1  /* Implementation of the MATMUL intrinsic
       2     Copyright (C) 2002-2023 Free Software Foundation, Inc.
       3     Contributed by Paul Brook <paul@nowt.org>
       4  
       5  This file is part of the GNU Fortran runtime library (libgfortran).
       6  
       7  Libgfortran is free software; you can redistribute it and/or
       8  modify it under the terms of the GNU General Public
       9  License as published by the Free Software Foundation; either
      10  version 3 of the License, or (at your option) any later version.
      11  
      12  Libgfortran is distributed in the hope that it will be useful,
      13  but WITHOUT ANY WARRANTY; without even the implied warranty of
      14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15  GNU General Public License for more details.
      16  
      17  Under Section 7 of GPL version 3, you are granted additional
      18  permissions described in the GCC Runtime Library Exception, version
      19  3.1, as published by the Free Software Foundation.
      20  
      21  You should have received a copy of the GNU General Public License and
      22  a copy of the GCC Runtime Library Exception along with this program;
      23  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      24  <http://www.gnu.org/licenses/>.  */
      25  
      26  #include "libgfortran.h"
      27  #include <assert.h>
      28  
      29  
      30  #if defined (HAVE_GFC_LOGICAL_16)
      31  
      32  /* Dimensions: retarray(x,y) a(x, count) b(count,y).
      33     Either a or b can be rank 1.  In this case x or y is 1.  */
      34  
      35  extern void matmul_l16 (gfc_array_l16 * const restrict, 
      36  	gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
      37  export_proto(matmul_l16);
      38  
      39  void
      40  matmul_l16 (gfc_array_l16 * const restrict retarray, 
      41  	gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
      42  {
      43    const GFC_LOGICAL_1 * restrict abase;
      44    const GFC_LOGICAL_1 * restrict bbase;
      45    GFC_LOGICAL_16 * restrict dest;
      46    index_type rxstride;
      47    index_type rystride;
      48    index_type xcount;
      49    index_type ycount;
      50    index_type xstride;
      51    index_type ystride;
      52    index_type x;
      53    index_type y;
      54    int a_kind;
      55    int b_kind;
      56  
      57    const GFC_LOGICAL_1 * restrict pa;
      58    const GFC_LOGICAL_1 * restrict pb;
      59    index_type astride;
      60    index_type bstride;
      61    index_type count;
      62    index_type n;
      63  
      64    assert (GFC_DESCRIPTOR_RANK (a) == 2
      65            || GFC_DESCRIPTOR_RANK (b) == 2);
      66  
      67    if (retarray->base_addr == NULL)
      68      {
      69        if (GFC_DESCRIPTOR_RANK (a) == 1)
      70          {
      71  	  GFC_DIMENSION_SET(retarray->dim[0], 0,
      72  	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
      73          }
      74        else if (GFC_DESCRIPTOR_RANK (b) == 1)
      75          {
      76  	  GFC_DIMENSION_SET(retarray->dim[0], 0,
      77  	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
      78          }
      79        else
      80          {
      81  	  GFC_DIMENSION_SET(retarray->dim[0], 0,
      82  	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
      83  
      84            GFC_DIMENSION_SET(retarray->dim[1], 0,
      85  	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
      86  			    GFC_DESCRIPTOR_EXTENT(retarray,0));
      87          }
      88            
      89        retarray->base_addr
      90  	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_16));
      91        retarray->offset = 0;
      92      }
      93      else if (unlikely (compile_options.bounds_check))
      94        {
      95  	index_type ret_extent, arg_extent;
      96  
      97  	if (GFC_DESCRIPTOR_RANK (a) == 1)
      98  	  {
      99  	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
     100  	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
     101  	    if (arg_extent != ret_extent)
     102  	      runtime_error ("Incorrect extent in return array in"
     103  			     " MATMUL intrinsic: is %ld, should be %ld",
     104  			     (long int) ret_extent, (long int) arg_extent);
     105  	  }
     106  	else if (GFC_DESCRIPTOR_RANK (b) == 1)
     107  	  {
     108  	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
     109  	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
     110  	    if (arg_extent != ret_extent)
     111  	      runtime_error ("Incorrect extent in return array in"
     112  			     " MATMUL intrinsic: is %ld, should be %ld",
     113  			     (long int) ret_extent, (long int) arg_extent);	    
     114  	  }
     115  	else
     116  	  {
     117  	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
     118  	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
     119  	    if (arg_extent != ret_extent)
     120  	      runtime_error ("Incorrect extent in return array in"
     121  			     " MATMUL intrinsic for dimension 1:"
     122  			     " is %ld, should be %ld",
     123  			     (long int) ret_extent, (long int) arg_extent);
     124  
     125  	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
     126  	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
     127  	    if (arg_extent != ret_extent)
     128  	      runtime_error ("Incorrect extent in return array in"
     129  			     " MATMUL intrinsic for dimension 2:"
     130  			     " is %ld, should be %ld",
     131  			     (long int) ret_extent, (long int) arg_extent);
     132  	  }
     133        }
     134  
     135    abase = a->base_addr;
     136    a_kind = GFC_DESCRIPTOR_SIZE (a);
     137  
     138    if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
     139  #ifdef HAVE_GFC_LOGICAL_16
     140       || a_kind == 16
     141  #endif
     142       )
     143      abase = GFOR_POINTER_TO_L1 (abase, a_kind);
     144    else
     145      internal_error (NULL, "Funny sized logical array");
     146  
     147    bbase = b->base_addr;
     148    b_kind = GFC_DESCRIPTOR_SIZE (b);
     149  
     150    if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
     151  #ifdef HAVE_GFC_LOGICAL_16
     152       || b_kind == 16
     153  #endif
     154       )
     155      bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
     156    else
     157      internal_error (NULL, "Funny sized logical array");
     158  
     159    dest = retarray->base_addr;
     160  
     161  
     162    if (GFC_DESCRIPTOR_RANK (retarray) == 1)
     163      {
     164        rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
     165        rystride = rxstride;
     166      }
     167    else
     168      {
     169        rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
     170        rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
     171      }
     172  
     173    /* If we have rank 1 parameters, zero the absent stride, and set the size to
     174       one.  */
     175    if (GFC_DESCRIPTOR_RANK (a) == 1)
     176      {
     177        astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
     178        count = GFC_DESCRIPTOR_EXTENT(a,0);
     179        xstride = 0;
     180        rxstride = 0;
     181        xcount = 1;
     182      }
     183    else
     184      {
     185        astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
     186        count = GFC_DESCRIPTOR_EXTENT(a,1);
     187        xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
     188        xcount = GFC_DESCRIPTOR_EXTENT(a,0);
     189      }
     190    if (GFC_DESCRIPTOR_RANK (b) == 1)
     191      {
     192        bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
     193        assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
     194        ystride = 0;
     195        rystride = 0;
     196        ycount = 1;
     197      }
     198    else
     199      {
     200        bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
     201        assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
     202        ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
     203        ycount = GFC_DESCRIPTOR_EXTENT(b,1);
     204      }
     205  
     206    for (y = 0; y < ycount; y++)
     207      {
     208        for (x = 0; x < xcount; x++)
     209          {
     210            /* Do the summation for this element.  For real and integer types
     211               this is the same as DOT_PRODUCT.  For complex types we use do
     212               a*b, not conjg(a)*b.  */
     213            pa = abase;
     214            pb = bbase;
     215            *dest = 0;
     216  
     217            for (n = 0; n < count; n++)
     218              {
     219                if (*pa && *pb)
     220                  {
     221                    *dest = 1;
     222                    break;
     223                  }
     224                pa += astride;
     225                pb += bstride;
     226              }
     227  
     228            dest += rxstride;
     229            abase += xstride;
     230          }
     231        abase -= xstride * xcount;
     232        bbase += ystride;
     233        dest += rystride - (rxstride * xcount);
     234      }
     235  }
     236  
     237  #endif
     238