(root)/
gcc-13.2.0/
libquadmath/
math/
logq.c
       1  /*							logll.c
       2   *
       3   * Natural logarithm for 128-bit long double precision.
       4   *
       5   *
       6   *
       7   * SYNOPSIS:
       8   *
       9   * long double x, y, logq();
      10   *
      11   * y = logq( x );
      12   *
      13   *
      14   *
      15   * DESCRIPTION:
      16   *
      17   * Returns the base e (2.718...) logarithm of x.
      18   *
      19   * The argument is separated into its exponent and fractional
      20   * parts.  Use of a lookup table increases the speed of the routine.
      21   * The program uses logarithms tabulated at intervals of 1/128 to
      22   * cover the domain from approximately 0.7 to 1.4.
      23   *
      24   * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
      25   *     log(1+x) = x - 0.5 x^2 + x^3 P(x) .
      26   *
      27   *
      28   *
      29   * ACCURACY:
      30   *
      31   *                      Relative error:
      32   * arithmetic   domain     # trials      peak         rms
      33   *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35
      34   *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35
      35   *
      36   *
      37   * WARNING:
      38   *
      39   * This program uses integer operations on bit fields of floating-point
      40   * numbers.  It does not work with data structures other than the
      41   * structure assumed.
      42   *
      43   */
      44  
      45  /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
      46  
      47      This library is free software; you can redistribute it and/or
      48      modify it under the terms of the GNU Lesser General Public
      49      License as published by the Free Software Foundation; either
      50      version 2.1 of the License, or (at your option) any later version.
      51  
      52      This library is distributed in the hope that it will be useful,
      53      but WITHOUT ANY WARRANTY; without even the implied warranty of
      54      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      55      Lesser General Public License for more details.
      56  
      57      You should have received a copy of the GNU Lesser General Public
      58      License along with this library; if not, see
      59      <http://www.gnu.org/licenses/>.  */
      60  
      61  #include "quadmath-imp.h"
      62  
      63  /* log(1+x) = x - .5 x^2 + x^3 l(x)
      64     -.0078125 <= x <= +.0078125
      65     peak relative error 1.2e-37 */
      66  static const __float128
      67  l3 =   3.333333333333333333333333333333336096926E-1Q,
      68  l4 =  -2.499999999999999999999999999486853077002E-1Q,
      69  l5 =   1.999999999999999999999999998515277861905E-1Q,
      70  l6 =  -1.666666666666666666666798448356171665678E-1Q,
      71  l7 =   1.428571428571428571428808945895490721564E-1Q,
      72  l8 =  -1.249999999999999987884655626377588149000E-1Q,
      73  l9 =   1.111111111111111093947834982832456459186E-1Q,
      74  l10 = -1.000000000000532974938900317952530453248E-1Q,
      75  l11 =  9.090909090915566247008015301349979892689E-2Q,
      76  l12 = -8.333333211818065121250921925397567745734E-2Q,
      77  l13 =  7.692307559897661630807048686258659316091E-2Q,
      78  l14 = -7.144242754190814657241902218399056829264E-2Q,
      79  l15 =  6.668057591071739754844678883223432347481E-2Q;
      80  
      81  /* Lookup table of ln(t) - (t-1)
      82      t = 0.5 + (k+26)/128)
      83      k = 0, ..., 91   */
      84  static const __float128 logtbl[92] = {
      85  -5.5345593589352099112142921677820359632418E-2Q,
      86  -5.2108257402767124761784665198737642086148E-2Q,
      87  -4.8991686870576856279407775480686721935120E-2Q,
      88  -4.5993270766361228596215288742353061431071E-2Q,
      89  -4.3110481649613269682442058976885699556950E-2Q,
      90  -4.0340872319076331310838085093194799765520E-2Q,
      91  -3.7682072451780927439219005993827431503510E-2Q,
      92  -3.5131785416234343803903228503274262719586E-2Q,
      93  -3.2687785249045246292687241862699949178831E-2Q,
      94  -3.0347913785027239068190798397055267411813E-2Q,
      95  -2.8110077931525797884641940838507561326298E-2Q,
      96  -2.5972247078357715036426583294246819637618E-2Q,
      97  -2.3932450635346084858612873953407168217307E-2Q,
      98  -2.1988775689981395152022535153795155900240E-2Q,
      99  -2.0139364778244501615441044267387667496733E-2Q,
     100  -1.8382413762093794819267536615342902718324E-2Q,
     101  -1.6716169807550022358923589720001638093023E-2Q,
     102  -1.5138929457710992616226033183958974965355E-2Q,
     103  -1.3649036795397472900424896523305726435029E-2Q,
     104  -1.2244881690473465543308397998034325468152E-2Q,
     105  -1.0924898127200937840689817557742469105693E-2Q,
     106  -9.6875626072830301572839422532631079809328E-3Q,
     107  -8.5313926245226231463436209313499745894157E-3Q,
     108  -7.4549452072765973384933565912143044991706E-3Q,
     109  -6.4568155251217050991200599386801665681310E-3Q,
     110  -5.5356355563671005131126851708522185605193E-3Q,
     111  -4.6900728132525199028885749289712348829878E-3Q,
     112  -3.9188291218610470766469347968659624282519E-3Q,
     113  -3.2206394539524058873423550293617843896540E-3Q,
     114  -2.5942708080877805657374888909297113032132E-3Q,
     115  -2.0385211375711716729239156839929281289086E-3Q,
     116  -1.5522183228760777967376942769773768850872E-3Q,
     117  -1.1342191863606077520036253234446621373191E-3Q,
     118  -7.8340854719967065861624024730268350459991E-4Q,
     119  -4.9869831458030115699628274852562992756174E-4Q,
     120  -2.7902661731604211834685052867305795169688E-4Q,
     121  -1.2335696813916860754951146082826952093496E-4Q,
     122  -3.0677461025892873184042490943581654591817E-5Q,
     123  #define ZERO logtbl[38]
     124   0.0000000000000000000000000000000000000000E0Q,
     125  -3.0359557945051052537099938863236321874198E-5Q,
     126  -1.2081346403474584914595395755316412213151E-4Q,
     127  -2.7044071846562177120083903771008342059094E-4Q,
     128  -4.7834133324631162897179240322783590830326E-4Q,
     129  -7.4363569786340080624467487620270965403695E-4Q,
     130  -1.0654639687057968333207323853366578860679E-3Q,
     131  -1.4429854811877171341298062134712230604279E-3Q,
     132  -1.8753781835651574193938679595797367137975E-3Q,
     133  -2.3618380914922506054347222273705859653658E-3Q,
     134  -2.9015787624124743013946600163375853631299E-3Q,
     135  -3.4938307889254087318399313316921940859043E-3Q,
     136  -4.1378413103128673800485306215154712148146E-3Q,
     137  -4.8328735414488877044289435125365629849599E-3Q,
     138  -5.5782063183564351739381962360253116934243E-3Q,
     139  -6.3731336597098858051938306767880719015261E-3Q,
     140  -7.2169643436165454612058905294782949315193E-3Q,
     141  -8.1090214990427641365934846191367315083867E-3Q,
     142  -9.0486422112807274112838713105168375482480E-3Q,
     143  -1.0035177140880864314674126398350812606841E-2Q,
     144  -1.1067990155502102718064936259435676477423E-2Q,
     145  -1.2146457974158024928196575103115488672416E-2Q,
     146  -1.3269969823361415906628825374158424754308E-2Q,
     147  -1.4437927104692837124388550722759686270765E-2Q,
     148  -1.5649743073340777659901053944852735064621E-2Q,
     149  -1.6904842527181702880599758489058031645317E-2Q,
     150  -1.8202661505988007336096407340750378994209E-2Q,
     151  -1.9542647000370545390701192438691126552961E-2Q,
     152  -2.0924256670080119637427928803038530924742E-2Q,
     153  -2.2346958571309108496179613803760727786257E-2Q,
     154  -2.3810230892650362330447187267648486279460E-2Q,
     155  -2.5313561699385640380910474255652501521033E-2Q,
     156  -2.6856448685790244233704909690165496625399E-2Q,
     157  -2.8438398935154170008519274953860128449036E-2Q,
     158  -3.0058928687233090922411781058956589863039E-2Q,
     159  -3.1717563112854831855692484086486099896614E-2Q,
     160  -3.3413836095418743219397234253475252001090E-2Q,
     161  -3.5147290019036555862676702093393332533702E-2Q,
     162  -3.6917475563073933027920505457688955423688E-2Q,
     163  -3.8723951502862058660874073462456610731178E-2Q,
     164  -4.0566284516358241168330505467000838017425E-2Q,
     165  -4.2444048996543693813649967076598766917965E-2Q,
     166  -4.4356826869355401653098777649745233339196E-2Q,
     167  -4.6304207416957323121106944474331029996141E-2Q,
     168  -4.8285787106164123613318093945035804818364E-2Q,
     169  -5.0301169421838218987124461766244507342648E-2Q,
     170  -5.2349964705088137924875459464622098310997E-2Q,
     171  -5.4431789996103111613753440311680967840214E-2Q,
     172  -5.6546268881465384189752786409400404404794E-2Q,
     173  -5.8693031345788023909329239565012647817664E-2Q,
     174  -6.0871713627532018185577188079210189048340E-2Q,
     175  -6.3081958078862169742820420185833800925568E-2Q,
     176  -6.5323413029406789694910800219643791556918E-2Q,
     177  -6.7595732653791419081537811574227049288168E-2Q
     178  };
     179  
     180  /* ln(2) = ln2a + ln2b with extended precision. */
     181  static const __float128
     182    ln2a = 6.93145751953125e-1Q,
     183    ln2b = 1.4286068203094172321214581765680755001344E-6Q;
     184  
     185  __float128
     186  logq(__float128 x)
     187  {
     188    __float128 z, y, w;
     189    ieee854_float128 u, t;
     190    unsigned int m;
     191    int k, e;
     192  
     193    u.value = x;
     194    m = u.words32.w0;
     195  
     196    /* Check for IEEE special cases.  */
     197    k = m & 0x7fffffff;
     198    /* log(0) = -infinity. */
     199    if ((k | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
     200      {
     201        return -0.5Q / ZERO;
     202      }
     203    /* log ( x < 0 ) = NaN */
     204    if (m & 0x80000000)
     205      {
     206        return (x - x) / ZERO;
     207      }
     208    /* log (infinity or NaN) */
     209    if (k >= 0x7fff0000)
     210      {
     211        return x + x;
     212      }
     213  
     214    /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */
     215    u.value = frexpq (x, &e);
     216    m = u.words32.w0 & 0xffff;
     217    m |= 0x10000;
     218    /* Find lookup table index k from high order bits of the significand. */
     219    if (m < 0x16800)
     220      {
     221        k = (m - 0xff00) >> 9;
     222        /* t is the argument 0.5 + (k+26)/128
     223  	 of the nearest item to u in the lookup table.  */
     224        t.words32.w0 = 0x3fff0000 + (k << 9);
     225        t.words32.w1 = 0;
     226        t.words32.w2 = 0;
     227        t.words32.w3 = 0;
     228        u.words32.w0 += 0x10000;
     229        e -= 1;
     230        k += 64;
     231      }
     232    else
     233      {
     234        k = (m - 0xfe00) >> 10;
     235        t.words32.w0 = 0x3ffe0000 + (k << 10);
     236        t.words32.w1 = 0;
     237        t.words32.w2 = 0;
     238        t.words32.w3 = 0;
     239      }
     240    /* On this interval the table is not used due to cancellation error.  */
     241    if ((x <= 1.0078125Q) && (x >= 0.9921875Q))
     242      {
     243        if (x == 1)
     244  	return 0;
     245        z = x - 1;
     246        k = 64;
     247        t.value  = 1;
     248        e = 0;
     249      }
     250    else
     251      {
     252        /* log(u) = log( t u/t ) = log(t) + log(u/t)
     253  	 log(t) is tabulated in the lookup table.
     254  	 Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.
     255  	 cf. Cody & Waite. */
     256        z = (u.value - t.value) / t.value;
     257      }
     258    /* Series expansion of log(1+z).  */
     259    w = z * z;
     260    y = ((((((((((((l15 * z
     261  		  + l14) * z
     262  		 + l13) * z
     263  		+ l12) * z
     264  	       + l11) * z
     265  	      + l10) * z
     266  	     + l9) * z
     267  	    + l8) * z
     268  	   + l7) * z
     269  	  + l6) * z
     270  	 + l5) * z
     271  	+ l4) * z
     272         + l3) * z * w;
     273    y -= 0.5 * w;
     274    y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */
     275    y += z;
     276    y += logtbl[k-26]; /* log(t) - (t-1) */
     277    y += (t.value - 1);
     278    y += e * ln2a;
     279    return y;
     280  }