(root)/
gcc-13.2.0/
gcc/
sparseset.h
       1  /* SparseSet implementation.
       2     Copyright (C) 2007-2023 Free Software Foundation, Inc.
       3     Contributed by Peter Bergner <bergner@vnet.ibm.com>
       4  
       5  This file is part of GCC.
       6  
       7  GCC is free software; you can redistribute it and/or modify it under
       8  the terms of the GNU General Public License as published by the Free
       9  Software Foundation; either version 3, or (at your option) any later
      10  version.
      11  
      12  GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      13  WARRANTY; without even the implied warranty of MERCHANTABILITY or
      14  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      15  for more details.
      16  
      17  You should have received a copy of the GNU General Public License
      18  along with GCC; see the file COPYING3.  If not see
      19  <http://www.gnu.org/licenses/>.  */
      20  
      21  #ifndef GCC_SPARSESET_H
      22  #define GCC_SPARSESET_H
      23  
      24  /* Implementation of the Briggs and Torczon sparse set representation.
      25     The sparse set representation was first published in:
      26  
      27     "An Efficient Representation for Sparse Sets",
      28     ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.
      29  
      30     The sparse set representation is suitable for integer sets with a
      31     fixed-size universe.  Two vectors are used to store the members of
      32     the set.  If an element I is in the set, then sparse[I] is the
      33     index of I in the dense vector, and dense[sparse[I]] == I.  The dense
      34     vector works like a stack.  The size of the stack is the cardinality
      35     of the set.
      36  
      37     The following operations can be performed in O(1) time:
      38  
      39       * clear			: sparseset_clear
      40       * cardinality		: sparseset_cardinality
      41       * set_size			: sparseset_size
      42       * member_p			: sparseset_bit_p
      43       * add_member		: sparseset_set_bit
      44       * remove_member		: sparseset_clear_bit
      45       * choose_one		: sparseset_pop
      46  
      47     Additionally, the sparse set representation supports enumeration of
      48     the members in O(N) time, where n is the number of members in the set.
      49     The members of the set are stored cache-friendly in the dense vector.
      50     This makes it a competitive choice for iterating over relatively sparse
      51     sets requiring operations:
      52  
      53       * forall			: EXECUTE_IF_SET_IN_SPARSESET
      54       * set_copy			: sparseset_copy
      55       * set_intersection		: sparseset_and
      56       * set_union		: sparseset_ior
      57       * set_difference		: sparseset_and_compl
      58       * set_disjuction		: (not implemented)
      59       * set_compare		: sparseset_equal_p
      60  
      61     NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET.
      62     The iterator is updated for it.
      63  
      64     Based on the efficiency of these operations, this representation of
      65     sparse sets will often be superior to alternatives such as simple
      66     bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees,
      67     hash tables, linked lists, etc., if the set is sufficiently sparse.
      68     In the LOPLAS paper the cut-off point where sparse sets became faster
      69     than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the
      70     size of the universe of the set).
      71  
      72     Because the set universe is fixed, the set cannot be resized.  For
      73     sparse sets with initially unknown size, linked-list bitmaps are a
      74     better choice, see bitmap.h.
      75  
      76     Sparse sets storage requirements are relatively large: O(U) with a
      77     larger constant than sbitmaps (if the storage requirement for an
      78     sbitmap with universe U is S, then the storage required for a sparse
      79     set for the same universe are 2 * sizeof (SPARSESET_ELT_TYPE) * 8 * S).
      80     Accessing the sparse vector is not very cache-friendly, but iterating
      81     over the members in the set is cache-friendly because only the dense
      82     vector is used.  */
      83  
      84  /* Data Structure used for the SparseSet representation.  */
      85  
      86  #define SPARSESET_ELT_TYPE unsigned int
      87  
      88  typedef struct sparseset_def
      89  {
      90    SPARSESET_ELT_TYPE *dense;	/* Dense array.  */
      91    SPARSESET_ELT_TYPE *sparse;	/* Sparse array.  */
      92    SPARSESET_ELT_TYPE members;	/* Number of elements.  */
      93    SPARSESET_ELT_TYPE size;	/* Maximum number of elements.  */
      94    SPARSESET_ELT_TYPE iter;	/* Iterator index.  */
      95    unsigned char iter_inc;	/* Iteration increment amount.  */
      96    bool iterating;
      97    SPARSESET_ELT_TYPE elms[2];   /* Combined dense and sparse arrays.  */
      98  } *sparseset;
      99  
     100  #define sparseset_free(MAP)  free(MAP)
     101  extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms);
     102  extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE);
     103  extern void sparseset_copy (sparseset, sparseset);
     104  extern void sparseset_and (sparseset, sparseset, sparseset);
     105  extern void sparseset_and_compl (sparseset, sparseset, sparseset);
     106  extern void sparseset_ior (sparseset, sparseset, sparseset);
     107  extern bool sparseset_equal_p (sparseset, sparseset);
     108  
     109  /* Operation: S = {}
     110     Clear the set of all elements.  */
     111  
     112  inline void
     113  sparseset_clear (sparseset s)
     114  {
     115    s->members = 0;
     116    s->iterating = false;
     117  }
     118  
     119  /* Return the number of elements currently in the set.  */
     120  
     121  inline SPARSESET_ELT_TYPE
     122  sparseset_cardinality (sparseset s)
     123  {
     124    return s->members;
     125  }
     126  
     127  /* Return the maximum number of elements this set can hold.  */
     128  
     129  inline SPARSESET_ELT_TYPE
     130  sparseset_size (sparseset s)
     131  {
     132    return s->size;
     133  }
     134  
     135  /* Return true if e is a member of the set S, otherwise return false.  */
     136  
     137  inline bool
     138  sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e)
     139  {
     140    SPARSESET_ELT_TYPE idx;
     141  
     142    gcc_checking_assert (e < s->size);
     143  
     144    idx = s->sparse[e];
     145  
     146    return idx < s->members && s->dense[idx] == e;
     147  }
     148  
     149  /* Low level insertion routine not meant for use outside of sparseset.[ch].
     150     Assumes E is valid and not already a member of the set S.  */
     151  
     152  inline void
     153  sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx)
     154  {
     155    s->sparse[e] = idx;
     156    s->dense[idx] = e;
     157  }
     158  
     159  /* Operation: S = S + {e}
     160     Insert E into the set S, if it isn't already a member.  */
     161  
     162  inline void
     163  sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e)
     164  {
     165    if (!sparseset_bit_p (s, e))
     166      sparseset_insert_bit (s, e, s->members++);
     167  }
     168  
     169  /* Return and remove the last member added to the set S.  */
     170  
     171  inline SPARSESET_ELT_TYPE
     172  sparseset_pop (sparseset s)
     173  {
     174    SPARSESET_ELT_TYPE mem = s->members;
     175  
     176    gcc_checking_assert (mem != 0);
     177  
     178    s->members = mem - 1;
     179    return s->dense[s->members];
     180  }
     181  
     182  inline void
     183  sparseset_iter_init (sparseset s)
     184  {
     185    s->iter = 0;
     186    s->iter_inc = 1;
     187    s->iterating = true;
     188  }
     189  
     190  inline bool
     191  sparseset_iter_p (sparseset s)
     192  {
     193    if (s->iterating && s->iter < s->members)
     194      return true;
     195    else
     196      return s->iterating = false;
     197  }
     198  
     199  inline SPARSESET_ELT_TYPE
     200  sparseset_iter_elm (sparseset s)
     201  {
     202    return s->dense[s->iter];
     203  }
     204  
     205  inline void
     206  sparseset_iter_next (sparseset s)
     207  {
     208    s->iter += s->iter_inc;
     209    s->iter_inc = 1;
     210  }
     211  
     212  #define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER)			\
     213    for (sparseset_iter_init (SPARSESET);					\
     214         sparseset_iter_p (SPARSESET)					\
     215         && (((ITER) = sparseset_iter_elm (SPARSESET)) || 1);		\
     216         sparseset_iter_next (SPARSESET))
     217  
     218  #endif /* GCC_SPARSESET_H */