(root)/
gcc-13.2.0/
libquadmath/
math/
log2q.c
       1  /*                                                      log2l.c
       2   *      Base 2 logarithm, 128-bit long double precision
       3   *
       4   *
       5   *
       6   * SYNOPSIS:
       7   *
       8   * long double x, y, log2l();
       9   *
      10   * y = log2l( x );
      11   *
      12   *
      13   *
      14   * DESCRIPTION:
      15   *
      16   * Returns the base 2 logarithm of x.
      17   *
      18   * The argument is separated into its exponent and fractional
      19   * parts.  If the exponent is between -1 and +1, the (natural)
      20   * logarithm of the fraction is approximated by
      21   *
      22   *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
      23   *
      24   * Otherwise, setting  z = 2(x-1)/x+1),
      25   *
      26   *     log(x) = z + z^3 P(z)/Q(z).
      27   *
      28   *
      29   *
      30   * ACCURACY:
      31   *
      32   *                      Relative error:
      33   * arithmetic   domain     # trials      peak         rms
      34   *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35
      35   *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
      36   *
      37   * In the tests over the interval exp(+-10000), the logarithms
      38   * of the random arguments were uniformly distributed over
      39   * [-10000, +10000].
      40   *
      41   */
      42  
      43  /*
      44     Cephes Math Library Release 2.2:  January, 1991
      45     Copyright 1984, 1991 by Stephen L. Moshier
      46     Adapted for glibc November, 2001
      47  
      48      This library is free software; you can redistribute it and/or
      49      modify it under the terms of the GNU Lesser General Public
      50      License as published by the Free Software Foundation; either
      51      version 2.1 of the License, or (at your option) any later version.
      52  
      53      This library is distributed in the hope that it will be useful,
      54      but WITHOUT ANY WARRANTY; without even the implied warranty of
      55      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      56      Lesser General Public License for more details.
      57  
      58      You should have received a copy of the GNU Lesser General Public
      59      License along with this library; if not, see <http://www.gnu.org/licenses/>.
      60   */
      61  
      62  #include "quadmath-imp.h"
      63  
      64  /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
      65   * 1/sqrt(2) <= x < sqrt(2)
      66   * Theoretical peak relative error = 5.3e-37,
      67   * relative peak error spread = 2.3e-14
      68   */
      69  static const __float128 P[13] =
      70  {
      71    1.313572404063446165910279910527789794488E4Q,
      72    7.771154681358524243729929227226708890930E4Q,
      73    2.014652742082537582487669938141683759923E5Q,
      74    3.007007295140399532324943111654767187848E5Q,
      75    2.854829159639697837788887080758954924001E5Q,
      76    1.797628303815655343403735250238293741397E5Q,
      77    7.594356839258970405033155585486712125861E4Q,
      78    2.128857716871515081352991964243375186031E4Q,
      79    3.824952356185897735160588078446136783779E3Q,
      80    4.114517881637811823002128927449878962058E2Q,
      81    2.321125933898420063925789532045674660756E1Q,
      82    4.998469661968096229986658302195402690910E-1Q,
      83    1.538612243596254322971797716843006400388E-6Q
      84  };
      85  static const __float128 Q[12] =
      86  {
      87    3.940717212190338497730839731583397586124E4Q,
      88    2.626900195321832660448791748036714883242E5Q,
      89    7.777690340007566932935753241556479363645E5Q,
      90    1.347518538384329112529391120390701166528E6Q,
      91    1.514882452993549494932585972882995548426E6Q,
      92    1.158019977462989115839826904108208787040E6Q,
      93    6.132189329546557743179177159925690841200E5Q,
      94    2.248234257620569139969141618556349415120E5Q,
      95    5.605842085972455027590989944010492125825E4Q,
      96    9.147150349299596453976674231612674085381E3Q,
      97    9.104928120962988414618126155557301584078E2Q,
      98    4.839208193348159620282142911143429644326E1Q
      99  /* 1.000000000000000000000000000000000000000E0L, */
     100  };
     101  
     102  /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
     103   * where z = 2(x-1)/(x+1)
     104   * 1/sqrt(2) <= x < sqrt(2)
     105   * Theoretical peak relative error = 1.1e-35,
     106   * relative peak error spread 1.1e-9
     107   */
     108  static const __float128 R[6] =
     109  {
     110    1.418134209872192732479751274970992665513E5Q,
     111   -8.977257995689735303686582344659576526998E4Q,
     112    2.048819892795278657810231591630928516206E4Q,
     113   -2.024301798136027039250415126250455056397E3Q,
     114    8.057002716646055371965756206836056074715E1Q,
     115   -8.828896441624934385266096344596648080902E-1Q
     116  };
     117  static const __float128 S[6] =
     118  {
     119    1.701761051846631278975701529965589676574E6Q,
     120   -1.332535117259762928288745111081235577029E6Q,
     121    4.001557694070773974936904547424676279307E5Q,
     122   -5.748542087379434595104154610899551484314E4Q,
     123    3.998526750980007367835804959888064681098E3Q,
     124   -1.186359407982897997337150403816839480438E2Q
     125  /* 1.000000000000000000000000000000000000000E0L, */
     126  };
     127  
     128  static const __float128
     129  /* log2(e) - 1 */
     130  LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
     131  /* sqrt(2)/2 */
     132  SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
     133  
     134  
     135  /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
     136  
     137  static __float128
     138  neval (__float128 x, const __float128 *p, int n)
     139  {
     140    __float128 y;
     141  
     142    p += n;
     143    y = *p--;
     144    do
     145      {
     146        y = y * x + *p--;
     147      }
     148    while (--n > 0);
     149    return y;
     150  }
     151  
     152  
     153  /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
     154  
     155  static __float128
     156  deval (__float128 x, const __float128 *p, int n)
     157  {
     158    __float128 y;
     159  
     160    p += n;
     161    y = x + *p--;
     162    do
     163      {
     164        y = y * x + *p--;
     165      }
     166    while (--n > 0);
     167    return y;
     168  }
     169  
     170  
     171  
     172  __float128
     173  log2q (__float128 x)
     174  {
     175    __float128 z;
     176    __float128 y;
     177    int e;
     178    int64_t hx, lx;
     179  
     180  /* Test for domain */
     181    GET_FLT128_WORDS64 (hx, lx, x);
     182    if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
     183      return (-1 / fabsq (x));		/* log2l(+-0)=-inf  */
     184    if (hx < 0)
     185      return (x - x) / (x - x);
     186    if (hx >= 0x7fff000000000000LL)
     187      return (x + x);
     188  
     189    if (x == 1)
     190      return 0;
     191  
     192  /* separate mantissa from exponent */
     193  
     194  /* Note, frexp is used so that denormal numbers
     195   * will be handled properly.
     196   */
     197    x = frexpq (x, &e);
     198  
     199  
     200  /* logarithm using log(x) = z + z**3 P(z)/Q(z),
     201   * where z = 2(x-1)/x+1)
     202   */
     203    if ((e > 2) || (e < -2))
     204      {
     205        if (x < SQRTH)
     206  	{			/* 2( 2x-1 )/( 2x+1 ) */
     207  	  e -= 1;
     208  	  z = x - 0.5Q;
     209  	  y = 0.5Q * z + 0.5Q;
     210  	}
     211        else
     212  	{			/*  2 (x-1)/(x+1)   */
     213  	  z = x - 0.5Q;
     214  	  z -= 0.5Q;
     215  	  y = 0.5Q * x + 0.5Q;
     216  	}
     217        x = z / y;
     218        z = x * x;
     219        y = x * (z * neval (z, R, 5) / deval (z, S, 5));
     220        goto done;
     221      }
     222  
     223  
     224  /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
     225  
     226    if (x < SQRTH)
     227      {
     228        e -= 1;
     229        x = 2.0 * x - 1;	/*  2x - 1  */
     230      }
     231    else
     232      {
     233        x = x - 1;
     234      }
     235    z = x * x;
     236    y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
     237    y = y - 0.5 * z;
     238  
     239  done:
     240  
     241  /* Multiply log of fraction by log2(e)
     242   * and base 2 exponent by 1
     243   */
     244    z = y * LOG2EA;
     245    z += x * LOG2EA;
     246    z += y;
     247    z += x;
     248    z += e;
     249    return (z);
     250  }