(root)/
gcc-13.2.0/
include/
ctf.h
       1  /* CTF format description.
       2     Copyright (C) 2021-2023 Free Software Foundation, Inc.
       3  
       4     This file is part of libctf.
       5  
       6     libctf is free software; you can redistribute it and/or modify it under
       7     the terms of the GNU General Public License as published by the Free
       8     Software Foundation; either version 3, or (at your option) any later
       9     version.
      10  
      11     This program is distributed in the hope that it will be useful, but
      12     WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
      14     See the GNU General Public License for more details.
      15  
      16     You should have received a copy of the GNU General Public License
      17     along with this program; see the file COPYING.  If not see
      18     <http://www.gnu.org/licenses/>.  */
      19  
      20  #ifndef	_CTF_H
      21  #define	_CTF_H
      22  
      23  #include <sys/types.h>
      24  #include <limits.h>
      25  #include <stdint.h>
      26  
      27  
      28  #ifdef	__cplusplus
      29  extern "C"
      30  {
      31  #endif
      32  
      33  /* CTF - Compact ANSI-C Type Format
      34  
      35     This file format can be used to compactly represent the information needed
      36     by a debugger to interpret the ANSI-C types used by a given program.
      37     Traditionally, this kind of information is generated by the compiler when
      38     invoked with the -g flag and is stored in "stabs" strings or in the more
      39     modern DWARF format.  CTF provides a representation of only the information
      40     that is relevant to debugging a complex, optimized C program such as the
      41     operating system kernel in a form that is significantly more compact than
      42     the equivalent stabs or DWARF representation.  The format is data-model
      43     independent, so consumers do not need different code depending on whether
      44     they are 32-bit or 64-bit programs; libctf automatically compensates for
      45     endianness variations.  CTF assumes that a standard ELF symbol table is
      46     available for use in the debugger, and uses the structure and data of the
      47     symbol table to avoid storing redundant information.  The CTF data may be
      48     compressed on disk or in memory, indicated by a bit in the header.  CTF may
      49     be interpreted in a raw disk file, or it may be stored in an ELF section,
      50     typically named .ctf.  Data structures are aligned so that a raw CTF file or
      51     CTF ELF section may be manipulated using mmap(2).
      52  
      53     The CTF file or section itself has the following structure:
      54  
      55     +--------+--------+---------+----------+--------+----------+...
      56     |  file  |  type  |  data   | function | object | function |...
      57     | header | labels | objects |   info   | index  |  index   |...
      58     +--------+--------+---------+----------+--------+----------+...
      59  
      60     ...+----------+-------+--------+
      61     ...| variable | data  | string |
      62     ...|   info   | types | table  |
      63        +----------+-------+--------+
      64  
      65     The file header stores a magic number and version information, encoding
      66     flags, and the byte offset of each of the sections relative to the end of the
      67     header itself.  If the CTF data has been uniquified against another set of
      68     CTF data, a reference to that data also appears in the the header.  This
      69     reference is the name of the label corresponding to the types uniquified
      70     against.
      71  
      72     Following the header is a list of labels, used to group the types included in
      73     the data types section.  Each label is accompanied by a type ID i.  A given
      74     label refers to the group of types whose IDs are in the range [0, i].
      75  
      76     Data object and function records (collectively, "symtypetabs") are stored in
      77     the same order as they appear in the corresponding symbol table, except that
      78     symbols marked SHN_UNDEF are not stored and symbols that have no type data
      79     are padded out with zeroes.  For each entry in these tables, the type ID (a
      80     small integer) is recorded.  (Functions get CTF_K_FUNCTION types, just like
      81     data objects that are function pointers.)
      82  
      83     For situations in which the order of the symbols in the symtab is not known,
      84     or most symbols have no type in this dict and most entries would be
      85     zero-pads, a pair of optional indexes follow the data object and function
      86     info sections: each of these is an array of strtab indexes, mapped 1:1 to the
      87     corresponding data object / function info section, giving each entry in those
      88     sections a name so that the linker can correlate them with final symtab
      89     entries and reorder them accordingly (dropping the indexes in the process).
      90  
      91     Variable records (as distinct from data objects) provide a modicum of support
      92     for non-ELF systems, mapping a variable name to a CTF type ID.  The variable
      93     names are sorted into ASCIIbetical order, permitting binary searching.  We do
      94     not define how the consumer maps these variable names to addresses or
      95     anything else, or indeed what these names represent: they might be names
      96     looked up at runtime via dlsym() or names extracted at runtime by a debugger
      97     or anything else the consumer likes.  Variable records with identically-
      98     named entries in the data object section are removed.
      99  
     100     The data types section is a list of variable size records that represent each
     101     type, in order by their ID.  The types themselves form a directed graph,
     102     where each node may contain one or more outgoing edges to other type nodes,
     103     denoted by their ID.  Most type nodes are standalone or point backwards to
     104     earlier nodes, but this is not required: nodes can point to later nodes,
     105     particularly structure and union members.
     106  
     107     Strings are recorded as a string table ID (0 or 1) and a byte offset into the
     108     string table.  String table 0 is the internal CTF string table.  String table
     109     1 is the external string table, which is the string table associated with the
     110     ELF dynamic symbol table for this object.  CTF does not record any strings
     111     that are already in the symbol table, and the CTF string table does not
     112     contain any duplicated strings.
     113  
     114     If the CTF data has been merged with another parent CTF object, some outgoing
     115     edges may refer to type nodes that exist in another CTF object.  The debugger
     116     and libctf library are responsible for connecting the appropriate objects
     117     together so that the full set of types can be explored and manipulated.
     118  
     119     This connection is done purely using the ctf_import() function.  The
     120     ctf_archive machinery (and thus ctf_open et al) automatically imports archive
     121     members named ".ctf" into child dicts if available in the same archive, to
     122     match the relationship set up by the linker, but callers can call ctf_import
     123     themselves as well if need be, if they know a different relationship is in
     124     force.  */
     125  
     126  #define CTF_MAX_TYPE	0xfffffffe	/* Max type identifier value.  */
     127  #define CTF_MAX_PTYPE	0x7fffffff	/* Max parent type identifier value.  */
     128  #define CTF_MAX_NAME 0x7fffffff		/* Max offset into a string table.  */
     129  #define CTF_MAX_VLEN	0xffffff /* Max struct, union, enum members or args.  */
     130  
     131  /* See ctf_type_t */
     132  #define CTF_MAX_SIZE	0xfffffffe	/* Max size of a v2 type in bytes. */
     133  #define CTF_LSIZE_SENT	0xffffffff	/* Sentinel for v2 ctt_size.  */
     134  
     135    /* Start of actual data structure definitions.
     136  
     137       Every field in these structures must have corresponding code in the
     138       endianness-swapping machinery in libctf/ctf-open.c.  */
     139  
     140  typedef struct ctf_preamble
     141  {
     142    unsigned short ctp_magic;	/* Magic number (CTF_MAGIC).  */
     143    unsigned char ctp_version;	/* Data format version number (CTF_VERSION).  */
     144    unsigned char ctp_flags;	/* Flags (see below).  */
     145  } ctf_preamble_t;
     146  
     147  typedef struct ctf_header
     148  {
     149    ctf_preamble_t cth_preamble;
     150    uint32_t cth_parlabel;	/* Ref to name of parent lbl uniq'd against.  */
     151    uint32_t cth_parname;		/* Ref to basename of parent.  */
     152    uint32_t cth_cuname;		/* Ref to CU name (may be 0).  */
     153    uint32_t cth_lbloff;		/* Offset of label section.  */
     154    uint32_t cth_objtoff;		/* Offset of object section.  */
     155    uint32_t cth_funcoff;		/* Offset of function section.  */
     156    uint32_t cth_objtidxoff;	/* Offset of object index section.  */
     157    uint32_t cth_funcidxoff;	/* Offset of function index section.  */
     158    uint32_t cth_varoff;		/* Offset of variable section.  */
     159    uint32_t cth_typeoff;		/* Offset of type section.  */
     160    uint32_t cth_stroff;		/* Offset of string section.  */
     161    uint32_t cth_strlen;		/* Length of string section in bytes.  */
     162  } ctf_header_t;
     163  
     164  #define cth_magic   cth_preamble.ctp_magic
     165  #define cth_version cth_preamble.ctp_version
     166  #define cth_flags   cth_preamble.ctp_flags
     167  
     168  #define CTF_MAGIC	0xdff2	/* Magic number identifying header.  */
     169  
     170  /* Data format version number.  */
     171  
     172  /* v1 upgraded to a later version is not quite the same as the native form,
     173     because the boundary between parent and child types is different but not
     174     recorded anywhere, and you can write it out again via ctf_compress_write(),
     175     so we must track whether the thing was originally v1 or not.  If we were
     176     writing the header from scratch, we would add a *pair* of version number
     177     fields to allow for this, but this will do for now.  (A flag will not do,
     178     because we need to encode both the version we came from and the version we
     179     went to, not just "we were upgraded".) */
     180  
     181  # define CTF_VERSION_1 1
     182  # define CTF_VERSION_1_UPGRADED_3 2
     183  # define CTF_VERSION_2 3
     184  
     185  /* Note: some flags may be valid only in particular format versions.  */
     186  
     187  #define CTF_VERSION_3 4
     188  #define CTF_VERSION CTF_VERSION_3 /* Current version.  */
     189  
     190  #define CTF_F_COMPRESS	0x1	/* Data buffer is compressed by libctf.  */
     191  #define CTF_F_NEWFUNCINFO 0x2	/* New v3 func info section format.  */
     192  
     193  typedef struct ctf_lblent
     194  {
     195    uint32_t ctl_label;		/* Ref to name of label.  */
     196    uint32_t ctl_type;		/* Last type associated with this label.  */
     197  } ctf_lblent_t;
     198  
     199  typedef struct ctf_varent
     200  {
     201    uint32_t ctv_name;		/* Reference to name in string table.  */
     202    uint32_t ctv_type;		/* Index of type of this variable.  */
     203  } ctf_varent_t;
     204  
     205  /* In format v2, type sizes, measured in bytes, come in two flavours.  Nearly
     206     all of them fit into a (UINT_MAX - 1), and thus can be stored in the ctt_size
     207     member of a ctf_stype_t.  The maximum value for these sizes is CTF_MAX_SIZE.
     208     Types larger than this must be stored in the ctf_lsize member of a
     209     ctf_type_t.  Use of this member is indicated by the presence of
     210     CTF_LSIZE_SENT in ctt_size.  */
     211  
     212  typedef struct ctf_stype
     213  {
     214    uint32_t ctt_name;		/* Reference to name in string table.  */
     215    uint32_t ctt_info;		/* Encoded kind, variant length (see below).  */
     216  #ifndef __GNUC__
     217    union
     218    {
     219      uint32_t _size;		/* Size of entire type in bytes.  */
     220      uint32_t _type;		/* Reference to another type.  */
     221    } _u;
     222  #else
     223    __extension__
     224    union
     225    {
     226      uint32_t ctt_size;		/* Size of entire type in bytes.  */
     227      uint32_t ctt_type;		/* Reference to another type.  */
     228    };
     229  #endif
     230  } ctf_stype_t;
     231  
     232  typedef struct ctf_type
     233  {
     234    uint32_t ctt_name;		/* Reference to name in string table.  */
     235    uint32_t ctt_info;		/* Encoded kind, variant length (see below).  */
     236  #ifndef __GNUC__
     237  union
     238    {
     239      uint32_t _size;		/* Always CTF_LSIZE_SENT.  */
     240      uint32_t _type;		/* Do not use.  */
     241    } _u;
     242  #else
     243    __extension__
     244    union
     245    {
     246      uint32_t ctt_size;		/* Always CTF_LSIZE_SENT.  */
     247      uint32_t ctt_type;		/* Do not use.  */
     248    };
     249  #endif
     250    uint32_t ctt_lsizehi;		/* High 32 bits of type size in bytes.  */
     251    uint32_t ctt_lsizelo;		/* Low 32 bits of type size in bytes.  */
     252  } ctf_type_t;
     253  
     254  #ifndef __GNUC__
     255  #define ctt_size _u._size	/* For fundamental types that have a size.  */
     256  #define ctt_type _u._type	/* For types that reference another type.  */
     257  #endif
     258  
     259  /* The following macros and inline functions compose and decompose values for
     260     ctt_info and ctt_name, as well as other structures that contain name
     261     references.  Use outside libdtrace-ctf itself is explicitly for access to CTF
     262     files directly: types returned from the library will always appear to be
     263     CTF_V2.
     264  
     265     v1: (transparently upgraded to v2 at open time: may be compiled out of the
     266     library)
     267                 ------------------------
     268     ctt_info:   | kind | isroot | vlen |
     269                 ------------------------
     270                 15   11    10    9     0
     271  
     272     v2:
     273                 ------------------------
     274     ctt_info:   | kind | isroot | vlen |
     275                 ------------------------
     276                 31    26    25  24     0
     277  
     278     CTF_V1 and V2 _INFO_VLEN have the same interface:
     279  
     280     kind = CTF_*_INFO_KIND(c.ctt_info);     <-- CTF_K_* value (see below)
     281     vlen = CTF_*_INFO_VLEN(fp, c.ctt_info); <-- length of variable data list
     282  
     283     stid = CTF_NAME_STID(c.ctt_name);     <-- string table id number (0 or 1)
     284     offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset
     285  
     286     c.ctt_info = CTF_TYPE_INFO(kind, vlen);
     287     c.ctt_name = CTF_TYPE_NAME(stid, offset);  */
     288  
     289  #define CTF_V1_INFO_KIND(info)		(((info) & 0xf800) >> 11)
     290  #define CTF_V1_INFO_ISROOT(info)	(((info) & 0x0400) >> 10)
     291  #define CTF_V1_INFO_VLEN(info)		(((info) & CTF_MAX_VLEN_V1))
     292  
     293  #define CTF_V2_INFO_KIND(info)		(((info) & 0xfc000000) >> 26)
     294  #define CTF_V2_INFO_ISROOT(info)	(((info) & 0x2000000) >> 25)
     295  #define CTF_V2_INFO_VLEN(info)		(((info) & CTF_MAX_VLEN))
     296  
     297  #define CTF_NAME_STID(name)		((name) >> 31)
     298  #define CTF_NAME_OFFSET(name)		((name) & CTF_MAX_NAME)
     299  #define CTF_SET_STID(name, stid)	((name) | ((unsigned int) stid) << 31)
     300  
     301  /* V2 only. */
     302  #define CTF_TYPE_INFO(kind, isroot, vlen) \
     303  	(((kind) << 26) | (((isroot) ? 1 : 0) << 25) | ((vlen) & CTF_MAX_VLEN))
     304  
     305  #define CTF_TYPE_NAME(stid, offset) \
     306  	(((stid) << 31) | ((offset) & CTF_MAX_NAME))
     307  
     308  /* The next set of macros are for public consumption only.  Not used internally,
     309     since the relevant type boundary is dependent upon the version of the file at
     310     *opening* time, not the version after transparent upgrade.  Use
     311     ctf_type_isparent() / ctf_type_ischild() for that.  */
     312  
     313  #define CTF_V2_TYPE_ISPARENT(fp, id)	((id) <= CTF_MAX_PTYPE)
     314  #define CTF_V2_TYPE_ISCHILD(fp, id)	((id) > CTF_MAX_PTYPE)
     315  #define CTF_V2_TYPE_TO_INDEX(id)	((id) & CTF_MAX_PTYPE)
     316  #define CTF_V2_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE+1)) : (id))
     317  
     318  #define CTF_V1_TYPE_ISPARENT(fp, id)	((id) <= CTF_MAX_PTYPE_V1)
     319  #define CTF_V1_TYPE_ISCHILD(fp, id)	((id) > CTF_MAX_PTYPE_V1)
     320  #define CTF_V1_TYPE_TO_INDEX(id)	((id) & CTF_MAX_PTYPE_V1)
     321  #define CTF_V1_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE_V1+1)) : (id))
     322  
     323  /* Valid for both V1 and V2. */
     324  #define CTF_TYPE_LSIZE(cttp) \
     325  	(((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo)
     326  #define CTF_SIZE_TO_LSIZE_HI(size)	((uint32_t)((uint64_t)(size) >> 32))
     327  #define CTF_SIZE_TO_LSIZE_LO(size)	((uint32_t)(size))
     328  
     329  #define CTF_STRTAB_0	0	/* String table id 0 (in-CTF).  */
     330  #define CTF_STRTAB_1	1	/* String table id 1 (ELF strtab).  */
     331  
     332  /* Values for CTF_TYPE_KIND().  If the kind has an associated data list,
     333     CTF_INFO_VLEN() will extract the number of elements in the list, and
     334     the type of each element is shown in the comments below. */
     335  
     336  #define CTF_K_UNKNOWN	0	/* Unknown type (used for padding and
     337  				   unrepresentable types).  */
     338  #define CTF_K_INTEGER	1	/* Variant data is CTF_INT_DATA (see below).  */
     339  #define CTF_K_FLOAT	2	/* Variant data is CTF_FP_DATA (see below).  */
     340  #define CTF_K_POINTER	3	/* ctt_type is referenced type.  */
     341  #define CTF_K_ARRAY	4	/* Variant data is single ctf_array_t.  */
     342  #define CTF_K_FUNCTION	5	/* ctt_type is return type, variant data is
     343  				   list of argument types (unsigned short's for v1,
     344  				   uint32_t's for v2).  */
     345  #define CTF_K_STRUCT	6	/* Variant data is list of ctf_member_t's.  */
     346  #define CTF_K_UNION	7	/* Variant data is list of ctf_member_t's.  */
     347  #define CTF_K_ENUM	8	/* Variant data is list of ctf_enum_t's.  */
     348  #define CTF_K_FORWARD	9	/* No additional data; ctt_name is tag.  */
     349  #define CTF_K_TYPEDEF	10	/* ctt_type is referenced type.  */
     350  #define CTF_K_VOLATILE	11	/* ctt_type is base type.  */
     351  #define CTF_K_CONST	12	/* ctt_type is base type.  */
     352  #define CTF_K_RESTRICT	13	/* ctt_type is base type.  */
     353  #define CTF_K_SLICE	14	/* Variant data is a ctf_slice_t.  */
     354  
     355  #define CTF_K_MAX	63	/* Maximum possible (V2) CTF_K_* value.  */
     356  
     357  /* Values for ctt_type when kind is CTF_K_INTEGER.  The flags, offset in bits,
     358     and size in bits are encoded as a single word using the following macros.
     359     (However, you can also encode the offset and bitness in a slice.)  */
     360  
     361  #define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24)
     362  #define CTF_INT_OFFSET(data)   (((data) & 0x00ff0000) >> 16)
     363  #define CTF_INT_BITS(data)     (((data) & 0x0000ffff))
     364  
     365  #define CTF_INT_DATA(encoding, offset, bits) \
     366         (((encoding) << 24) | ((offset) << 16) | (bits))
     367  
     368  #define CTF_INT_SIGNED	0x01	/* Integer is signed (otherwise unsigned).  */
     369  #define CTF_INT_CHAR	0x02	/* Character display format.  */
     370  #define CTF_INT_BOOL	0x04	/* Boolean display format.  */
     371  #define CTF_INT_VARARGS	0x08	/* Varargs display format.  */
     372  
     373  /* Use CTF_CHAR to produce a char that agrees with the system's native
     374     char signedness.  */
     375  #if CHAR_MIN == 0
     376  # define CTF_CHAR (CTF_INT_CHAR)
     377  #else
     378  # define CTF_CHAR (CTF_INT_CHAR | CTF_INT_SIGNED)
     379  #endif
     380  
     381  /* Values for ctt_type when kind is CTF_K_FLOAT.  The encoding, offset in bits,
     382     and size in bits are encoded as a single word using the following macros.
     383     (However, you can also encode the offset and bitness in a slice.)  */
     384  
     385  #define CTF_FP_ENCODING(data)  (((data) & 0xff000000) >> 24)
     386  #define CTF_FP_OFFSET(data)    (((data) & 0x00ff0000) >> 16)
     387  #define CTF_FP_BITS(data)      (((data) & 0x0000ffff))
     388  
     389  #define CTF_FP_DATA(encoding, offset, bits) \
     390         (((encoding) << 24) | ((offset) << 16) | (bits))
     391  
     392  /* Variant data when kind is CTF_K_FLOAT is an encoding in the top eight bits.  */
     393  #define CTF_FP_ENCODING(data)	(((data) & 0xff000000) >> 24)
     394  
     395  #define CTF_FP_SINGLE	1	/* IEEE 32-bit float encoding.  */
     396  #define CTF_FP_DOUBLE	2	/* IEEE 64-bit float encoding.  */
     397  #define CTF_FP_CPLX	3	/* Complex encoding.  */
     398  #define CTF_FP_DCPLX	4	/* Double complex encoding.  */
     399  #define CTF_FP_LDCPLX	5	/* Long double complex encoding.  */
     400  #define CTF_FP_LDOUBLE	6	/* Long double encoding.  */
     401  #define CTF_FP_INTRVL	7	/* Interval (2x32-bit) encoding.  */
     402  #define CTF_FP_DINTRVL	8	/* Double interval (2x64-bit) encoding.  */
     403  #define CTF_FP_LDINTRVL	9	/* Long double interval (2x128-bit) encoding.  */
     404  #define CTF_FP_IMAGRY	10	/* Imaginary (32-bit) encoding.  */
     405  #define CTF_FP_DIMAGRY	11	/* Long imaginary (64-bit) encoding.  */
     406  #define CTF_FP_LDIMAGRY	12	/* Long double imaginary (128-bit) encoding.  */
     407  
     408  #define CTF_FP_MAX	12	/* Maximum possible CTF_FP_* value */
     409  
     410  /* A slice increases the offset and reduces the bitness of the referenced
     411     ctt_type, which must be a type which has an encoding (fp, int, or enum).  We
     412     also store the referenced type in here, because it is easier to keep the
     413     ctt_size correct for the slice than to shuffle the size into here and keep
     414     the ctt_type where it is for other types.
     415  
     416     In a future version, where we loosen requirements on alignment in the CTF
     417     file, the cts_offset and cts_bits will be chars: but for now they must be
     418     shorts or everything after a slice will become unaligned.  */
     419  
     420  typedef struct ctf_slice
     421  {
     422    uint32_t cts_type;
     423    unsigned short cts_offset;
     424    unsigned short cts_bits;
     425  } ctf_slice_t;
     426  
     427  typedef struct ctf_array
     428  {
     429    uint32_t cta_contents;	/* Reference to type of array contents.  */
     430    uint32_t cta_index;		/* Reference to type of array index.  */
     431    uint32_t cta_nelems;		/* Number of elements.  */
     432  } ctf_array_t;
     433  
     434  /* Most structure members have bit offsets that can be expressed using a short.
     435     Some don't.  ctf_member_t is used for structs which cannot contain any of
     436     these large offsets, whereas ctf_lmember_t is used in the latter case.  If
     437     any member of a given struct has an offset that cannot be expressed using a
     438     uint32_t, all members will be stored as type ctf_lmember_t.  This is expected
     439     to be very rare (but nonetheless possible).  */
     440  
     441  #define CTF_LSTRUCT_THRESH	536870912
     442  
     443  typedef struct ctf_member_v2
     444  {
     445    uint32_t ctm_name;		/* Reference to name in string table.  */
     446    uint32_t ctm_offset;		/* Offset of this member in bits.  */
     447    uint32_t ctm_type;		/* Reference to type of member.  */
     448  } ctf_member_t;
     449  
     450  typedef struct ctf_lmember_v2
     451  {
     452    uint32_t ctlm_name;		/* Reference to name in string table.  */
     453    uint32_t ctlm_offsethi;	/* High 32 bits of member offset in bits.  */
     454    uint32_t ctlm_type;		/* Reference to type of member.  */
     455    uint32_t ctlm_offsetlo;	/* Low 32 bits of member offset in bits.  */
     456  } ctf_lmember_t;
     457  
     458  #define	CTF_LMEM_OFFSET(ctlmp) \
     459  	(((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo)
     460  #define	CTF_OFFSET_TO_LMEMHI(offset)	((uint32_t)((uint64_t)(offset) >> 32))
     461  #define	CTF_OFFSET_TO_LMEMLO(offset)	((uint32_t)(offset))
     462  
     463  typedef struct ctf_enum
     464  {
     465    uint32_t cte_name;		/* Reference to name in string table.  */
     466    int32_t cte_value;		/* Value associated with this name.  */
     467  } ctf_enum_t;
     468  
     469  /* The ctf_archive is a collection of ctf_dict_t's stored together. The format
     470     is suitable for mmap()ing: this control structure merely describes the
     471     mmap()ed archive (and overlaps the first few bytes of it), hence the
     472     greater care taken with integral types.  All CTF files in an archive
     473     must have the same data model.  (This is not validated.)
     474  
     475     All integers in this structure are stored in little-endian byte order.
     476  
     477     The code relies on the fact that everything in this header is a uint64_t
     478     and thus the header needs no padding (in particular, that no padding is
     479     needed between ctfa_ctfs and the unnamed ctfa_archive_modent array
     480     that follows it).
     481  
     482     This is *not* the same as the data structure returned by the ctf_arc_*()
     483     functions:  this is the low-level on-disk representation.  */
     484  
     485  #define CTFA_MAGIC 0x8b47f2a4d7623eeb	/* Random.  */
     486  struct ctf_archive
     487  {
     488    /* Magic number.  (In loaded files, overwritten with the file size
     489       so ctf_arc_close() knows how much to munmap()).  */
     490    uint64_t ctfa_magic;
     491  
     492    /* CTF data model.  */
     493    uint64_t ctfa_model;
     494  
     495    /* Number of CTF dicts in the archive.  */
     496    uint64_t ctfa_ndicts;
     497  
     498    /* Offset of the name table.  */
     499    uint64_t ctfa_names;
     500  
     501    /* Offset of the CTF table.  Each element starts with a size (a uint64_t
     502       in network byte order) then a ctf_dict_t of that size.  */
     503    uint64_t ctfa_ctfs;
     504  };
     505  
     506  /* An array of ctfa_nnamed of this structure lies at
     507     ctf_archive[ctf_archive->ctfa_modents] and gives the ctfa_ctfs or
     508     ctfa_names-relative offsets of each name or ctf_dict_t.  */
     509  
     510  typedef struct ctf_archive_modent
     511  {
     512    uint64_t name_offset;
     513    uint64_t ctf_offset;
     514  } ctf_archive_modent_t;
     515  
     516  #ifdef	__cplusplus
     517  }
     518  #endif
     519  
     520  #endif				/* _CTF_H */