;; Copyright (C) 2019-2023 Free Software Foundation, Inc.
;;
;; This file is part of LIBF7, which is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it under
;; the terms of the GNU General Public License as published by the Free
;; Software Foundation; either version 3, or (at your option) any later
;; version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
;; WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
;; for more details.
;;
;; Under Section 7 of GPL version 3, you are granted additional
;; permissions described in the GCC Runtime Library Exception, version
;; 3.1, as published by the Free Software Foundation.
;;
;; You should have received a copy of the GNU General Public License and
;; a copy of the GCC Runtime Library Exception along with this program;
;; see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
;; <http://www.gnu.org/licenses/>.  */
#ifndef __AVR_TINY__
#define ASM_DEFS_HAVE_DEFUN
#include "asm-defs.h"
#include "libf7.h"
#define ZERO __zero_reg__
#define TMP  __tmp_reg__
#define F7(name)   F7_(name##_asm)
.macro F7call name
    .global F7(\name\())
    XCALL   F7(\name\())
.endm
.macro F7jmp name
    .global F7(\name\())
    XJMP    F7(\name\())
.endm
;; Just for visibility in disassembly.
.macro LLL name
    .global LLL.\name
    LLL.\name:
    nop
.endm
.macro DEFUN name
    .section .text.libf7.asm.\name, "ax", @progbits
    .global F7(\name\())
    .func F7(\name\())
    F7(\name\()) :
.endm
.macro ENDF name
    .size F7(\name\()), . - F7(\name\())
    .endfunc
.endm
.macro LABEL name
    .global F7(\name\())
    F7(\name\()) :
.endm
.macro _DEFUN name
    .section .text.libf7.asm.\name, "ax", @progbits
    .weak \name
    .type \name, @function
    \name :
.endm
.macro _ENDF name
    .size \name, . - \name
.endm
.macro _LABEL name
    .weak \name
    .type \name, @function
    \name :
.endm
#define F7_NAME(X)   F7_(X)
;; Make a weak alias.
.macro  ALIAS  sym
    .weak \sym
    .type \sym, @function
    \sym:
.endm
;; Make a weak alias if double is 64 bits wide.
.macro  DALIAS  sym
#if defined (WITH_LIBF7_MATH_SYMBOLS) && __SIZEOF_DOUBLE__ == 8
ALIAS \sym
#endif
.endm
;; Make a weak alias if long double is 64 bits wide.
.macro  LALIAS  sym
#if defined (WITH_LIBF7_MATH_SYMBOLS) && __SIZEOF_LONG_DOUBLE__ == 8
ALIAS \sym
#endif
.endm
#define     Off 1
#define     Expo (Off + F7_MANT_BYTES)
#ifdef F7MOD_classify_
;;  r24 = classify (*Z)
;;  NaN  ->  F7_FLAG_nan
;;  INF  ->  F7_FLAG_inf [ | F7_FLAG_sign ]
;;  ==0  ->  F7_FLAG_zero
;;  ...  ->  0 [ | F7_FLAG_sign ]
;; Clobbers:  None (no TMP, no T).
DEFUN classify
    ld      r24,    Z
    lsr     r24
    brne .Lnan_or_inf
    ldd     r24,    Z+6+Off
    tst     r24
    brpl 0f
    sbc     r24,    r24
    andi    r24,    F7_FLAG_sign
    ret
0:  ldi     r24,    F7_FLAG_zero
    ret
.Lnan_or_inf:
    rol     r24
    ret
ENDF classify
#endif /* F7MOD_classify_ */
#ifdef F7MOD_clr_
DEFUN clr
    std     Z+0,     ZERO
    std     Z+0+Off, ZERO
    std     Z+1+Off, ZERO
    std     Z+2+Off, ZERO
    std     Z+3+Off, ZERO
    std     Z+4+Off, ZERO
    std     Z+5+Off, ZERO
    std     Z+6+Off, ZERO
    std     Z+0+Expo, ZERO
    std     Z+1+Expo, ZERO
    ret
ENDF clr
#endif /* F7MOD_clr_ */
#ifdef F7MOD_clz_
;; The libcc CLZ implementations like __clzsi2 aka. __builtin_clzl are
;; not very well suited for out purpose, so implement our own.
#define ZBITS   r26
.macro  .test.byte  reg
    or      ZERO,   \reg
    brne    .Loop_bit
    subi    ZBITS, -8
.endm
;; R26 = CLZ (uint64_t R18);  CLZ (0) = 64.
;; Unchanged: T
DEFUN clzdi2
    clr     ZBITS
    ;; Catch the common case of normalized .mant for speed-up.
    tst     r25
    brmi 9f
    .test.byte  r25
    .test.byte  r24
    .test.byte  r23
    .test.byte  r22
    .test.byte  r21
    .test.byte  r20
    .test.byte  r19
    .test.byte  r18
.Ldone:
    clr     ZERO
9:  ret
.Loop_bit:
    lsl     ZERO
    brcs .Ldone
    inc     ZBITS
    rjmp .Loop_bit
ENDF clzdi2
#undef  ZBITS
#endif /* F7MOD_clz_ */
#ifdef F7MOD_cmp_mant_
DEFUN cmp_mant
    adiw    X,   6 + Off
    ld      r24, X      $ ldd   TMP, Z+6+Off    $ SUB   r24, TMP
    brne .Lunequal
    sbiw    X,  6
    ld      r24, X+     $ ldd   TMP, Z+0+Off    $ SUB   r24, TMP
    ld      r24, X+     $ ldd   TMP, Z+1+Off    $ sbc   r24, TMP
    ld      r24, X+     $ ldd   TMP, Z+2+Off    $ sbc   r24, TMP
    ld      r24, X+     $ ldd   TMP, Z+3+Off    $ sbc   r24, TMP
    ld      r24, X+     $ ldd   TMP, Z+4+Off    $ sbc   r24, TMP
    ld      r24, X+     $ ldd   TMP, Z+5+Off    $ sbc   r24, TMP
    ;; MSBs are already known to be equal
    breq 9f
.Lunequal:
    sbc     r24,    r24
    sbci    r24,    -1
9:  sbiw    X,      6 + Off
    ret
ENDF cmp_mant
#endif /* F7MOD_cmp_mant_ */
#define     CA      18
#define     C0      CA+1
#define     C1      C0+1
#define     C2      C0+2
#define     C3      C0+3
#define     C4      C0+4
#define     C5      C0+5
#define     C6      C0+6
#define     Carry   r16
#define     Flags   18
#ifdef F7MOD_store_
;; Z->flags = CA.
;; Z->mant  = C[7].
DEFUN store_mant.with_flags
    st      Z,      CA
;; Z->mant = C[7].
LABEL store_mant
    std     Z+0+Off, C0
    std     Z+1+Off, C1
    std     Z+2+Off, C2
    std     Z+3+Off, C3
    std     Z+4+Off, C4
    std     Z+5+Off, C5
    std     Z+6+Off, C6
    ret
ENDF store_mant.with_flags
#endif /* F7MOD_store_ */
#ifdef F7MOD_load_
;; CA   = Z->flags
;; C[7] = Z->mant
DEFUN load_mant.with_flags
    ld      CA,     Z
    skipnext
;; CA   = 0
;; C[7] = Z->mant
LABEL load_mant.clr_CA
LABEL load_mant.clr_flags
    clr     CA      ; May be skipped
;; C[7] = Z->mant
LABEL load_mant
    ldd     C0,     Z+0+Off
    ldd     C1,     Z+1+Off
    ldd     C2,     Z+2+Off
    ldd     C3,     Z+3+Off
    ldd     C4,     Z+4+Off
    ldd     C5,     Z+5+Off
    ldd     C6,     Z+6+Off
    ret
ENDF load_mant.with_flags
#endif /* F7MOD_load_ */
#ifdef F7MOD_copy_
DEFUN copy
    cp      XL,     ZL
    cpc     XH,     ZH
    breq 9f
    adiw    XL,     10
    adiw    ZL,     10
    set
    bld     ZERO,   1
    bld     ZERO,   3   ; ZERO = 0b1010 = 10.
.Loop:
    ld      TMP,    -X
    st      -Z,     TMP
    dec     ZERO
    brne .Loop
9:  ret
ENDF copy
#endif /* F7MOD_copy_ */
#ifdef F7MOD_copy_P_
DEFUN copy_P
    set
    bld     ZERO,   1
    bld     ZERO,   3   ; ZERO = 0b1010 = 10.
.Loop:
#ifdef __AVR_HAVE_LPMX__
    lpm     TMP,    Z+
#else
    lpm
    adiw    Z,      1
#endif /* Have LPMx */
    st      X+,     TMP
    dec     ZERO
    brne .Loop
    sbiw    X,      10
    sbiw    Z,      10
    ret
ENDF copy_P
#endif /* F7MOD_copy_P_ */
#ifdef F7MOD_copy_mant_
DEFUN copy_mant
    cp      XL,     ZL
    cpc     XH,     ZH
    breq 9f
    adiw    XL,     1
    adiw    ZL,     1
    set
    bld     ZERO,   3
    dec     ZERO        ; ZERO = 7
.Loop:
    ld      TMP,    X+
    st      Z+,     TMP
    dec     ZERO
    brne    .Loop
    sbiw    XL,     8
    sbiw    ZL,     8
9:  ret
ENDF copy_mant
#endif /* F7MOD_copy_mant_ */
#ifdef F7MOD_clr_mant_lsbs_
DEFUN clr_mant_lsbs
    push    r16
    mov     r16,    r20
    wmov    XL,     r24
    wmov    ZL,     r22
    F7call  load_mant
    F7call  lshrdi3
    clr     CA
    F7call   ashldi3
    pop     r16
    wmov    ZL,     XL
    F7jmp  store_mant
ENDF clr_mant_lsbs
#endif /* F7MOD_clr_mant_lsbs_ */
#ifdef F7MOD_normalize_with_carry_
;; Z = &f7_t
;; C[] = .mant may be not normalized
;; Carry === r16 = Addend to Z->expo in [-64, 128).
;; Normalize C[], set Flags, and adjust Z->expo.
;; Return CA (after normalization) in TMP.
;; Unchanged: T
#define Addend  r17
#define Zbits   r26
#define expL    r26
#define expH    r27
DEFUN normalize_with_carry
    mov     Addend, Carry
    tst     C6
    brmi .Lshift.0
    ;; r26 = CLZ (uint64_t R18)
    F7call  clzdi2
    cpi     Zbits,  64
    breq .Lclr
    sub     Addend, Zbits
    mov     r16,    Zbits
    F7call  ashldi3
    ;; Assert (R25.7 == 1)
.Lshift.0:
    mov     TMP,    CA
    ld      Flags,  Z
    ;; .expo += Addend
    ldd     expL,   Z+0+Expo
    ldd     expH,   Z+1+Expo
    ;; Sign-extend Addend
    clr     r16
    sbrc    Addend, 7
    com     r16
    ;; exp += (int8_t) Addend, i.e. sign-extend Addend.
    add     expL,   Addend
    adc     expH,   r16
    brvc .Lnormal
    tst     r16
    brmi .Lclr
    ;; Overflow
#if F7_HAVE_Inf == 1
    ori     Flags,  F7_FLAG_inf
#else
    ldi     Flags,  F7_FLAG_nan
#endif /* Have Inf */
    ret
.Lnormal:
    std     Z+0+Expo,   expL
    std     Z+1+Expo,   expH
    ret
.Lclr:
    ;; Underflow or Zero.
    clr     TMP
    .global __clr_8
    XJMP    __clr_8
LABEL normalize.store_with_flags
    ;; no rounding
    set
    skipnext
LABEL normalize.round.store_with_flags
    ;; with rounding
    clt     ; skipped ?
LABEL normalize.maybe_round.store_with_flags
    F7call  normalize_with_carry
    ;; We have:
    ;; Z   = &f7_t
    ;; X   = .expo
    ;; C[] = .mant
    ;; R18 = .flags
    ;; TMP = byte below .mant after normalization
    ;; T = 1  =>  no rounding.
    brts .Lstore
    lsl     TMP
    adc     C0,     ZERO
    brcc .Lstore
    adc     C1,     ZERO
    adc     C2,     ZERO
    adc     C3,     ZERO
    adc     C4,     ZERO
    adc     C5,     ZERO
    adc     C6,     ZERO
    brcc .Lstore
    ;; We only come here if C6 overflowed, i.e. C[] is 0 now.
    ;; .mant = 1.0 by restoring the MSbit.
    ror     C6
    ;; .expo += 1 and override the .expo stored during normalize.
    adiw    expL,   1
    std     Z+0+Expo,   expL
    std     Z+1+Expo,   expH
.Lstore:
    F7call  store_mant.with_flags
    ;; Return the byte below .mant after normalization.
    ;; This is only useful without rounding; the caller will know.
    mov     R24,    TMP
    ret
ENDF normalize_with_carry
#endif /* F7MOD_normalize_with_carry_ */
#ifdef F7MOD_normalize_
;; Using above functionality from C.
;; f7_t* normalize (f7_t *cc)
;; Adjusts cc->expo
;; Clears cc->flags
DEFUN normalize
    push    r17
    push    r16
    wmov    ZL,     r24
    F7call  load_mant.clr_CA
    clr     Carry
    st      Z,      ZERO
    F7call  normalize.store_with_flags
    wmov    r24,    Z
    pop     r16
    pop     r17
    ret
ENDF normalize
#endif /* F7MOD_normalize_ */
#ifdef F7MOD_store_expo_
#define Done    r24
#define expLO   r24
#define expHI   r25
;; expo == INT16_MAX  =>  *Z = Inf,         return Done = true.
;; expo == INT16_MIN  =>  *Z = 0x0,         return Done = true.
;; else               =>  Z->expo = expo,   return Done = false.
DEFUN store_expo
    cpi     expHI,   0x80
    cpc     expLO,  ZERO
    breq .Ltiny
    adiw    expLO,  1
    brvs .Lhuge
    sbiw    expLO,  1
    std     Z+0+Expo,   expLO
    std     Z+1+Expo,   expHI
    ldi     Done,   0
    ret
.Lhuge:
#if F7_HAVE_Inf == 1
    ld      Done,   Z
    andi    Done,   F7_FLAG_sign
    ori     Done,   F7_FLAG_inf
#else
    ldi     Done,   F7_FLAG_nan
#endif /* Have Inf */
    st      Z,      Done
    ldi     Done,   1
    ret
.Ltiny:
    ldi     Done,   1
    F7jmp   clr
ENDF store_expo
#endif /* F7MOD_store_expo_ */
#ifdef F7MOD_set_u64_
DEFUN set_s64
    set
    skipnext
    ;; ...
LABEL set_u64
    clt     ; Skipped?
    wmov    Zl,     r16
    ;; TMP holds .flags.
    clr     TMP
    brtc .Lnot.negative
    bst     C6,     7
    brtc .Lnot.negative
    bld     TMP,    F7_FLAGNO_sign
    .global __negdi2
    XCALL   __negdi2
.Lnot.negative:
    st      Z,          TMP
    std     Z+0+Expo,   ZERO
    std     Z+1+Expo,   ZERO
    ldi     Carry,      63
    F7call  normalize.round.store_with_flags
    wmov    r24,        Z
    wmov    r16,        Z   ; Unclobber r16.
    ret
ENDF set_s64
#endif /* F7MOD_set_u64_ */
#ifdef F7MOD_to_integer_
#define Mask    r26
DEFUN to_integer
    wmov    ZL,     r24
    mov     Mask,   r22
    F7call  load_mant.with_flags
    sbrc    Flags, F7_FLAGNO_nan
    rjmp .Lset_0x8000
    sbrc    Flags, F7_FLAGNO_inf
    rjmp .Lsaturate
    sbrs    C6, 7
    rjmp .Lset_0x0000
    bst     Flags, F7_FLAGNO_sign
    ldd     r27,    Z+0+Expo
    ;; Does .expo have bits outside Mask? ...
    mov     TMP,    Mask
    com     TMP
    and     TMP,    r27
    ldd     r27,    Z+1+Expo
    tst     r27
    brmi .Lset_0x0000       ; ...yes: .expo is < 0  =>  return 0
    or      TMP,    r27
    brne .Lsaturate.T       ; ...yes: .expo > Mask  =>  saturate
    ;; ...no:  Shift right to meet .expo = 0.
    PUSH    r16
    ldd     r16,    Z+0+Expo
    eor     r16,    Mask
    and     r16,    Mask
    clr     CA
    F7call  lshrdi3
    POP     r16
    tst     C6
    brmi    .Lsaturate.T    ;   > INTxx_MAX  =>  saturate
    brtc 9f                 ;   >= 0         =>  return
    sbrc    Mask,   5
    .global __negdi2
    XJMP    __negdi2
    sbrc    Mask,   4
    .global __negsi2
    XJMP    __negsi2
    neg     C6
    neg     C5
    sbci    C6,     0
9:  ret
.Lsaturate:
    bst     Flags, F7_FLAGNO_sign
.Lsaturate.T:
#if F7_HAVE_Inf
    brtc .Lset_0x7fff
    ;; -Inf  =>  return 1 + INTxx_MIN
    mov     ZL,     Flags
    .global __clr_8
    XCALL   __clr_8
    ldi     C6,     0x80
    ldi     CA+0,   0x01
    sbrs    Mask,   5
    ldi     CA+4,   0x01
    sbrs    Mask,   4
    ldi     CA+6,   0x01
    ret
.Lset_0x7fff:
    ;; +Inf  =>  return INTxx_MAX
    sec
    .global __sbc_8
    XCALL   __sbc_8
    ldi     C6,     0x7f
    ret
#endif /* F7_HAVE_Inf */
.Lset_0x8000:
    ;; NaN  =>  return INTxx_MIN
    .global __clr_8
    XCALL   __clr_8
    ldi     C6,     0x80
    ret
.Lset_0x0000:
    ;; Small value  =>  return 0x0
    .global __clr_8
    XJMP    __clr_8
ENDF to_integer
#endif /* F7MOD_to_integer_ */
#ifdef F7MOD_to_unsigned_
#define Mask    r26
DEFUN to_unsigned
    wmov    ZL,     r24
    mov     Mask,   r22
    F7call  load_mant.with_flags
    sbrc    Flags, F7_FLAGNO_nan
    rjmp .Lset_0xffff
    sbrc    Flags, F7_FLAGNO_sign
    rjmp .Lset_0x0000
    sbrc    Flags, F7_FLAGNO_inf
    rjmp .Lset_0xffff
    sbrs    C6, 7
    rjmp .Lset_0x0000
    ldd     r27,    Z+0+Expo
    ;; Does .expo have bits outside Mask? ...
    mov     TMP,    Mask
    com     TMP
    and     TMP,    r27
    ldd     r27,    Z+1+Expo
    tst     r27
    brmi .Lset_0x0000       ; ...yes: .expo is < 0  =>  return 0
    or      TMP,    r27
    brne .Lset_0xffff       ; ...yes: .expo > Mask  =>  saturate
    ;; ...no:  Shift right to meet .expo = 0.
    PUSH    r16
    ldd     r16,    Z+0+Expo
    eor     r16,    Mask
    and     r16,    Mask
    clr     CA
    F7call  lshrdi3
    POP     r16
    ret
.Lset_0xffff:
    ;; return UINTxx_MAX
    sec
    .global __sbc_8
    XJMP    __sbc_8
.Lset_0x0000:
    ;; Small value  =>  return 0x0
    .global __clr_8
    XJMP    __clr_8
ENDF to_unsigned
#endif /* F7MOD_to_unsigned_ */
#ifdef F7MOD_addsub_mant_scaled_
;; int8_t f7_addsub_mant_scaled_asm (f7_t *r24, const f7_t *r22, const f7_t 20*,
;;                                   uint8_t r18);
;; R18.0 = 1 : ADD
;; R18.0 = 0 : SUB
;; R18[7..1] : Scale
;; Compute *R24 = *R22 + *R20 >> R18[7..1].
#define     BA      10
#define     B0      BA+1
#define     B1      B0+1
#define     B2      B0+2
#define     B3      B0+3
#define     B4      B0+4
#define     B5      B0+5
#define     B6      B0+6
DEFUN addsub_mant_scaled
    do_prologue_saves  10
    bst     r18,    0  ;; ADD ?
    lsr     r18
    mov     r16,    r18
    wmov    ZL,     r20
    wmov    YL,     r22
    ;; C[] = bb >> shift
    wmov    XL,     r24
    F7call  load_mant.clr_CA
    F7call  lshrdi3
    wmov    BA,     CA
    wmov    B1,     C1
    wmov    B3,     C3
    wmov    B5,     C5
    wmov    ZL,     YL
    F7call  load_mant.clr_CA
    wmov    ZL,     XL
    brts .Ladd
    .global __subdi3
    XCALL   __subdi3
    breq .Lzero
    brcc .Lround
    ;; C = 1: Can underflow happen at all ?
.Lzero:
    F7call  clr
    rjmp .Lepilogue
.Ladd:
    .global __adddi3
    XCALL   __adddi3
    brcc .Lround
    ldi     Carry,  1
    .global __lshrdi3
    XCALL   __lshrdi3
    ori     C6, 1 << 7
    skipnext
.Lround:
    clr     Carry   ; skipped?
    F7call  normalize.round.store_with_flags
.Lepilogue:
    do_epilogue_restores 10
ENDF addsub_mant_scaled
#if !defined (__AVR_HAVE_MOVW__) || !defined (__AVR_HAVE_JMP_CALL__)
DEFUN lshrdi3
    .global __lshrdi3
    XJMP    __lshrdi3
ENDF lshrdi3
DEFUN ashldi3
    .global __ashldi3
    XJMP    __ashldi3
ENDF ashldi3
#else
# Basically just a wrapper around libgcc's __lshrdi3.
DEFUN lshrdi3
    ;; Handle bit 5 of shift offset.
    sbrs    r16,    5
    rjmp 4f
    wmov    CA,     C3
    wmov    C1,     C5
    clr     C6          $   clr     C5  $   wmov    C3, C5
4:
    ;; Handle bit 4 of shift offset.
    sbrs    r16,    4
    rjmp 3f
    wmov CA, C1
    wmov C1, C3
    wmov C3, C5
    clr     C6          $   clr     C5
3:
    ;; Handle bits 3...0 of shift offset.
    push    r16
    andi    r16,    0xf
    breq 0f
    .global __lshrdi3
    XCALL   __lshrdi3
0:
    pop     r16
    ret
ENDF lshrdi3
# Basically just a wrapper around libgcc's __ashldi3.
DEFUN ashldi3
    ;; Handle bit 5 of shift offset.
    sbrs    r16,    5
    rjmp 4f
    wmov    C5,     C1
    wmov    C3,     CA
    clr     C2          $   clr     C1  $   wmov    CA, C1
4:
    ;; Handle bit 4 of shift offset.
    sbrs    r16,    4
    rjmp 3f
    wmov C5, C3
    wmov C3, C1
    wmov C1, CA
    clr     CA          $   clr     C0
3:
    ;; Handle bits 3...0 of shift offset.
    push    r16
    andi    r16,    0xf
    breq 0f
    .global __ashldi3
    XCALL   __ashldi3
0:
    pop     r16
    ret
ENDF ashldi3
#endif /* Small device */
#endif /* F7MOD_addsub_mant_scaled_ */
#if defined F7MOD_mul_mant_ && defined (__AVR_HAVE_MUL__)
    #define     A0      11
    #define     A1      A0+1
    #define     A2      A0+2
    #define     A3      A0+3
    #define     A4      A0+4
    #define     A5      A0+5
    #define     A6      A0+6
    #define     TT0     26
    #define     TT1     TT0+1
    #define     TT2     28
    #define     TT3     TT2+1
    #define     BB      10
;; R18.0 = 1: No rounding.
DEFUN mul_mant
    do_prologue_saves 10
    bst     r18,    0
    push    r25
    push    r24
    movw    ZL,     r22
    LDD     A0,     Z+0+Off
    LDD     A1,     Z+1+Off
    LDD     A2,     Z+2+Off
    LDD     A3,     Z+3+Off
    LDD     A4,     Z+4+Off
    LDD     A5,     Z+5+Off
    LDD     A6,     Z+6+Off
    movw    ZL,     r20
    ;; 6 * 6 -> 6:5
    ;; 4 * 6 -> 4:3
    ;; 2 * 6 -> 2:1
    ;; 0 * 6 -> 0:a
    ldd     BB, Z+6+Off
    mul     A6, BB      $   movw    C5, r0
    mul     A4, BB      $   movw    C3, r0
    mul     A2, BB      $   movw    C1, r0
    mul     A0, BB      $   movw    CA, r0
    ;; 5 * 6 -> 5:4
    ;; 3 * 6 -> 3:2
    ;; 1 * 6 -> 1:0
    mul     A5, BB      $   movw    TT2, r0
    mul     A3, BB      $   movw    TT0, r0
    mul     A1, BB
    ADD     C0, r0      $   adc     C1, r1
    adc     C2, TT0     $   adc     C3, TT1
    adc     C4, TT2     $   adc     C5, TT3     $   clr ZERO
    adc     C6, ZERO
    ;; Done B6
    ;; 3 * 3 -> 0:a
    ;; 4 * 4 -> 2:1
    ;; 5 * 5 -> 4:3
    ldd     BB, Z+3+Off $   mul     A3, BB      $   movw    TT0, r0
    ldd     BB, Z+4+Off $   mul     A4, BB      $   movw    TT2, r0
    ldd     BB, Z+5+Off $   mul     A5, BB
    ADD     CA, TT0     $   adc     C0, TT1
    adc     C1, TT2     $   adc     C2, TT3
    adc     C3, r0      $   adc     C4, r1
    brcc .+2
    adiw    C5, 1
    ;; 6 * 5 -> 5:4
    ;; 4 * 5 -> 3:2
    ;; 2 * 5 -> 1:0
    ;; 0 * 5 -> a:-
    mul     A0, BB
    ;; A0 done
#define Atmp A0
    mov     Atmp, r1
    mul     A6, BB      $   movw    TT2, r0
    mul     A4, BB      $   movw    TT0, r0
    mul     A2, BB
    ADD     CA, Atmp
    adc     C0, r0      $   adc     C1, r1
    adc     C2, TT0     $   adc     C3, TT1
    adc     C4, TT2     $   adc     C5, TT3     $   clr ZERO
    adc     C6, ZERO
    ;; 1 * 5 -> 0:a
    ;; 3 * 5 -> 2:1
    ;; 6 * 4 -> 4:3
    mul     A1, BB      $   movw    TT0, r0
    mul     A3, BB      $   movw    TT2, r0
    ldd     BB, Z+4+Off
    mul     A6, BB
    ADD     CA, TT0     $   adc     C0, TT1
    adc     C1, TT2     $   adc     C2, TT3
    adc     C3, r0      $   adc     C4, r1      $   clr ZERO
    adc     C5, ZERO    $   adc     C6, ZERO
    ;; B5 done
    ;; 6 * 3 -> 3:2
    ;; 6 * 1 -> 1:0
    ;; 4 * 1 -> a:-
    mov     TT0, A6     $   ldd TMP,  Z+3+Off
    mov     BB,  A4     $   ldd Atmp, Z+1+Off
    rcall   .Lmul.help.3
    ;; 5 * 4 -> 3:2
    ;; 5 * 2 -> 1:0
    ;; 3 * 2 -> a:-
    mov     TT0, A5     $   ldd TMP,  Z+4+Off
    mov     BB,  A3     $   ldd Atmp, Z+2+Off
    rcall   .Lmul.help.3
    ;; 4 *   -> 3:2 (=0)
    ;; 4 * 3 -> 1:0
    ;; 2 * 3 -> a:-
    mov     TT0, A4     $   clr TMP
    mov     BB,  A2     $   ldd Atmp, Z+3+Off
    rcall   .Lmul.help.3
    ;; 3 * . -> 3:2 (=0)
    ;; 3 * 4 -> 1:0
    ;; 1 * 4 -> a:-
    mov     TT0, A3     $   clr TMP
    mov     BB,  A1     $   ldd Atmp, Z+4+Off
    rcall   .Lmul.help.3
    ;; . * ? -> 3:2 (=0)
    ;; . * 0 -> 1:0 (=0)
    ;; 5 * 0 -> a:-
    clr     TT0
    mov     BB,  A5     $   ldd Atmp, Z+0+Off
    rcall   .Lmul.help.3
    clr TT3  ;; Asserted by .Lmul.help.2
    ;; 6 * 2 -> 2:1
    ;; 6 * 0 -> 0:a
                        $   ldd TMP,  Z+2+Off
    mov     BB, A6     ;$   ldd Atmp, Z+0+Off
    rcall   .Lmul.help.2
    ;; 5 * 3 -> 2:1
    ;; 5 * 1 -> 0:a
                        $   ldd TMP,  Z+3+Off
    mov     BB, A5      $   ldd Atmp, Z+1+Off
    rcall   .Lmul.help.2
    ;; 4 * . -> 2:1 (=0)
    ;; 4 * 2 -> 0:a
                        $   clr TMP
    mov     BB, A4      $   ldd Atmp, Z+2+Off
    rcall   .Lmul.help.2
    ;; 2 * . -> 2:1 (=0)
    ;; 2 * 4 -> 0:a
                        $   clr TMP
    mov     BB, A2      $   ldd Atmp, Z+4+Off
    rcall   .Lmul.help.2
    ;; Finally...
    pop     ZL
    pop     ZH
    ;; The high byte is at least 0x40 and at most 0xfe.
    ;; The result has to be left-shifted by one in order to scale it
    ;; correctly.
    ldi     Carry,  1
    F7call  normalize.maybe_round.store_with_flags
    do_epilogue_restores 10
;; TT0 * Tmp  -> 3:2
;; TT0 * Atmp -> 1:0
;; BB  * Atmp -> a:-
;;
;; Clobbers : TMP, TT0...TT3.
;; Sets     : ZERO = 0.
.Lmul.help.3:
    mul     TT0, TMP    $   movw    TT2, r0
    mul     TT0, Atmp   $   movw    TT0, r0
    mul     BB,  Atmp
    ADD     CA, r1
    adc     C0, TT0     $   adc     C1, TT1
    adc     C2, TT2
.Lmul.help.3.C3:        $   adc     C3, TT3     $ clr ZERO
    adc     C4, ZERO    $   adc     C5, ZERO
    adc     C6, ZERO
    ret
;; BB * TMP  -> 2:1
;; BB * Atmp -> 0:a
;;
;; Asserts  : TT3 = 0
;; Clobbers : TMP, TT0, TT1.
;; Sets     : ZERO = 0.
.Lmul.help.2:
    mul     BB, TMP     $   movw    TT0, r0
    mul     BB, Atmp
    ADD     CA, r0      $   adc     C0, r1
    adc     C1, TT0     $   adc     C2, TT1
    rjmp .Lmul.help.3.C3
ENDF mul_mant
#endif /* F7MOD_mul_mant_ && MUL */
#if defined (F7MOD_div_)
;; Dividend is C[]
;; Divisor
#define A0       9
#define A1      10
#define A2      11
#define A3      12
#define A4      13
#define A5      14
#define A6      15
;; Quotient
#define Q0      0       /* === TMP  */
#define Q1      Q0+1    /* === ZERO */
#define Q2      26
#define Q3      Q2+1
#define Q4      28
#define Q5      Q4+1
#define Q6      16
#define Q7      Q6+1
#define Cnt     CA
#define QBits   r8
DEFUN div
    do_prologue_saves 12
    ;; Number of bits requested for the quotient.
    ;; This is usually 2 + F7_MANT_BITS.
    mov     QBits,  r20
    wmov    ZL,     r22
    LDD     A0,     Z+0+Off
    LDD     A1,     Z+1+Off
    LDD     A2,     Z+2+Off
    LDD     A3,     Z+3+Off
    LDD     A4,     Z+4+Off
    LDD     A5,     Z+5+Off
    LDD     A6,     Z+6+Off
    wmov    ZL,     r24
    F7call  load_mant
    ;; Clear quotient Q[].
    clr     Q0      ; === TMP
    ;clr    Q1      ; === ZERO
    wmov    Q2,     Q0
    wmov    Q4,     Q0
    wmov    Q6,     Q0
    ;; C[] and A[] are valid mantissae, i.e. their MSBit is set.  Therefore,
    ;; quotient Q[] will be in  [0x0.ff..., 0x0.40...]  and to adjust Q[] we
    ;; need at most 1 left-shift.  Compute F7_MANT_BITS + 2 bits of the
    ;; quotient:  One bit is used for rounding, and one bit might be consumed
    ;; by the mentioned left-shift.
    mov     Cnt,    QBits
    rjmp .Loop_start
.Loop:
    ;; Shift dividend.
    LSL     C0
    rol     C1
    rol     C2
    rol     C3
    rol     C4
    rol     C5
    rol     C6
    brcs .Lfits
    ;; Compare dividend against divisor.
.Loop_start:
    CP      C0,     A0
    cpc     C1,     A1
    cpc     C2,     A2
    cpc     C3,     A3
    cpc     C4,     A4
    cpc     C5,     A5
    cpc     C6,     A6
    ;; Shift 0 into quotient.
    brlo 1f
.Lfits:
    ;; Divisor fits into dividend.
    SUB     C0,     A0
    sbc     C1,     A1
    sbc     C2,     A2
    sbc     C3,     A3
    sbc     C4,     A4
    sbc     C5,     A5
    sbc     C6,     A6
    ;; Shift 1 into quotient.
    sec
    rol     Q0
    skipnext
1:  lsl     Q0
    rol     Q1
    rol     Q2
    rol     Q3
    rol     Q4
    rol     Q5
    rol     Q6
    rol     Q7
    dec     Cnt
    brne .Loop
    wmov    CA,     Q0
    wmov    C1,     Q2
    wmov    C3,     Q4
    wmov    C5,     Q6
    clr     ZERO
    ldi     Carry,  64
    sub     Carry,  QBits
    F7call  normalize.round.store_with_flags
    do_epilogue_restores 12
ENDF div
#endif /* F7MOD_div_ */
#if defined (F7MOD_sqrt16_) && defined (__AVR_HAVE_MUL__)
#define     Mask    C6
#define     Q0      C3      /*  = R22  */
#define     Q1      C4      /*  = R23  */
;; uint16_t R24 = sqrt16_XXX (uint16_t R24);
;; Clobbers:   R22, R23, TMP.
;;
;; XXX = floor:  Return integral part of square-root of R25:R24 with R25 = 0.
;;               Error is in [0, -1 LSB).
;; XXX = round:  Return quare-root of R25:R24 rounded to nearest integer.
;;               R25 = (Q[] >= 65281) = (Q > 0xff00),  i.e. if Q[] is not
;;               bigger than 0xff00, then the result fits in 8 bits.
;;               Return C = 0 if the result is the same as for XXX = floor,
;;               error in [0, -1/2 LSB)
;;               Return C = 1 if the result is one higher than for XXX = floor,
;;               error in [1/2 LSB, 0).
DEFUN sqrt16_round
    set
    skipnext
    ;; ...
LABEL sqrt16_floor
    clt ; Skipped?
    movw    Q0,     r24
    clr     C5
    ldi     Mask,   1 << 7
.Loop_mask:
    add     C5,     Mask
    mul     C5,     C5
    cp      Q0,     R0
    cpc     Q1,     R1
    brsh 1f
    sub     C5,     Mask
1:  lsr     Mask
    brne .Loop_mask
    brtc .Ldone             ; No rounding  =>  C6 will be 0.
    ;; Rounding:  (X + 1/2)^2  =  X^2 + X + 1/4,  thus probing
    ;; for bit -1 is testing Q[] against  C5^2 + C5.
    mul     C5,     C5
    add     R0,     C5
    adc     R1,     C6      ; Exploit C6 === Mask = 0.
    cp      R0,     Q0
    cpc     R1,     Q1
    brcc .Ldone
    ;; If  C5^2 + C5 + 1/4  fits into Q[], then round up and C = 1.
    adiw    C5,     1       ; Exploit C6 === Mask = 0.
    sec
.Ldone:
    clr     __zero_reg__
    ret
ENDF sqrt16_round
#undef Mask
#undef Q0
#undef Q1
#endif /* F7MOD_sqrt16_ && MUL */
#ifdef F7MOD_sqrt_approx_
DEFUN sqrt_approx
    push    r17
    push    r16
    wmov    XL,     r24
    wmov    ZL,     r22
    ;; C[] = 0.
    .global __clr_8
    XCALL   __clr_8
    ldd     C5,     Z+5+Off
    ldd     C6,     Z+6+Off
    ldd     Carry,  Z+0+Expo
    ldd     TMP,    Z+1+Expo
    wmov    ZL,     XL
    st      Z,      ZERO
    asr     TMP
    ror     Carry
    std     Z+1+Expo,   TMP
    std     Z+0+Expo,   Carry
    ;; Re-interpreting our Q-format 1.xx mantissa as Q2.yy, we have to shift
    ;; the mantissa to the right by 1.  As we need an even exponent, multiply
    ;; the mantissa by 2 for odd exponents, i.e. only right-shift if .expo
    ;; is even.
    brcs 1f
    lsr     C6
    ror     C5
1:
    F7call  sqrt16_round
    ;; sqrt16_round() returns:   C = 0:  error in [0, -1/2 LSB).
    ;;                           C = 1:  error in [1/2 LSB, 0)
    brcc 2f
    ;; Undo the round-up from sqrt16_round(); this will transform to
    ;; error in [-1/2 LSB, -1 LSB).
    sbiw    C5,     1
    ;; Together with the correct bit C4.7, the error is in  [0, -1/2 LSB).
    ori     C4,     1 << 7
2:  ;; Setting C4.6 adds 1/4 LSB and the error is now in [1/4 LSB, -1/4 LSB)
    ;; in either case.
    ori     C4,     1 << 6
    ;; ????????????
    ;; sqrt16_round() runs on integers which means that it computes the
    ;; square root of  mant * 2^14  if we regard  mant as Q-format 2.yy,
    ;; i.e. 2 integral bits.  The result is  sqrt(mant) * 2^7,
    ;; and in order to get the same scaling like the input, .expo has to
    ;; be adjusted by 7. ???????????????
    ldi     Carry,  8
    F7call  normalize.store_with_flags
    pop     r16
    pop     r17
    ret
ENDF sqrt_approx
#endif /* F7MOD_sqrt_approx_ */
#undef CA
#undef C0
#undef C1
#undef C2
#undef C3
#undef C4
#undef C5
#undef C6
#undef Carry
#ifdef F7MOD_D_fabs_
_DEFUN __fabs
    DALIAS fabs
    LALIAS fabsl
    andi    R25,    0b01111111
    ret
_ENDF __fabs
#endif /* F7MOD_D_fabs_ */
#ifdef F7MOD_D_neg_
_DEFUN __neg
_LABEL __negdf2
    subi    R25,    0b10000000
    ret
_ENDF __neg
#endif /* F7MOD_D_neg_ */
#ifdef F7MOD_D_signbit_
_DEFUN __signbit
    DALIAS signbit
    LALIAS signbitl
    bst     R25,    7
    clr     R25
    clr     R24
    bld     R24,    0
    ret
_ENDF __signbit
#endif /* F7MOD_D_signbit_ */
#ifdef F7MOD_D_copysign_
_DEFUN __copysign
    DALIAS copysign
    LALIAS copysignl
    bst     R17,    7
    bld     R25,    7
    ret
_ENDF __copysign
#endif /* F7MOD_D_copysign_ */
#ifdef F7MOD_D_isinf_
_DEFUN __isinf
    DALIAS isinf
    LALIAS isinfl
    F7call  class_D
    ;; Inf: T = Z = 1.
    brtc 0f
    ldi     R24,    1
    breq 1f
0:
    clr     R24
1:
    clr     R25
    ret
_ENDF __isinf
#endif /* F7MOD_D_isinf_ */
#ifdef F7MOD_D_isnan_
_DEFUN __isnan
    DALIAS isnan
    LALIAS isnanl
    F7call  class_D
    ;; NaN: T = 1, Z = 0.
    brtc 0f
    ldi     R24,    1
    brne 1f
0:
    clr     R24
1:
    clr     R25
    ret
_ENDF __isnan
#endif /* F7MOD_D_isnan_ */
#ifdef F7MOD_D_isfinite_
_DEFUN __isfinite
    DALIAS isfinite
    LALIAS isfinitel
    F7call  class_D
    ;; Number <=> T = 0.
    bld     R24,    0
    com     R24
    andi    R24,    1
    clr     R25
    ret
_ENDF __isfinite
#endif /* F7MOD_D_isfinite_ */
#ifdef F7MOD_D_class_
;; The encoded exponent has 11 Bits.
#define MAX_BIASED_EXPO 0b0111111111110000
;; Classify a double in R18[]
;; Number: T-Flag = 0.
;; +-Inf : T-Flag = 1, Z-Flag = 1.
;; NaN   : T-Flag = 1, Z-Flag = 0.
DEFUN class_D
    wmov    R26,    R24
    andi    R26,    lo8 (MAX_BIASED_EXPO)
    andi    R27,    hi8 (MAX_BIASED_EXPO)
    subi    R26,    lo8 (MAX_BIASED_EXPO)
    sbci    R27,    hi8 (MAX_BIASED_EXPO)
    clt
    brne .L.number
    set
    ;; Set sign and expo to 0.
    clr     R25
    andi    R24,    lo8 (~MAX_BIASED_EXPO)
    ;; What remains is the mantissa.
    ;; Mantissa == 0  =>  +/-Inf.
    ;; Mantissa != 0  =>  NaN.
    ;; Compare R18[] against sign_extend(R26) with R26 = 0.
    .global __cmpdi2_s8
    XJMP    __cmpdi2_s8
.L.number:
    ret
ENDF class_D
#endif /* F7MOD_D_class_ */
#ifdef F7MOD_call_dd_
;; Provide double wrappers for functions that operate on f7_t and get f7_t*.
;;
;; We set up a frame of sizeof(f7_t), convert the input double in R18[] to
;; f7_t in that frame location, then call *Z and finally convert the result f7_t
;; to double R18[] if that's requested.
;;
;; call_dd:     double func (double A)
;;              void (*Z) (f7_t *aa, const f7_t *aa)
;;
;; call_dx:     double func (type_t A)  , sizeof(type_t) <= 4
;;              void (*Z) (f7_t *aa, type_t)
;;
;; call_xd:     type_t func (double A)
;;              type_t (*Z) (const f7_t *aa)
;;
;; call_ddx:    double func (double A, word_t)  , sizeof (word_t) <= 2
;;              void (*Z) (f7_t *aa, const f7_t *aa, word_t)
#define WHAT    R13
DEFUN call_dd   ; WHAT = R13 = 3
    inc     ZERO
LABEL call_xd   ; WHAT = R13 = 2
    inc     ZERO
LABEL call_ddx  ; WHAT = R13 = 1
    inc     ZERO
LABEL call_dx   ; WHAT = R13 = 0
    push    WHAT
    mov     WHAT,   ZERO
    clr     ZERO
    ;; R14/R15 hold Z, the address of the f7_worker function, until we need it.
    push    r14
    push    r15
    wmov    r14,     Z
#define n_pushed    4
#define n_frame     10
    do_prologue_saves n_pushed, n_frame
    ;; Y = FramePointer + 1
    adiw    Y,      1
    dec     WHAT
    brmi .Ldx                   ; WHAT was initially 0.
    ;; FP + 1 = (f7_t) arg1
    wmov    r16,    Y
    ;; The double argument is in R18[].
    XCALL   F7_NAME (set_double_impl)
    tst     WHAT
    brne .Lno.ddx               ; WHAT was initially != 1.
    ;; call_ddx: Set R20/21 to the 2-byte scalar / pointer argument.
    ;; Fetch it from where prologue_saves put it.
    ldd     r20,    Y + n_frame + 3     ; Saved R16
    ldd     r21,    Y + n_frame + 2     ; Saved R17
.Lno.ddx:
    wmov    r22,    Y           ; &arg1 (input)
.Ldo.dx:
    wmov    r24,    Y           ; &arg1 (output)
    wmov    Z,      r14
    XICALL
    dec     WHAT
    breq .Lepilogue             ; WHAT was initially 2: Return non-double.
    wmov    r24,    Y           ; &arg1
    XCALL   F7_NAME (get_double)
.Lepilogue:
    ;; + 3 to account for R13...R15 pushed prior to do_prologue_saves.
    do_epilogue_restores n_pushed + 3, n_frame
.Ldx:
    ;; call_dx: Copy the 4-byte input scalar from R22[4] to R20[4].
    wmov    r20,    r22
    wmov    r22,    r24
    rjmp .Ldo.dx
ENDF call_dd
#endif /* F7MOD_call_dd_ */
#ifdef F7MOD_call_ddd_
;; Provide double wrappers for functions that operate on f7_t and get f7_t*.
;;
;; We set up a frame of 2 * sizeof(f7_t), convert the input doubles in R18[]
;; and R10[] to f7_t in these frame locations, then call *Z and finally
;; convert the result f7_t to double R18[] if that's requested.
;;
;; call_ddd:    double func (double A, double B)
;;              void (*Z) (f7_t *aa, const f7_t *aa, const f7_t *bb)
;;
;; call_xdd:    type_t func (double A, double B)
;;              type_t (*Z) (const f7_t *aa, const f7_t *bb)
DEFUN call_ddd
    inc     ZERO
LABEL call_xdd
    ;; R8/R9 hold Z, the address of the f7_worker function, until we need it.
    push    r9
    push    r8
    wmov    r8,     Z
    ;; This is an argument to call.2 and will be accessed by the arg pointer.
    push    ZERO
    clr     ZERO
    rcall   call.2
    pop     TMP
    pop     r8
    pop     r9
    ret
#define n_pushed    4
#define n_frame     20
call.2:
    do_prologue_saves n_pushed, n_frame
    ;; Y = FramePointer + 1
    adiw    Y,      1
    ;; FP + 1 = (f7_t) arg1
    wmov    r16,    Y
    ;; First double argument is already in R18[].
    XCALL   F7_NAME (set_double_impl)
    ;; FP + 11 = (f7_t) arg2
    wmov    r16,    Y
    subi    r16,    lo8 (-10)
    sbci    r17,    hi8 (-10)
    ;; Move second double argument to R18[].
    wmov    r18,    r10
    wmov    r20,    r12
    wmov    r22,    r14
    ;; Get high word of arg2 from where prologue_saves put it.
    ldd     r24,    Y + n_frame + 3     ; Saved R16
    ldd     r25,    Y + n_frame + 2     ; Saved R17
    XCALL   F7_NAME (set_double_impl)
    ;; Z (f7_t *arg1, const f7_t *arg1, const f7_t *arg2)
    wmov    Z,      r8
    wmov    r24,    Y                   ; &arg1
    ;; WHAT == 0  =>  call_xdd
    ;; WHAT != 0  =>  call_ddd
    ldd     TMP,    Y + n_frame + n_pushed + PC_SIZE
    tst     TMP
    breq .Lxdd
    wmov    r22,    Y                   ; &arg1
    wmov    r20,    r16                 ; &arg2
    XICALL
    wmov    r24,    Y                   ; &arg1
    XCALL   F7_NAME (get_double)
.Lepilogue:
    do_epilogue_restores n_pushed, n_frame
.Lxdd:
    wmov    r22,    r16                 ; &arg2
    XICALL
    rjmp .Lepilogue
ENDF call_ddd
#endif /* F7MOD_call_ddd_ */
#include "f7-wraps.h"
#endif /* !AVR_TINY */