(root)/
gcc-13.2.0/
libquadmath/
math/
hypotq.c
       1  /* e_hypotl.c -- long double version of e_hypot.c.
       2   * Conversion to long double by Jakub Jelinek, jakub@redhat.com.
       3   */
       4  
       5  /*
       6   * ====================================================
       7   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       8   *
       9   * Developed at SunPro, a Sun Microsystems, Inc. business.
      10   * Permission to use, copy, modify, and distribute this
      11   * software is freely granted, provided that this notice
      12   * is preserved.
      13   * ====================================================
      14   */
      15  
      16  /* hypotq(x,y)
      17   *
      18   * Method :
      19   *	If (assume round-to-nearest) z=x*x+y*y
      20   *	has error less than sqrtq(2)/2 ulp, than
      21   *	sqrtq(z) has error less than 1 ulp (exercise).
      22   *
      23   *	So, compute sqrtq(x*x+y*y) with some care as
      24   *	follows to get the error below 1 ulp:
      25   *
      26   *	Assume x>y>0;
      27   *	(if possible, set rounding to round-to-nearest)
      28   *	1. if x > 2y  use
      29   *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
      30   *	where x1 = x with lower 64 bits cleared, x2 = x-x1; else
      31   *	2. if x <= 2y use
      32   *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
      33   *	where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
      34   *	y1= y with lower 64 bits chopped, y2 = y-y1.
      35   *
      36   *	NOTE: scaling may be necessary if some argument is too
      37   *	      large or too tiny
      38   *
      39   * Special cases:
      40   *	hypotl(x,y) is INF if x or y is +INF or -INF; else
      41   *	hypotl(x,y) is NAN if x or y is NAN.
      42   *
      43   * Accuracy:
      44   *	hypotl(x,y) returns sqrtq(x^2+y^2) with error less
      45   *	than 1 ulps (units in the last place)
      46   */
      47  
      48  #include "quadmath-imp.h"
      49  
      50  __float128
      51  hypotq(__float128 x, __float128 y)
      52  {
      53  	__float128 a,b,t1,t2,y1,y2,w;
      54  	int64_t j,k,ha,hb;
      55  
      56  	GET_FLT128_MSW64(ha,x);
      57  	ha &= 0x7fffffffffffffffLL;
      58  	GET_FLT128_MSW64(hb,y);
      59  	hb &= 0x7fffffffffffffffLL;
      60  	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
      61  	SET_FLT128_MSW64(a,ha);	/* a <- |a| */
      62  	SET_FLT128_MSW64(b,hb);	/* b <- |b| */
      63  	if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
      64  	k=0;
      65  	if(ha > 0x5f3f000000000000LL) {	/* a>2**8000 */
      66  	   if(ha >= 0x7fff000000000000LL) {	/* Inf or NaN */
      67  	       uint64_t low;
      68  	       w = a+b;			/* for sNaN */
      69  	       if (issignalingq (a) || issignalingq (b))
      70  		 return w;
      71  	       GET_FLT128_LSW64(low,a);
      72  	       if(((ha&0xffffffffffffLL)|low)==0) w = a;
      73  	       GET_FLT128_LSW64(low,b);
      74  	       if(((hb^0x7fff000000000000LL)|low)==0) w = b;
      75  	       return w;
      76  	   }
      77  	   /* scale a and b by 2**-9600 */
      78  	   ha -= 0x2580000000000000LL;
      79  	   hb -= 0x2580000000000000LL;	k += 9600;
      80  	   SET_FLT128_MSW64(a,ha);
      81  	   SET_FLT128_MSW64(b,hb);
      82  	}
      83  	if(hb < 0x20bf000000000000LL) {	/* b < 2**-8000 */
      84  	    if(hb <= 0x0000ffffffffffffLL) {	/* subnormal b or 0 */
      85  		uint64_t low;
      86  		GET_FLT128_LSW64(low,b);
      87  		if((hb|low)==0) return a;
      88  		t1=0;
      89  		SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
      90  		b *= t1;
      91  		a *= t1;
      92  		k -= 16382;
      93  		GET_FLT128_MSW64 (ha, a);
      94  		GET_FLT128_MSW64 (hb, b);
      95  		if (hb > ha)
      96  		  {
      97  		    t1 = a;
      98  		    a = b;
      99  		    b = t1;
     100  		    j = ha;
     101  		    ha = hb;
     102  		    hb = j;
     103  		  }
     104  	    } else {		/* scale a and b by 2^9600 */
     105  		ha += 0x2580000000000000LL;	/* a *= 2^9600 */
     106  		hb += 0x2580000000000000LL;	/* b *= 2^9600 */
     107  		k -= 9600;
     108  		SET_FLT128_MSW64(a,ha);
     109  		SET_FLT128_MSW64(b,hb);
     110  	    }
     111  	}
     112      /* medium size a and b */
     113  	w = a-b;
     114  	if (w>b) {
     115  	    t1 = 0;
     116  	    SET_FLT128_MSW64(t1,ha);
     117  	    t2 = a-t1;
     118  	    w  = sqrtq(t1*t1-(b*(-b)-t2*(a+t1)));
     119  	} else {
     120  	    a  = a+a;
     121  	    y1 = 0;
     122  	    SET_FLT128_MSW64(y1,hb);
     123  	    y2 = b - y1;
     124  	    t1 = 0;
     125  	    SET_FLT128_MSW64(t1,ha+0x0001000000000000LL);
     126  	    t2 = a - t1;
     127  	    w  = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b)));
     128  	}
     129  	if(k!=0) {
     130  	    uint64_t high;
     131  	    t1 = 1;
     132  	    GET_FLT128_MSW64(high,t1);
     133  	    SET_FLT128_MSW64(t1,high+(k<<48));
     134  	    w *= t1;
     135  	    math_check_force_underflow_nonneg (w);
     136  	    return w;
     137  	} else return w;
     138  }