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
     340  0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
     341  0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
     342  0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
     343  0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
     344  0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
     345  0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
     346  0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
     347  0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
     348  0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
     349  0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
     350  0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
     351  0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
     352  0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
     353  0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
     354  0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
     355  0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
     356  0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
     357  0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
     358  0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
     359  0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
     360  0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
     361  0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
     362  0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
     363  0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
     364  0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
     365  0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
     366  0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
     367  0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
     368  0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
     369  0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
     370  0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
     371  0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
     372  0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
     373  0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
     374  0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
     375  0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
     376  0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
     377  0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
     378  0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
     379  0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
     380  0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
     381  0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
     382  0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
     383  0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
     384  0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
     385  0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
     386  0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
     387  0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
     388  0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
     389  0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
     390  0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
     391  0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
     392  0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
     393  0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
     394  0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
     395  0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
     396  0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
     397  0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
     398  0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
     399  0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
     400  0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
     401  0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
     402  0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
     403  0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
     404  0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
     405  0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
     406  0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
     407  0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
     408  0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
     409  0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
     410  0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
     411  0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
     412  0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
     413  0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
     414  0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
     415  0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
     416  0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
     417  0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
     418  0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
     419  0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
     420  0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
     421  0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
     422  0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
     423  0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
     424  0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
     425  0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
     426  0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
     427  0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
     428  0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
     429  0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
     430  0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
     431  0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
     432  0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
     433  0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
     434  0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
     435  0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
     436  0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
     437  0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
     438  0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
     439  0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
     440  0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
     441  0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
     442  0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
     443  0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
     444  0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
     445  0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
     446  0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
     447  0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
     448  0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
     449  0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
     450  0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
     451  0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
     452  0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
     453  0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
     454  0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
     455  0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
     456  0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
     457  0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
     458  0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
     459  0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
     460  0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
     461  0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
     462  0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
     463  0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
     464  0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
     465  0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
     466  0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
     467  0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
     468  0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
     469  0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
     470  0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
     471  0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
     472  0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
     473  0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
     474  0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
     475  0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
     476  0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
     477  0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
     478  0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
     479  0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
     480  0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
     481  0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
     482  0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
     483  0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
     484  0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
     485  0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
     486  0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
     487  0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
     488  0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
     489  0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
     490  0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
     491  0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
     492  0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
     493  0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
     494  0x7b7b89, 0x483d38,
     495  };
     496  
     497  static const __float128 c[] = {
     498  /* 113 bits of pi/2 */
     499  #define PI_2_1 c[0]
     500   0x1.921fb54442d18469898cc51701b8p+0Q,
     501  
     502  /* pi/2 - PI_2_1 */
     503  #define PI_2_1t c[1]
     504   0x3.9a252049c1114cf98e804177d4c8p-116Q,
     505  };
     506  
     507  
     508  int32_t
     509  __quadmath_rem_pio2q (__float128 x, __float128 *y)
     510  {
     511    __float128 z, w, t;
     512    double tx[8];
     513    int64_t exp, n, ix, hx;
     514    uint64_t lx;
     515  
     516    GET_FLT128_WORDS64 (hx, lx, x);
     517    ix = hx & 0x7fffffffffffffffLL;
     518    if (ix <= 0x3ffe921fb54442d1LL)	/* x in <-pi/4, pi/4> */
     519      {
     520        y[0] = x;
     521        y[1] = 0;
     522        return 0;
     523      }
     524  
     525    if (ix < 0x40002d97c7f3321dLL)	/* |x| in <pi/4, 3pi/4) */
     526      {
     527        if (hx > 0)
     528  	{
     529  	  /* 113 + 113 bit PI is ok */
     530  	  z = x - PI_2_1;
     531  	  y[0] = z - PI_2_1t;
     532  	  y[1] = (z - y[0]) - PI_2_1t;
     533  	  return 1;
     534  	}
     535        else
     536          {
     537  	  /* 113 + 113 bit PI is ok */
     538  	  z = x + PI_2_1;
     539  	  y[0] = z + PI_2_1t;
     540  	  y[1] = (z - y[0]) + PI_2_1t;
     541  	  return -1;
     542  	}
     543      }
     544  
     545    if (ix >= 0x7fff000000000000LL)	/* x is +=oo or NaN */
     546      {
     547        y[0] = x - x;
     548        y[1] = y[0];
     549        return 0;
     550      }
     551  
     552    /* Handle large arguments.
     553       We split the 113 bits of the mantissa into 5 24bit integers
     554       stored in a double array.  */
     555    exp = (ix >> 48) - 16383 - 23;
     556  
     557    /* This is faster than doing this in floating point, because we
     558       have to convert it to integers anyway and like this we can keep
     559       both integer and floating point units busy.  */
     560    tx [0] = (double)(((ix >> 25) & 0x7fffff) | 0x800000);
     561    tx [1] = (double)((ix >> 1) & 0xffffff);
     562    tx [2] = (double)(((ix << 23) | (lx >> 41)) & 0xffffff);
     563    tx [3] = (double)((lx >> 17) & 0xffffff);
     564    tx [4] = (double)((lx << 7) & 0xffffff);
     565  
     566    n = __quadmath_kernel_rem_pio2 (tx, tx + 5, exp,
     567  				  ((lx << 7) & 0xffffff) ? 5 : 4,
     568  				  3, two_over_pi);
     569  
     570    /* The result is now stored in 3 double values, we need to convert it into
     571       two __float128 values.  */
     572    t = (__float128) tx [6] + (__float128) tx [7];
     573    w = (__float128) tx [5];
     574  
     575    if (hx >= 0)
     576      {
     577        y[0] = w + t;
     578        y[1] = t - (y[0] - w);
     579        return n;
     580      }
     581    else
     582      {
     583        y[0] = -(w + t);
     584        y[1] = -t - (y[0] + w);
     585        return -n;
     586      }
     587  }