1  /* Implementation of the COUNT intrinsic
       2     Copyright (C) 2002-2023 Free Software Foundation, Inc.
       3     Contributed by Paul Brook <paul@nowt.org>
       4  
       5  This file is part of the GNU Fortran runtime library (libgfortran).
       6  
       7  Libgfortran is free software; you can redistribute it and/or
       8  modify it under the terms of the GNU General Public
       9  License as published by the Free Software Foundation; either
      10  version 3 of the License, or (at your option) any later version.
      11  
      12  Libgfortran is distributed in the hope that it will be useful,
      13  but WITHOUT ANY WARRANTY; without even the implied warranty of
      14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15  GNU General Public License for more details.
      16  
      17  Under Section 7 of GPL version 3, you are granted additional
      18  permissions described in the GCC Runtime Library Exception, version
      19  3.1, as published by the Free Software Foundation.
      20  
      21  You should have received a copy of the GNU General Public License and
      22  a copy of the GCC Runtime Library Exception along with this program;
      23  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      24  <http://www.gnu.org/licenses/>.  */
      25  
      26  #include "libgfortran.h"
      27  
      28  
      29  #if defined (HAVE_GFC_INTEGER_2)
      30  
      31  
      32  extern void count_2_l (gfc_array_i2 * const restrict, 
      33  	gfc_array_l1 * const restrict, const index_type * const restrict);
      34  export_proto(count_2_l);
      35  
      36  void
      37  count_2_l (gfc_array_i2 * const restrict retarray, 
      38  	gfc_array_l1 * const restrict array, 
      39  	const index_type * const restrict pdim)
      40  {
      41    index_type count[GFC_MAX_DIMENSIONS];
      42    index_type extent[GFC_MAX_DIMENSIONS];
      43    index_type sstride[GFC_MAX_DIMENSIONS];
      44    index_type dstride[GFC_MAX_DIMENSIONS];
      45    const GFC_LOGICAL_1 * restrict base;
      46    GFC_INTEGER_2 * restrict dest;
      47    index_type rank;
      48    index_type n;
      49    index_type len;
      50    index_type delta;
      51    index_type dim;
      52    int src_kind;
      53    int continue_loop;
      54  
      55    /* Make dim zero based to avoid confusion.  */
      56    dim = (*pdim) - 1;
      57    rank = GFC_DESCRIPTOR_RANK (array) - 1;
      58  
      59    src_kind = GFC_DESCRIPTOR_SIZE (array);
      60  
      61    len = GFC_DESCRIPTOR_EXTENT(array,dim);
      62    if (len < 0)
      63      len = 0;
      64  
      65    delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
      66  
      67    for (n = 0; n < dim; n++)
      68      {
      69        sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
      70        extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      71  
      72        if (extent[n] < 0)
      73  	extent[n] = 0;
      74      }
      75    for (n = dim; n < rank; n++)
      76      {
      77        sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1);
      78        extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1);
      79  
      80        if (extent[n] < 0)
      81  	extent[n] = 0;
      82      }
      83  
      84    if (retarray->base_addr == NULL)
      85      {
      86        size_t alloc_size, str;
      87  
      88        for (n = 0; n < rank; n++)
      89          {
      90            if (n == 0)
      91              str = 1;
      92            else
      93              str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
      94  
      95  	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
      96  
      97          }
      98  
      99        retarray->offset = 0;
     100        retarray->dtype.rank = rank;
     101  
     102        alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
     103  
     104        if (alloc_size == 0)
     105  	{
     106  	  /* Make sure we have a zero-sized array.  */
     107  	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
     108  	  return;
     109  	}
     110        else
     111  	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
     112      }
     113    else
     114      {
     115        if (rank != GFC_DESCRIPTOR_RANK (retarray))
     116  	runtime_error ("rank of return array incorrect in"
     117  		       " COUNT intrinsic: is %ld, should be %ld",
     118  		       (long int) GFC_DESCRIPTOR_RANK (retarray),
     119  		       (long int) rank);
     120  
     121        if (unlikely (compile_options.bounds_check))
     122  	{
     123  	  for (n=0; n < rank; n++)
     124  	    {
     125  	      index_type ret_extent;
     126  
     127  	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
     128  	      if (extent[n] != ret_extent)
     129  		runtime_error ("Incorrect extent in return value of"
     130  			       " COUNT intrinsic in dimension %d:"
     131  			       " is %ld, should be %ld", (int) n + 1,
     132  			       (long int) ret_extent, (long int) extent[n]);
     133  	    }
     134  	}
     135      }
     136  
     137    for (n = 0; n < rank; n++)
     138      {
     139        count[n] = 0;
     140        dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
     141        if (extent[n] <= 0)
     142  	return;
     143      }
     144  
     145    base = array->base_addr;
     146  
     147    if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
     148  #ifdef HAVE_GFC_LOGICAL_16
     149        || src_kind == 16
     150  #endif
     151      )
     152      {
     153        if (base)
     154  	base = GFOR_POINTER_TO_L1 (base, src_kind);
     155      }
     156    else
     157      internal_error (NULL, "Funny sized logical array in COUNT intrinsic");
     158  
     159    dest = retarray->base_addr;
     160  
     161    continue_loop = 1;
     162    while (continue_loop)
     163      {
     164        const GFC_LOGICAL_1 * restrict src;
     165        GFC_INTEGER_2 result;
     166        src = base;
     167        {
     168  
     169    result = 0;
     170          if (len <= 0)
     171  	  *dest = 0;
     172  	else
     173  	  {
     174  	    for (n = 0; n < len; n++, src += delta)
     175  	      {
     176  
     177    if (*src)
     178      result++;
     179            }
     180  	    *dest = result;
     181  	  }
     182        }
     183        /* Advance to the next element.  */
     184        count[0]++;
     185        base += sstride[0];
     186        dest += dstride[0];
     187        n = 0;
     188        while (count[n] == extent[n])
     189          {
     190            /* When we get to the end of a dimension, reset it and increment
     191               the next dimension.  */
     192            count[n] = 0;
     193            /* We could precalculate these products, but this is a less
     194               frequently used path so probably not worth it.  */
     195            base -= sstride[n] * extent[n];
     196            dest -= dstride[n] * extent[n];
     197            n++;
     198            if (n >= rank)
     199              {
     200                /* Break out of the loop.  */
     201                continue_loop = 0;
     202                break;
     203              }
     204            else
     205              {
     206                count[n]++;
     207                base += sstride[n];
     208                dest += dstride[n];
     209              }
     210          }
     211      }
     212  }
     213  
     214  #endif