(root)/
gcc-13.2.0/
libgfortran/
runtime/
in_unpack_generic.c
       1  /* Generic helper function for repacking arrays.
       2     Copyright (C) 2003-2023 Free Software Foundation, Inc.
       3     Contributed by Paul Brook <paul@nowt.org>
       4  
       5  This file is part of the GNU Fortran runtime library (libgfortran).
       6  
       7  Libgfortran is free software; you can redistribute it and/or
       8  modify it under the terms of the GNU General Public
       9  License as published by the Free Software Foundation; either
      10  version 3 of the License, or (at your option) any later version.
      11  
      12  Libgfortran is distributed in the hope that it will be useful,
      13  but WITHOUT ANY WARRANTY; without even the implied warranty of
      14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15  GNU General Public License for more details.
      16  
      17  Under Section 7 of GPL version 3, you are granted additional
      18  permissions described in the GCC Runtime Library Exception, version
      19  3.1, as published by the Free Software Foundation.
      20  
      21  You should have received a copy of the GNU General Public License and
      22  a copy of the GCC Runtime Library Exception along with this program;
      23  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      24  <http://www.gnu.org/licenses/>.  */
      25  
      26  #include "libgfortran.h"
      27  #include <string.h>
      28  
      29  extern void internal_unpack (gfc_array_char *, const void *);
      30  export_proto(internal_unpack);
      31  
      32  void
      33  internal_unpack (gfc_array_char * d, const void * s)
      34  {
      35    index_type count[GFC_MAX_DIMENSIONS];
      36    index_type extent[GFC_MAX_DIMENSIONS];
      37    index_type stride[GFC_MAX_DIMENSIONS];
      38    index_type stride0;
      39    index_type dim;
      40    index_type dsize;
      41    char *dest;
      42    const char *src;
      43    index_type size;
      44    int type_size;
      45  
      46    dest = d->base_addr;
      47    /* This check may be redundant, but do it anyway.  */
      48    if (s == dest || !s)
      49      return;
      50  
      51    type_size = GFC_DTYPE_TYPE_SIZE (d);
      52    switch (type_size)
      53      {
      54      case GFC_DTYPE_INTEGER_1:
      55      case GFC_DTYPE_LOGICAL_1:
      56        internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
      57        return;
      58  
      59      case GFC_DTYPE_INTEGER_2:
      60      case GFC_DTYPE_LOGICAL_2:
      61        internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
      62        return;
      63  
      64      case GFC_DTYPE_INTEGER_4:
      65      case GFC_DTYPE_LOGICAL_4:
      66        internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
      67        return;
      68  
      69      case GFC_DTYPE_INTEGER_8:
      70      case GFC_DTYPE_LOGICAL_8:
      71        internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
      72        return;
      73  
      74  #if defined (HAVE_GFC_INTEGER_16)
      75      case GFC_DTYPE_INTEGER_16:
      76      case GFC_DTYPE_LOGICAL_16:
      77        internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
      78        return;
      79  #endif
      80  
      81      case GFC_DTYPE_REAL_4:
      82        internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
      83        return;
      84  
      85      case GFC_DTYPE_REAL_8:
      86        internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
      87        return;
      88  
      89  /* FIXME: This here is a hack, which will have to be removed when
      90     the array descriptor is reworked.  Currently, we don't store the
      91     kind value for the type, but only the size.  Because on targets with
      92     _Float128, we have sizeof(long double) == sizeof(_Float128),
      93     we cannot discriminate here and have to fall back to the generic
      94     handling (which is suboptimal).  */
      95  #if !defined(GFC_REAL_16_IS_FLOAT128)
      96  # if defined(HAVE_GFC_REAL_10)
      97      case GFC_DTYPE_REAL_10:
      98        internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
      99        return;
     100  # endif
     101  
     102  # if defined(HAVE_GFC_REAL_16)
     103      case GFC_DTYPE_REAL_16:
     104        internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
     105        return;
     106  # endif
     107  #endif
     108  
     109      case GFC_DTYPE_COMPLEX_4:
     110        internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
     111        return;
     112  
     113      case GFC_DTYPE_COMPLEX_8:
     114        internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
     115        return;
     116  
     117  /* FIXME: This here is a hack, which will have to be removed when
     118     the array descriptor is reworked.  Currently, we don't store the
     119     kind value for the type, but only the size.  Because on targets with
     120     _Float128, we have sizeof(long double) == sizeof(_Float128),
     121     we cannot discriminate here and have to fall back to the generic
     122     handling (which is suboptimal).  */
     123  #if !defined(GFC_REAL_16_IS_FLOAT128)
     124  # if defined(HAVE_GFC_COMPLEX_10)
     125      case GFC_DTYPE_COMPLEX_10:
     126        internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
     127        return;
     128  # endif
     129  
     130  # if defined(HAVE_GFC_COMPLEX_16)
     131      case GFC_DTYPE_COMPLEX_16:
     132        internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
     133        return;
     134  # endif
     135  #endif
     136  
     137      default:
     138        break;
     139      }
     140  
     141    switch (GFC_DESCRIPTOR_SIZE(d))
     142      {
     143      case 1:
     144        internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
     145        return;
     146  
     147      case 2:
     148        if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s))
     149  	break;
     150        else
     151  	{
     152  	  internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
     153  	  return;
     154  	}
     155        
     156      case 4:
     157        if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s))
     158  	break;
     159        else
     160  	{
     161  	  internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
     162  	  return;
     163  	}
     164  
     165      case 8:
     166        if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s))
     167  	break;
     168        else
     169  	{
     170  	  internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
     171  	  return;
     172  	}
     173  
     174  #ifdef HAVE_GFC_INTEGER_16
     175      case 16:
     176        if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s))
     177  	break;
     178        else
     179  	{
     180  	  internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
     181  	  return;
     182  	}
     183  #endif
     184      default:
     185        break;
     186      }
     187  
     188    size = GFC_DESCRIPTOR_SIZE (d);
     189  
     190    dim = GFC_DESCRIPTOR_RANK (d);
     191    dsize = 1;
     192    for (index_type n = 0; n < dim; n++)
     193      {
     194        count[n] = 0;
     195        stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
     196        extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
     197        if (extent[n] <= 0)
     198  	return;
     199  
     200        if (dsize == stride[n])
     201  	dsize *= extent[n];
     202        else
     203  	dsize = 0;
     204      }
     205  
     206    src = s;
     207  
     208    if (dsize != 0)
     209      {
     210        memcpy (dest, src, dsize * size);
     211        return;
     212      }
     213  
     214    stride0 = stride[0] * size;
     215  
     216    while (dest)
     217      {
     218        /* Copy the data.  */
     219        memcpy (dest, src, size);
     220        /* Advance to the next element.  */
     221        src += size;
     222        dest += stride0;
     223        count[0]++;
     224        /* Advance to the next source element.  */
     225        index_type n = 0;
     226        while (count[n] == extent[n])
     227          {
     228            /* When we get to the end of a dimension, reset it and increment
     229               the next dimension.  */
     230            count[n] = 0;
     231            /* We could precalculate these products, but this is a less
     232               frequently used path so probably not worth it.  */
     233            dest -= stride[n] * extent[n] * size;
     234            n++;
     235            if (n == dim)
     236              {
     237                dest = NULL;
     238                break;
     239              }
     240            else
     241              {
     242                count[n]++;
     243                dest += stride[n] * size;
     244              }
     245          }
     246      }
     247  }