(root)/
gcc-13.2.0/
libgfortran/
generated/
bessel_r4.c
       1  /* Implementation of the BESSEL_JN and BESSEL_YN transformational
       2     function using a recurrence algorithm.
       3     Copyright (C) 2010-2023 Free Software Foundation, Inc.
       4     Contributed by Tobias Burnus <burnus@net-b.de>
       5  
       6  This file is part of the GNU Fortran runtime library (libgfortran).
       7  
       8  Libgfortran is free software; you can redistribute it and/or
       9  modify it under the terms of the GNU General Public
      10  License as published by the Free Software Foundation; either
      11  version 3 of the License, or (at your option) any later version.
      12  
      13  Libgfortran is distributed in the hope that it will be useful,
      14  but WITHOUT ANY WARRANTY; without even the implied warranty of
      15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16  GNU General Public License for more details.
      17  
      18  Under Section 7 of GPL version 3, you are granted additional
      19  permissions described in the GCC Runtime Library Exception, version
      20  3.1, as published by the Free Software Foundation.
      21  
      22  You should have received a copy of the GNU General Public License and
      23  a copy of the GCC Runtime Library Exception along with this program;
      24  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      25  <http://www.gnu.org/licenses/>.  */
      26  
      27  #include "libgfortran.h"
      28  
      29  
      30  
      31  #define MATHFUNC(funcname) funcname ## f
      32  
      33  #if defined (HAVE_GFC_REAL_4)
      34  
      35  
      36  
      37  #if defined (HAVE_JNF)
      38  extern void bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1,
      39  				     int n2, GFC_REAL_4 x);
      40  export_proto(bessel_jn_r4);
      41  
      42  void
      43  bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x)
      44  {
      45    int i;
      46    index_type stride;
      47  
      48    GFC_REAL_4 last1, last2, x2rev;
      49  
      50    stride = GFC_DESCRIPTOR_STRIDE(ret,0);
      51  
      52    if (ret->base_addr == NULL)
      53      {
      54        size_t size = n2 < n1 ? 0 : n2-n1+1; 
      55        GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
      56        ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4));
      57        ret->offset = 0;
      58      }
      59  
      60    if (unlikely (n2 < n1))
      61      return;
      62  
      63    if (unlikely (compile_options.bounds_check)
      64        && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
      65      runtime_error("Incorrect extent in return value of BESSEL_JN "
      66  		  "(%ld vs. %ld)", (long int) n2-n1,
      67  		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
      68  
      69    stride = GFC_DESCRIPTOR_STRIDE(ret,0);
      70  
      71    if (unlikely (x == 0))
      72      {
      73        ret->base_addr[0] = 1;
      74        for (i = 1; i <= n2-n1; i++)
      75          ret->base_addr[i*stride] = 0;
      76        return;
      77      }
      78  
      79    last1 = MATHFUNC(jn) (n2, x);
      80    ret->base_addr[(n2-n1)*stride] = last1;
      81  
      82    if (n1 == n2)
      83      return;
      84  
      85    last2 = MATHFUNC(jn) (n2 - 1, x);
      86    ret->base_addr[(n2-n1-1)*stride] = last2;
      87  
      88    if (n1 + 1 == n2)
      89      return;
      90  
      91    x2rev = GFC_REAL_4_LITERAL(2.)/x;
      92  
      93    for (i = n2-n1-2; i >= 0; i--)
      94      {
      95        ret->base_addr[i*stride] = x2rev * (i+1+n1) * last2 - last1;
      96        last1 = last2;
      97        last2 = ret->base_addr[i*stride];
      98      }
      99  }
     100  
     101  #endif
     102  
     103  #if defined (HAVE_YNF)
     104  extern void bessel_yn_r4 (gfc_array_r4 * const restrict ret,
     105  				     int n1, int n2, GFC_REAL_4 x);
     106  export_proto(bessel_yn_r4);
     107  
     108  void
     109  bessel_yn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2,
     110  			 GFC_REAL_4 x)
     111  {
     112    int i;
     113    index_type stride;
     114  
     115    GFC_REAL_4 last1, last2, x2rev;
     116  
     117    stride = GFC_DESCRIPTOR_STRIDE(ret,0);
     118  
     119    if (ret->base_addr == NULL)
     120      {
     121        size_t size = n2 < n1 ? 0 : n2-n1+1; 
     122        GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
     123        ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4));
     124        ret->offset = 0;
     125      }
     126  
     127    if (unlikely (n2 < n1))
     128      return;
     129  
     130    if (unlikely (compile_options.bounds_check)
     131        && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
     132      runtime_error("Incorrect extent in return value of BESSEL_JN "
     133  		  "(%ld vs. %ld)", (long int) n2-n1,
     134  		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
     135  
     136    stride = GFC_DESCRIPTOR_STRIDE(ret,0);
     137  
     138    if (unlikely (x == 0))
     139      {
     140        for (i = 0; i <= n2-n1; i++)
     141  #if defined(GFC_REAL_4_INFINITY)
     142          ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY;
     143  #else
     144          ret->base_addr[i*stride] = -GFC_REAL_4_HUGE;
     145  #endif
     146        return;
     147      }
     148  
     149    last1 = MATHFUNC(yn) (n1, x);
     150    ret->base_addr[0] = last1;
     151  
     152    if (n1 == n2)
     153      return;
     154  
     155    last2 = MATHFUNC(yn) (n1 + 1, x);
     156    ret->base_addr[1*stride] = last2;
     157  
     158    if (n1 + 1 == n2)
     159      return;
     160  
     161    x2rev = GFC_REAL_4_LITERAL(2.)/x;
     162  
     163    for (i = 2; i <= n2 - n1; i++)
     164      {
     165  #if defined(GFC_REAL_4_INFINITY)
     166        if (unlikely (last2 == -GFC_REAL_4_INFINITY))
     167  	{
     168  	  ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY;
     169  	}
     170        else
     171  #endif
     172  	{
     173  	  ret->base_addr[i*stride] = x2rev * (i-1+n1) * last2 - last1;
     174  	  last1 = last2;
     175  	  last2 = ret->base_addr[i*stride];
     176  	}
     177      }
     178  }
     179  #endif
     180  
     181  #endif
     182