1  /* Helper function for cshift functions.
       2     Copyright (C) 2008-2023 Free Software Foundation, Inc.
       3     Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>
       4  
       5  This file is part of the GNU Fortran runtime library (libgfortran).
       6  
       7  Libgfortran is free software; you can redistribute it and/or
       8  modify it under the terms of the GNU General Public
       9  License as published by the Free Software Foundation; either
      10  version 3 of the License, or (at your option) any later version.
      11  
      12  Libgfortran is distributed in the hope that it will be useful,
      13  but WITHOUT ANY WARRANTY; without even the implied warranty of
      14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15  GNU General Public License for more details.
      16  
      17  Under Section 7 of GPL version 3, you are granted additional
      18  permissions described in the GCC Runtime Library Exception, version
      19  3.1, as published by the Free Software Foundation.
      20  
      21  You should have received a copy of the GNU General Public License and
      22  a copy of the GCC Runtime Library Exception along with this program;
      23  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      24  <http://www.gnu.org/licenses/>.  */
      25  
      26  #include "libgfortran.h"
      27  #include <string.h>
      28  
      29  
      30  #if defined (HAVE_GFC_COMPLEX_8)
      31  
      32  void
      33  cshift0_c8 (gfc_array_c8 *ret, const gfc_array_c8 *array, ptrdiff_t shift,
      34  		     int which)
      35  {
      36    /* r.* indicates the return array.  */
      37    index_type rstride[GFC_MAX_DIMENSIONS];
      38    index_type rstride0;
      39    index_type roffset;
      40    GFC_COMPLEX_8 *rptr;
      41  
      42    /* s.* indicates the source array.  */
      43    index_type sstride[GFC_MAX_DIMENSIONS];
      44    index_type sstride0;
      45    index_type soffset;
      46    const GFC_COMPLEX_8 *sptr;
      47  
      48    index_type count[GFC_MAX_DIMENSIONS];
      49    index_type extent[GFC_MAX_DIMENSIONS];
      50    index_type dim;
      51    index_type len;
      52    index_type n;
      53  
      54    bool do_blocked;
      55    index_type r_ex, a_ex;
      56  
      57    which = which - 1;
      58    sstride[0] = 0;
      59    rstride[0] = 0;
      60  
      61    extent[0] = 1;
      62    count[0] = 0;
      63    n = 0;
      64    /* Initialized for avoiding compiler warnings.  */
      65    roffset = 1;
      66    soffset = 1;
      67    len = 0;
      68  
      69    r_ex = 1;
      70    a_ex = 1;
      71  
      72    if (which > 0)
      73      {
      74        /* Test if both ret and array are contiguous.  */
      75        do_blocked = true;
      76        dim = GFC_DESCRIPTOR_RANK (array);
      77        for (n = 0; n < dim; n ++)
      78  	{
      79  	  index_type rs, as;
      80  	  rs = GFC_DESCRIPTOR_STRIDE (ret, n);
      81  	  if (rs != r_ex)
      82  	    {
      83  	      do_blocked = false;
      84  	      break;
      85  	    }
      86  	  as = GFC_DESCRIPTOR_STRIDE (array, n);
      87  	  if (as != a_ex)
      88  	    {
      89  	      do_blocked = false;
      90  	      break;
      91  	    }
      92  	  r_ex *= GFC_DESCRIPTOR_EXTENT (ret, n);
      93  	  a_ex *= GFC_DESCRIPTOR_EXTENT (array, n);
      94  	}
      95      }
      96    else
      97      do_blocked = false;
      98  
      99    n = 0;
     100  
     101    if (do_blocked)
     102      {
     103        /* For contiguous arrays, use the relationship that
     104  
     105           dimension(n1,n2,n3) :: a, b
     106  	 b = cshift(a,sh,3)
     107  
     108           can be dealt with as if
     109  
     110  	 dimension(n1*n2*n3) :: an, bn
     111  	 bn = cshift(a,sh*n1*n2,1)
     112  
     113  	 we can used a more blocked algorithm for dim>1.  */
     114        sstride[0] = 1;
     115        rstride[0] = 1;
     116        roffset = 1;
     117        soffset = 1;
     118        len = GFC_DESCRIPTOR_STRIDE(array, which)
     119  	* GFC_DESCRIPTOR_EXTENT(array, which);      
     120        shift *= GFC_DESCRIPTOR_STRIDE(array, which);
     121        for (dim = which + 1; dim < GFC_DESCRIPTOR_RANK (array); dim++)
     122  	{
     123  	  count[n] = 0;
     124  	  extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
     125  	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
     126  	  sstride[n] = GFC_DESCRIPTOR_STRIDE(array,dim);
     127  	  n++;
     128  	}
     129        dim = GFC_DESCRIPTOR_RANK (array) - which;
     130      }
     131    else
     132      {
     133        for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++)
     134  	{
     135  	  if (dim == which)
     136  	    {
     137  	      roffset = GFC_DESCRIPTOR_STRIDE(ret,dim);
     138  	      if (roffset == 0)
     139  		roffset = 1;
     140  	      soffset = GFC_DESCRIPTOR_STRIDE(array,dim);
     141  	      if (soffset == 0)
     142  		soffset = 1;
     143  	      len = GFC_DESCRIPTOR_EXTENT(array,dim);
     144  	    }
     145  	  else
     146  	    {
     147  	      count[n] = 0;
     148  	      extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
     149  	      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
     150  	      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,dim);
     151  	      n++;
     152  	    }
     153  	}
     154        if (sstride[0] == 0)
     155  	sstride[0] = 1;
     156        if (rstride[0] == 0)
     157  	rstride[0] = 1;
     158  
     159        dim = GFC_DESCRIPTOR_RANK (array);
     160      }
     161  
     162    rstride0 = rstride[0];
     163    sstride0 = sstride[0];
     164    rptr = ret->base_addr;
     165    sptr = array->base_addr;
     166  
     167    /* Avoid the costly modulo for trivially in-bound shifts.  */
     168    if (shift < 0 || shift >= len)
     169      {
     170        shift = len == 0 ? 0 : shift % (ptrdiff_t)len;
     171        if (shift < 0)
     172  	shift += len;
     173      }
     174  
     175    while (rptr)
     176      {
     177        /* Do the shift for this dimension.  */
     178  
     179        /* If elements are contiguous, perform the operation
     180  	 in two block moves.  */
     181        if (soffset == 1 && roffset == 1)
     182  	{
     183  	  size_t len1 = shift * sizeof (GFC_COMPLEX_8);
     184  	  size_t len2 = (len - shift) * sizeof (GFC_COMPLEX_8);
     185  	  memcpy (rptr, sptr + shift, len2);
     186  	  memcpy (rptr + (len - shift), sptr, len1);
     187  	}
     188        else
     189  	{
     190  	  /* Otherwise, we will have to perform the copy one element at
     191  	     a time.  */
     192  	  GFC_COMPLEX_8 *dest = rptr;
     193  	  const GFC_COMPLEX_8 *src = &sptr[shift * soffset];
     194  
     195  	  for (n = 0; n < len - shift; n++)
     196  	    {
     197  	      *dest = *src;
     198  	      dest += roffset;
     199  	      src += soffset;
     200  	    }
     201  	  for (src = sptr, n = 0; n < shift; n++)
     202  	    {
     203  	      *dest = *src;
     204  	      dest += roffset;
     205  	      src += soffset;
     206  	    }
     207  	}
     208  
     209        /* Advance to the next section.  */
     210        rptr += rstride0;
     211        sptr += sstride0;
     212        count[0]++;
     213        n = 0;
     214        while (count[n] == extent[n])
     215          {
     216            /* When we get to the end of a dimension, reset it and increment
     217               the next dimension.  */
     218            count[n] = 0;
     219            /* We could precalculate these products, but this is a less
     220               frequently used path so probably not worth it.  */
     221            rptr -= rstride[n] * extent[n];
     222            sptr -= sstride[n] * extent[n];
     223            n++;
     224            if (n >= dim - 1)
     225              {
     226                /* Break out of the loop.  */
     227                rptr = NULL;
     228                break;
     229              }
     230            else
     231              {
     232                count[n]++;
     233                rptr += rstride[n];
     234                sptr += sstride[n];
     235              }
     236          }
     237      }
     238  
     239    return;
     240  }
     241  
     242  #endif