(root)/
gcc-13.2.0/
gcc/
splay-tree-utils.h
       1  // Splay tree utilities                                             -*- C++ -*-
       2  // Copyright (C) 2020-2023 Free Software Foundation, Inc.
       3  //
       4  // This file is part of GCC.
       5  //
       6  // GCC is free software; you can redistribute it and/or modify it under
       7  // the terms of the GNU General Public License as published by the Free
       8  // Software Foundation; either version 3, or (at your option) any later
       9  // version.
      10  //
      11  // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      12  // WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13  // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      14  // for more details.
      15  //
      16  // You should have received a copy of the GNU General Public License
      17  // along with GCC; see the file COPYING3.  If not see
      18  // <http://www.gnu.org/licenses/>.
      19  
      20  // Implement splay tree node accessors for a class that stores its
      21  // two child nodes in a member variable of the form:
      22  //
      23  //    Node m_children[2];
      24  template<typename Node>
      25  class default_splay_tree_accessors
      26  {
      27  public:
      28    using node_type = Node;
      29  
      30    static auto
      31    child (node_type node, unsigned int index)
      32      -> decltype (node->m_children[index]) &
      33    {
      34      return node->m_children[index];
      35    }
      36  };
      37  
      38  // Implement splay tree node accessors for a class that stores its
      39  // two child nodes in a member variable of the form:
      40  //
      41  //    Node m_children[2];
      42  //
      43  // and also stores its parent node in a member variable of the form:
      44  //
      45  //    Node m_parent;
      46  template<typename Node>
      47  class default_splay_tree_accessors_with_parent
      48    : public default_splay_tree_accessors<Node>
      49  {
      50  public:
      51    using node_type = Node;
      52  
      53    static auto
      54    parent (node_type node) -> decltype (node->m_parent) &
      55    {
      56      return node->m_parent;
      57    }
      58  };
      59  
      60  // Base is a splay tree accessor class for nodes that have no parent field.
      61  // Base therefore provides a Base::child method but does not provide a
      62  // Base::parent method.  Extend Base with dummy routines for setting the
      63  // parent, which is a no-op when the parent is not stored.
      64  template<typename Base>
      65  class splay_tree_accessors_without_parent : public Base
      66  {
      67  public:
      68    using typename Base::node_type;
      69  
      70    static void set_parent (node_type, node_type) {}
      71  };
      72  
      73  // Base is splay tree accessor class for nodes that have a parent field.
      74  // Base therefore provides both Base::child and Base::parent methods.
      75  // Extend Base with routines for setting the parent.
      76  template<typename Base>
      77  class splay_tree_accessors_with_parent : public Base
      78  {
      79  public:
      80    using typename Base::node_type;
      81  
      82    // Record that NODE's parent is now NEW_PARENT.
      83    static void
      84    set_parent (node_type node, node_type new_parent)
      85    {
      86      Base::parent (node) = new_parent;
      87    }
      88  };
      89  
      90  // A base class that provides some splay tree operations that are common
      91  // to both rooted_splay_tree and rootless_splay_tree.
      92  //
      93  // Nodes in the splay tree have type Accessors::node_type; this is
      94  // usually a pointer type.  The Accessors class provides the following
      95  // static member functions for accessing nodes:
      96  //
      97  // - Accessors::child (NODE, INDEX)
      98  //     INDEX is guaranteed to be 0 or 1.  If INDEX is 0, return a reference
      99  //     to where NODE's left child is stored, otherwise return a reference
     100  //     to where NODE's right child is stored.
     101  //
     102  // - Accessors::set_parent (NODE, PARENT)
     103  //     Record that NODE's parent node is now PARENT.
     104  template<typename Accessors>
     105  class base_splay_tree : protected Accessors
     106  {
     107  public:
     108    using typename Accessors::node_type;
     109  
     110    // INDEX is either 0 or 1.  If INDEX is 0, insert CHILD immediately
     111    // before NODE, otherwise insert CHILD immediately after NODE.
     112    //
     113    // Complexity: O(1).
     114    static void insert_child (node_type node, unsigned int index,
     115  			    node_type child);
     116  
     117    // Print NODE and its child nodes to PP for debugging purposes,
     118    // using PRINTER (PP, N) to print the data for node N.
     119    template<typename Printer>
     120    static void print (pretty_printer *pp, node_type node, Printer printer);
     121  
     122  protected:
     123    using Accessors::set_parent;
     124  
     125    static node_type get_child (node_type, unsigned int);
     126    static void set_child (node_type, unsigned int, node_type);
     127    static node_type promote_child (node_type, unsigned int);
     128    static void promote_child (node_type, unsigned int, node_type);
     129  
     130    template<unsigned int N>
     131    static node_type splay_limit (node_type);
     132  
     133    static node_type remove_node_internal (node_type);
     134  
     135    template<typename Printer>
     136    static void print (pretty_printer *pp, node_type node, Printer printer,
     137  		     char, vec<char> &);
     138  };
     139  
     140  // This class provides splay tree routines for cases in which the root
     141  // of the splay tree is known.  It works with both nodes that store
     142  // their parent node and nodes that don't.
     143  //
     144  // The class is lightweight: it only contains a single root node.
     145  template<typename Accessors>
     146  class rooted_splay_tree : public base_splay_tree<Accessors>
     147  {
     148    using parent = base_splay_tree<Accessors>;
     149  
     150  public:
     151    using typename Accessors::node_type;
     152  
     153  protected:
     154    // The root of the splay tree, or node_type () if the tree is empty.
     155    node_type m_root;
     156  
     157  public:
     158    rooted_splay_tree () : m_root () {}
     159  
     160    // Construct a tree with the specified root node.
     161    rooted_splay_tree (node_type root) : m_root (root) {}
     162  
     163    // Return the root of the tree.
     164    node_type root () const { return m_root; }
     165  
     166    // Return true if the tree contains any nodes.
     167    explicit operator bool () const { return m_root; }
     168  
     169    // Dereference the root node.
     170    node_type operator-> () { return m_root; }
     171  
     172    // Insert NEW_NODE into the splay tree, if no equivalent node already
     173    // exists.  For a given node N, COMPARE (N) should return:
     174    //
     175    // - a negative value if NEW_NODE should come before N
     176    // - zero if NEW_NODE and N are the same
     177    // - a positive value if NEW_NODE should come after N
     178    //
     179    // Return true if NEW_NODE was inserted.
     180    //
     181    // On return, NEW_NODE or its equivalent is the root of the tree.
     182    //
     183    // Complexity: amortized O(C log N), worst-cast O(C N), where C is
     184    // the complexity of the comparison.
     185    template<typename Comparator>
     186    bool insert (node_type new_node, Comparator compare);
     187  
     188    // Insert NEW_NODE into the splay tree, given that NEW_NODE is the
     189    // maximum node of the new tree.  On return, NEW_NODE is also the
     190    // root of the tree.
     191    //
     192    // Complexity: O(1).
     193    void insert_max_node (node_type new_node);
     194  
     195    // Splice NEXT_TREE onto this one, given that all nodes in NEXT_TREE
     196    // are greater than the maximum node in this tree.  NEXT_TREE should
     197    // not be used afterwards.
     198    //
     199    // Complexity: O(1) if the root of the splay tree is already the maximum
     200    // node.  Otherwise amortized O(log N), worst-cast O(N).
     201    void splice_next_tree (rooted_splay_tree next_tree);
     202  
     203    // The root of the tree is currently the maximum node.  Replace it
     204    // with NEW_NODE.
     205    //
     206    // Complexity: O(1).
     207    void replace_max_node_at_root (node_type new_node);
     208  
     209    // Remove the root node of the splay tree.
     210    //
     211    // Complexity: O(1) if removing the maximum or minimum node.
     212    // Otherwise amortized O(log N), worst-cast O(N).
     213    void remove_root ();
     214  
     215    // Split the left child of the current root out into a separate tree
     216    // and return the new tree.
     217    rooted_splay_tree split_before_root ();
     218  
     219    // Split the right child of the current root out into a separate tree
     220    // and return the new tree.
     221    rooted_splay_tree split_after_root ();
     222  
     223    // If the root is not the minimum node of the splay tree, bring the previous
     224    // node to the root and return true, otherwise return false.
     225    //
     226    // Complexity: amortized O(log N), worst-cast O(N).
     227    bool splay_prev_node ();
     228  
     229    // If the root is not the maximum node of the splay tree, bring the next
     230    // node to the root and return true, otherwise return false.
     231    //
     232    // Complexity: amortized O(log N), worst-cast O(N).
     233    bool splay_next_node ();
     234  
     235    // Bring the minimum node of the splay tree to the root.
     236    //
     237    // Complexity: amortized O(log N), worst-cast O(N).
     238    void splay_min_node ();
     239  
     240    // Bring the maximum node of the splay tree to the root.
     241    //
     242    // Complexity: amortized O(log N), worst-cast O(N).
     243    void splay_max_node ();
     244  
     245    // Return the minimum node of the splay tree, or node_type () if the
     246    // tree is empty.  On return, the minimum node (if any) is also the
     247    // root of the tree.
     248    //
     249    // Complexity: amortized O(log N), worst-cast O(N).
     250    node_type min_node ();
     251  
     252    // Return the maximum node of the splay tree, or node_type () if the
     253    // tree is empty.  On return, the maximum node (if any) is also the
     254    // root of the tree.
     255    //
     256    // Complexity: amortized O(log N), worst-cast O(N).
     257    node_type max_node ();
     258  
     259    // Search the splay tree.  For a given node N, COMPARE (N) should return:
     260    //
     261    // - a negative value if N is bigger than the node being searched for
     262    // - zero if N is the node being searched for
     263    // - a positive value if N is smaller than the node being searched for
     264    //
     265    // If the node that COMPARE is looking for exists, install it as the root
     266    // node of the splay tree.  Otherwise, arbitrarily pick either:
     267    //
     268    // - the maximum node that is smaller than the node being searched for or
     269    // - the minimum node that is bigger than the node being searched for
     270    //
     271    // and install that node as the root instead.
     272    //
     273    // Return the result of COMPARE for the new root.
     274    //
     275    // This form of lookup is intended for cases in which both the following
     276    // are true:
     277    //
     278    // (a) The work that COMPARE needs to do to detect if a node is too big
     279    //     is the same as the work that COMPARE needs to do to detect if a
     280    //     node is too small.  (This is not true of range comparisons,
     281    //     for example.)
     282    //
     283    // (b) COMPARE is (or might be) relatively complex.
     284    //
     285    // This form of lookup is also useful if the items being compared naturally
     286    // provide a <=>-style comparison result, without the result having to be
     287    // forced by the equivalent of a ?: expression.
     288    //
     289    // The implementation only invokes COMPARE once per node.
     290    //
     291    // Complexity: amortized O(C log N), worst-cast O(C N), where C is
     292    // the complexity of the comparison.
     293    template<typename Comparator>
     294    auto lookup (Comparator compare) -> decltype (compare (m_root));
     295  
     296    // Search the splay tree.  For a given node N, WANT_SOMETHING_SMALLER (N)
     297    // is true if N is too big and WANT_SOMETHING_BIGGER (N) is true if N
     298    // is too small.  Both functions return false if N is the node being
     299    // searched for.
     300    //
     301    // If the node that is being searched for exists, install it as the root
     302    // node of the splay tree and return 0.  Otherwise, arbitrarily choose
     303    // between these two options:
     304    //
     305    // - Install the maximum node that is smaller than the node being
     306    //   searched for as the root of the splay tree and return 1.
     307    //
     308    // - Install the minimum node that is bigger than the node being
     309    //   searched for and return -1.
     310    //
     311    // This form of lookup is intended for cases in which either of the
     312    // following are true:
     313    //
     314    // (a) WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER test different
     315    //     parts of the node's data.  For example, when comparing ranges,
     316    //     WANT_SOMETHING_SMALLER would test the lower limit of the given
     317    //     node's range while WANT_SOMETHING_BIGGER would test the upper
     318    //     limit of the given node's range.
     319    //
     320    // (b) There is no significant overhead to calling both
     321    //     WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER for the same node.
     322    //
     323    // Complexity: amortized O(C log N), worst-cast O(C N), where C is
     324    // the complexity of the comparisons.
     325    template<typename LeftPredicate, typename RightPredicate>
     326    int lookup (LeftPredicate want_something_smaller,
     327  	      RightPredicate want_something_bigger);
     328  
     329    // Keep the ability to print subtrees.
     330    using parent::print;
     331  
     332    // Print the tree to PP for debugging purposes, using PRINTER (PP, N)
     333    // to print the data for node N.
     334    template<typename Printer>
     335    void print (pretty_printer *pp, Printer printer) const;
     336  
     337  protected:
     338    using parent::get_child;
     339    using parent::set_child;
     340    using parent::promote_child;
     341  
     342    using parent::set_parent;
     343  
     344    template<unsigned int N>
     345    bool splay_neighbor ();
     346  };
     347  
     348  // Provide splay tree routines for nodes of type Accessors::node_type,
     349  // which doesn't have a parent field.  Use Accessors::child to access
     350  // the children of a node.
     351  template<typename Accessors>
     352  using splay_tree_without_parent
     353    = rooted_splay_tree<splay_tree_accessors_without_parent<Accessors>>;
     354  
     355  // A splay tree for nodes of type Node, which is usually a pointer type.
     356  // The child nodes are stored in a member variable:
     357  //
     358  //    Node m_children[2];
     359  //
     360  // Node does not have a parent field.
     361  template<typename Node>
     362  using default_splay_tree
     363    = splay_tree_without_parent<default_splay_tree_accessors<Node>>;
     364  
     365  // A simple splay tree node that stores a value of type T.
     366  template<typename T>
     367  class splay_tree_node
     368  {
     369    friend class default_splay_tree_accessors<splay_tree_node *>;
     370  
     371  public:
     372    splay_tree_node () = default;
     373    splay_tree_node (T value) : m_value (value), m_children () {}
     374  
     375    T &value () { return m_value; }
     376    const T &value () const { return m_value; }
     377  
     378  private:
     379    T m_value;
     380    splay_tree_node *m_children[2];
     381  };
     382  
     383  // A splay tree whose nodes hold values of type T.
     384  template<typename T>
     385  using splay_tree = default_splay_tree<splay_tree_node<T> *>;
     386  
     387  // Provide splay tree routines for cases in which the root of the tree
     388  // is not explicitly stored.
     389  //
     390  // The nodes of the tree have type Accessors::node_type, which is usually
     391  // a pointer type.  The nodes have a link back to their parent.
     392  //
     393  // The Accessors class provides the following static member functions:
     394  //
     395  // - Accessors::child (NODE, INDEX)
     396  //     INDEX is guaranteed to be 0 or 1.  If INDEX is 0, return a reference
     397  //     to where NODE's left child is stored, otherwise return a reference
     398  //     to where NODE's right child is stored.
     399  //
     400  // - Accessors::parent (NODE)
     401  //     Return a reference to where NODE's parent is stored.
     402  template<typename Accessors>
     403  class rootless_splay_tree
     404    : public base_splay_tree<splay_tree_accessors_with_parent<Accessors>>
     405  {
     406    using full_accessors = splay_tree_accessors_with_parent<Accessors>;
     407    using parent = base_splay_tree<full_accessors>;
     408  
     409  public:
     410    using rooted = rooted_splay_tree<full_accessors>;
     411  
     412    using typename Accessors::node_type;
     413  
     414    // Remove NODE from the splay tree.  Return the node that replaces it,
     415    // or null if NODE had no children.
     416    //
     417    // Complexity: O(1) if removing the maximum or minimum node.
     418    // Otherwise amortized O(log N), worst-cast O(N).
     419    static node_type remove_node (node_type node);
     420  
     421    // Splay NODE so that it becomes the root of the splay tree.
     422    //
     423    // Complexity: amortized O(log N), worst-cast O(N).
     424    static void splay (node_type node);
     425  
     426    // Like splay, but take advantage of the fact that NODE is known to be
     427    // the minimum node in the tree.
     428    //
     429    // Complexity: amortized O(log N), worst-cast O(N).
     430    static void splay_known_min_node (node_type node);
     431  
     432    // Like splay, but take advantage of the fact that NODE is known to be
     433    // the maximum node in the tree.
     434    //
     435    // Complexity: amortized O(log N), worst-cast O(N).
     436    static void splay_known_max_node (node_type node);
     437  
     438    // Splay NODE while looking for an ancestor node N for which PREDICATE (N)
     439    // is true.  If such an ancestor node exists, stop the splay operation
     440    // early and return PREDICATE (N).  Otherwise, complete the splay operation
     441    // and return DEFAULT_RESULT.  In the latter case, NODE is now the root of
     442    // the splay tree.
     443    //
     444    // Note that this routine only examines nodes that happen to be ancestors
     445    // of NODE.  It does not search the full tree.
     446    //
     447    // Complexity: amortized O(P log N), worst-cast O(P N), where P is the
     448    // complexity of the predicate.
     449    template<typename DefaultResult, typename Predicate>
     450    static auto splay_and_search (node_type node, DefaultResult default_result,
     451  				Predicate predicate)
     452      -> decltype (predicate (node, 0));
     453  
     454    // NODE1 and NODE2 are known to belong to the same splay tree.  Return:
     455    //
     456    // -1 if NODE1 < NODE2
     457    // 0 if NODE1 == NODE2
     458    // 1 if NODE1 > NODE2
     459    //
     460    // Complexity: amortized O(log N), worst-cast O(N).
     461    static int compare_nodes (node_type node1, node_type node2);
     462  
     463  protected:
     464    using parent::get_child;
     465    using parent::set_child;
     466    using parent::promote_child;
     467  
     468    static node_type get_parent (node_type);
     469    using parent::set_parent;
     470  
     471    static unsigned int child_index (node_type, node_type);
     472  
     473    static int compare_nodes_one_way (node_type, node_type);
     474  
     475    template<unsigned int N>
     476    static void splay_known_limit (node_type);
     477  };
     478  
     479  // Provide rootless splay tree routines for nodes of type Node.
     480  // The child nodes are stored in a member variable:
     481  //
     482  //    Node m_children[2];
     483  //
     484  // and the parent node is stored in a member variable:
     485  //
     486  //    Node m_parent;
     487  template<typename Node>
     488  using default_rootless_splay_tree
     489    = rootless_splay_tree<default_splay_tree_accessors_with_parent<Node>>;
     490  
     491  #include "splay-tree-utils.tcc"