(root)/
gcc-13.2.0/
gcc/
go/
gofrontend/
backend.h
       1  // backend.h -- Go frontend interface to backend  -*- C++ -*-
       2  
       3  // Copyright 2011 The Go Authors. All rights reserved.
       4  // Use of this source code is governed by a BSD-style
       5  // license that can be found in the LICENSE file.
       6  
       7  #ifndef GO_BACKEND_H
       8  #define GO_BACKEND_H
       9  
      10  #include <gmp.h>
      11  #include <mpfr.h>
      12  #include <mpc.h>
      13  
      14  #include "operator.h"
      15  
      16  // Pointers to these types are created by the backend, passed to the
      17  // frontend, and passed back to the backend.  The types must be
      18  // defined by the backend using these names.
      19  
      20  // The backend representation of a type.
      21  class Btype;
      22  
      23  // The backend represention of an expression.
      24  class Bexpression;
      25  
      26  // The backend representation of a statement.
      27  class Bstatement;
      28  
      29  // The backend representation of a function definition or declaration.
      30  class Bfunction;
      31  
      32  // The backend representation of a block.
      33  class Bblock;
      34  
      35  // The backend representation of a variable.
      36  class Bvariable;
      37  
      38  // The backend representation of a label.
      39  class Blabel;
      40  
      41  // The backend interface.  This is a pure abstract class that a
      42  // specific backend will implement.
      43  
      44  class Backend
      45  {
      46   public:
      47    virtual ~Backend() { }
      48  
      49    // Name/type/location.  Used for function parameters, struct fields,
      50    // interface methods.
      51    struct Btyped_identifier
      52    {
      53      std::string name;
      54      Btype* btype;
      55      Location location;
      56  
      57      Btyped_identifier()
      58          : name(), btype(NULL), location(Linemap::unknown_location())
      59      { }
      60  
      61      Btyped_identifier(const std::string& a_name, Btype* a_btype,
      62  		     Location a_location)
      63        : name(a_name), btype(a_btype), location(a_location)
      64      { }
      65    };
      66  
      67    // Types.
      68  
      69    // Produce an error type.  Actually the backend could probably just
      70    // crash if this is called.
      71    virtual Btype*
      72    error_type() = 0;
      73  
      74    // Get a void type.  This is used in (at least) two ways: 1) as the
      75    // return type of a function with no result parameters; 2)
      76    // unsafe.Pointer is represented as *void.
      77    virtual Btype*
      78    void_type() = 0;
      79  
      80    // Get the unnamed boolean type.
      81    virtual Btype*
      82    bool_type() = 0;
      83  
      84    // Get an unnamed integer type with the given signedness and number
      85    // of bits.
      86    virtual Btype*
      87    integer_type(bool is_unsigned, int bits) = 0;
      88  
      89    // Get an unnamed floating point type with the given number of bits
      90    // (32 or 64).
      91    virtual Btype*
      92    float_type(int bits) = 0;
      93  
      94    // Get an unnamed complex type with the given number of bits (64 or 128).
      95    virtual Btype*
      96    complex_type(int bits) = 0;
      97  
      98    // Get a pointer type.
      99    virtual Btype*
     100    pointer_type(Btype* to_type) = 0;
     101  
     102    // Get a function type.  The receiver, parameter, and results are
     103    // generated from the types in the Function_type.  The Function_type
     104    // is provided so that the names are available.  This should return
     105    // not the type of a Go function (which is a pointer to a struct)
     106    // but the type of a C function pointer (which will be used as the
     107    // type of the first field of the struct).  If there is more than
     108    // one result, RESULT_STRUCT is a struct type to hold the results,
     109    // and RESULTS may be ignored; if there are zero or one results,
     110    // RESULT_STRUCT is NULL.
     111    virtual Btype*
     112    function_type(const Btyped_identifier& receiver,
     113  		const std::vector<Btyped_identifier>& parameters,
     114  		const std::vector<Btyped_identifier>& results,
     115  		Btype* result_struct,
     116  		Location location) = 0;
     117  
     118    // Get a struct type.
     119    virtual Btype*
     120    struct_type(const std::vector<Btyped_identifier>& fields) = 0;
     121  
     122    // Get an array type.
     123    virtual Btype*
     124    array_type(Btype* element_type, Bexpression* length) = 0;
     125  
     126    // Create a placeholder pointer type.  This is used for a named
     127    // pointer type, since in Go a pointer type may refer to itself.
     128    // NAME is the name of the type, and the location is where the named
     129    // type is defined.  This function is also used for unnamed function
     130    // types with multiple results, in which case the type has no name
     131    // and NAME will be empty.  FOR_FUNCTION is true if this is for a C
     132    // pointer to function type.  A Go func type is represented as a
     133    // pointer to a struct, and the first field of the struct is a C
     134    // pointer to function.  The return value will later be passed as
     135    // the first parameter to set_placeholder_pointer_type or
     136    // set_placeholder_function_type.
     137    virtual Btype*
     138    placeholder_pointer_type(const std::string& name, Location,
     139  			   bool for_function) = 0;
     140  
     141    // Fill in a placeholder pointer type as a pointer.  This takes a
     142    // type returned by placeholder_pointer_type and arranges for it to
     143    // point to the type that TO_TYPE points to (that is, PLACEHOLDER
     144    // becomes the same type as TO_TYPE).  Returns true on success,
     145    // false on failure.
     146    virtual bool
     147    set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0;
     148  
     149    // Fill in a placeholder pointer type as a function.  This takes a
     150    // type returned by placeholder_pointer_type and arranges for it to
     151    // become a real Go function type (which corresponds to a C/C++
     152    // pointer to function type).  FT will be something returned by the
     153    // function_type method.  Returns true on success, false on failure.
     154    virtual bool
     155    set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0;
     156  
     157    // Create a placeholder struct type.  This is used for a named
     158    // struct type, as with placeholder_pointer_type.  It is also used
     159    // for interface types, in which case NAME will be the empty string.
     160    virtual Btype*
     161    placeholder_struct_type(const std::string& name, Location) = 0;
     162  
     163    // Fill in a placeholder struct type.  This takes a type returned by
     164    // placeholder_struct_type and arranges for it to become a real
     165    // struct type.  The parameter is as for struct_type.  Returns true
     166    // on success, false on failure.
     167    virtual bool
     168    set_placeholder_struct_type(Btype* placeholder,
     169  			      const std::vector<Btyped_identifier>& fields)
     170    			= 0;
     171  
     172    // Create a placeholder array type.  This is used for a named array
     173    // type, as with placeholder_pointer_type, to handle cases like
     174    // type A []*A.
     175    virtual Btype*
     176    placeholder_array_type(const std::string& name, Location) = 0;
     177  
     178    // Fill in a placeholder array type.  This takes a type returned by
     179    // placeholder_array_type and arranges for it to become a real array
     180    // type.  The parameters are as for array_type.  Returns true on
     181    // success, false on failure.
     182    virtual bool
     183    set_placeholder_array_type(Btype* placeholder, Btype* element_type,
     184  			     Bexpression* length) = 0;
     185  
     186    // Return a named version of a type.  The location is the location
     187    // of the type definition.  This will not be called for a type
     188    // created via placeholder_pointer_type, placeholder_struct_type, or
     189    // placeholder_array_type..  (It may be called for a pointer,
     190    // struct, or array type in a case like "type P *byte; type Q P".)
     191    virtual Btype*
     192    named_type(const std::string& name, Btype*, Location) = 0;
     193  
     194    // Create a marker for a circular pointer type.  Go pointer and
     195    // function types can refer to themselves in ways that are not
     196    // permitted in C/C++.  When a circular type is found, this function
     197    // is called for the circular reference.  This permits the backend
     198    // to decide how to handle such a type.  PLACEHOLDER is the
     199    // placeholder type which has already been created; if the backend
     200    // is prepared to handle a circular pointer type, it may simply
     201    // return PLACEHOLDER.  FOR_FUNCTION is true if this is for a
     202    // function type.
     203    //
     204    // For "type P *P" the sequence of calls will be
     205    //   bt1 = placeholder_pointer_type();
     206    //   bt2 = circular_pointer_type(bt1, false);
     207    //   set_placeholder_pointer_type(bt1, bt2);
     208    virtual Btype*
     209    circular_pointer_type(Btype* placeholder, bool for_function) = 0;
     210  
     211    // Return whether the argument could be a special type created by
     212    // circular_pointer_type.  This is used to introduce explicit type
     213    // conversions where needed.  If circular_pointer_type returns its
     214    // PLACEHOLDER parameter, this may safely always return false.
     215    virtual bool
     216    is_circular_pointer_type(Btype*) = 0;
     217  
     218    // Return the size of a type.
     219    virtual int64_t
     220    type_size(Btype*) = 0;
     221  
     222    // Return the alignment of a type.
     223    virtual int64_t
     224    type_alignment(Btype*) = 0;
     225  
     226    // Return the alignment of a struct field of this type.  This is
     227    // normally the same as type_alignment, but not always.
     228    virtual int64_t
     229    type_field_alignment(Btype*) = 0;
     230  
     231    // Return the offset of field INDEX in a struct type.  INDEX is the
     232    // entry in the FIELDS std::vector parameter of struct_type or
     233    // set_placeholder_struct_type.
     234    virtual int64_t
     235    type_field_offset(Btype*, size_t index) = 0;
     236  
     237    // Expressions.
     238  
     239    // Return an expression for a zero value of the given type.  This is
     240    // used for cases such as local variable initialization and
     241    // converting nil to other types.
     242    virtual Bexpression*
     243    zero_expression(Btype*) = 0;
     244  
     245    // Create an error expression. This is used for cases which should
     246    // not occur in a correct program, in order to keep the compilation
     247    // going without crashing.
     248    virtual Bexpression*
     249    error_expression() = 0;
     250  
     251    // Create a nil pointer expression.
     252    virtual Bexpression*
     253    nil_pointer_expression() = 0;
     254  
     255    // Create a reference to a variable.
     256    virtual Bexpression*
     257    var_expression(Bvariable* var, Location) = 0;
     258  
     259    // Create an expression that indirects through the pointer expression EXPR
     260    // (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer
     261    // is known to point to a valid memory location.  BTYPE is the expected type
     262    // of the indirected EXPR.
     263    virtual Bexpression*
     264    indirect_expression(Btype* btype, Bexpression* expr, bool known_valid,
     265  		      Location) = 0;
     266  
     267    // Return an expression that declares a constant named NAME with the
     268    // constant value VAL in BTYPE.
     269    virtual Bexpression*
     270    named_constant_expression(Btype* btype, const std::string& name,
     271                               Bexpression* val, Location) = 0;
     272  
     273    // Return an expression for the multi-precision integer VAL in BTYPE.
     274    virtual Bexpression*
     275    integer_constant_expression(Btype* btype, mpz_t val) = 0;
     276  
     277    // Return an expression for the floating point value VAL in BTYPE.
     278    virtual Bexpression*
     279    float_constant_expression(Btype* btype, mpfr_t val) = 0;
     280  
     281    // Return an expression for the complex value VAL in BTYPE.
     282    virtual Bexpression*
     283    complex_constant_expression(Btype* btype, mpc_t val) = 0;
     284  
     285    // Return an expression for the string value VAL.
     286    virtual Bexpression*
     287    string_constant_expression(const std::string& val) = 0;
     288  
     289    // Return an expression for the boolean value VAL.
     290    virtual Bexpression*
     291    boolean_constant_expression(bool val) = 0;
     292  
     293    // Return an expression for the real part of BCOMPLEX.
     294    virtual Bexpression*
     295    real_part_expression(Bexpression* bcomplex, Location) = 0;
     296  
     297    // Return an expression for the imaginary part of BCOMPLEX.
     298    virtual Bexpression*
     299    imag_part_expression(Bexpression* bcomplex, Location) = 0;
     300  
     301    // Return an expression for the complex number (BREAL, BIMAG).
     302    virtual Bexpression*
     303    complex_expression(Bexpression* breal, Bexpression* bimag, Location) = 0;
     304  
     305    // Return an expression that converts EXPR to TYPE.
     306    virtual Bexpression*
     307    convert_expression(Btype* type, Bexpression* expr, Location) = 0;
     308  
     309    // Create an expression for the address of a function.  This is used to
     310    // get the address of the code for a function.
     311    virtual Bexpression*
     312    function_code_expression(Bfunction*, Location) = 0;
     313  
     314    // Create an expression that takes the address of an expression.
     315    virtual Bexpression*
     316    address_expression(Bexpression*, Location) = 0;
     317  
     318    // Return an expression for the field at INDEX in BSTRUCT.
     319    virtual Bexpression*
     320    struct_field_expression(Bexpression* bstruct, size_t index, Location) = 0;
     321  
     322    // Create an expression that executes BSTAT before BEXPR.
     323    virtual Bexpression*
     324    compound_expression(Bstatement* bstat, Bexpression* bexpr, Location) = 0;
     325  
     326    // Return an expression that executes THEN_EXPR if CONDITION is true, or
     327    // ELSE_EXPR otherwise and returns the result as type BTYPE, within the
     328    // specified function FUNCTION.  ELSE_EXPR may be NULL.  BTYPE may be NULL.
     329    virtual Bexpression*
     330    conditional_expression(Bfunction* function, Btype* btype,
     331                           Bexpression* condition, Bexpression* then_expr,
     332                           Bexpression* else_expr, Location) = 0;
     333  
     334    // Return an expression for the unary operation OP EXPR.
     335    // Supported values of OP are (from operators.h):
     336    //    MINUS, NOT, XOR.
     337    virtual Bexpression*
     338    unary_expression(Operator op, Bexpression* expr, Location) = 0;
     339  
     340    // Return an expression for the binary operation LEFT OP RIGHT.
     341    // Supported values of OP are (from operators.h):
     342    //    EQEQ, NOTEQ, LT, LE, GT, GE, PLUS, MINUS, OR, XOR, MULT, DIV, MOD,
     343    //    LSHIFT, RSHIFT, AND, NOT.
     344    virtual Bexpression*
     345    binary_expression(Operator op, Bexpression* left, Bexpression* right,
     346                      Location) = 0;
     347  
     348    // Return an expression that constructs BTYPE with VALS.  BTYPE must be the
     349    // backend representation a of struct.  VALS must be in the same order as the
     350    // corresponding fields in BTYPE.
     351    virtual Bexpression*
     352    constructor_expression(Btype* btype, const std::vector<Bexpression*>& vals,
     353                           Location) = 0;
     354  
     355    // Return an expression that constructs an array of BTYPE with INDEXES and
     356    // VALS.  INDEXES and VALS must have the same amount of elements. Each index
     357    // in INDEXES must be in the same order as the corresponding value in VALS.
     358    virtual Bexpression*
     359    array_constructor_expression(Btype* btype,
     360                                 const std::vector<unsigned long>& indexes,
     361                                 const std::vector<Bexpression*>& vals,
     362                                 Location) = 0;
     363  
     364    // Return an expression for the address of BASE[INDEX].
     365    // BASE has a pointer type.  This is used for slice indexing.
     366    virtual Bexpression*
     367    pointer_offset_expression(Bexpression* base, Bexpression* index,
     368                              Location) = 0;
     369  
     370    // Return an expression for ARRAY[INDEX] as an l-value.  ARRAY is a valid
     371    // fixed-length array, not a slice.
     372    virtual Bexpression*
     373    array_index_expression(Bexpression* array, Bexpression* index, Location) = 0;
     374  
     375    // Create an expression for a call to FN with ARGS, taking place within
     376    // caller CALLER.
     377    virtual Bexpression*
     378    call_expression(Bfunction *caller, Bexpression* fn,
     379                    const std::vector<Bexpression*>& args,
     380  		  Bexpression* static_chain, Location) = 0;
     381  
     382    // Statements.
     383  
     384    // Create an error statement.  This is used for cases which should
     385    // not occur in a correct program, in order to keep the compilation
     386    // going without crashing.
     387    virtual Bstatement*
     388    error_statement() = 0;
     389  
     390    // Create an expression statement within the specified function.
     391    virtual Bstatement*
     392    expression_statement(Bfunction*, Bexpression*) = 0;
     393  
     394    // Create a variable initialization statement in the specified
     395    // function.  This initializes a local variable at the point in the
     396    // program flow where it is declared.
     397    virtual Bstatement*
     398    init_statement(Bfunction*, Bvariable* var, Bexpression* init) = 0;
     399  
     400    // Create an assignment statement within the specified function.
     401    virtual Bstatement*
     402    assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
     403  		       Location) = 0;
     404  
     405    // Create a return statement, passing the representation of the
     406    // function and the list of values to return.
     407    virtual Bstatement*
     408    return_statement(Bfunction*, const std::vector<Bexpression*>&,
     409  		   Location) = 0;
     410  
     411    // Create an if statement within a function.  ELSE_BLOCK may be NULL.
     412    virtual Bstatement*
     413    if_statement(Bfunction*, Bexpression* condition,
     414                 Bblock* then_block, Bblock* else_block,
     415  	       Location) = 0;
     416  
     417    // Create a switch statement where the case values are constants.
     418    // CASES and STATEMENTS must have the same number of entries.  If
     419    // VALUE matches any of the list in CASES[i], which will all be
     420    // integers, then STATEMENTS[i] is executed.  STATEMENTS[i] will
     421    // either end with a goto statement or will fall through into
     422    // STATEMENTS[i + 1].  CASES[i] is empty for the default clause,
     423    // which need not be last.  FUNCTION is the current function.
     424    virtual Bstatement*
     425    switch_statement(Bfunction* function, Bexpression* value,
     426  		   const std::vector<std::vector<Bexpression*> >& cases,
     427  		   const std::vector<Bstatement*>& statements,
     428  		   Location) = 0;
     429  
     430    // Create a single statement from two statements.
     431    virtual Bstatement*
     432    compound_statement(Bstatement*, Bstatement*) = 0;
     433  
     434    // Create a single statement from a list of statements.
     435    virtual Bstatement*
     436    statement_list(const std::vector<Bstatement*>&) = 0;
     437  
     438    // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if
     439    // an exception occurs. EXCEPT_STMT may be NULL.  FINALLY_STMT may be NULL and
     440    // if not NULL, it will always be executed.  This is used for handling defers
     441    // in Go functions.  In C++, the resulting code is of this form:
     442    //   try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
     443    virtual Bstatement*
     444    exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
     445                                Bstatement* finally_stmt, Location) = 0;
     446  
     447    // Blocks.
     448  
     449    // Create a block.  The frontend will call this function when it
     450    // starts converting a block within a function.  FUNCTION is the
     451    // current function.  ENCLOSING is the enclosing block; it will be
     452    // NULL for the top-level block in a function.  VARS is the list of
     453    // local variables defined within this block; each entry will be
     454    // created by the local_variable function.  START_LOCATION is the
     455    // location of the start of the block, more or less the location of
     456    // the initial curly brace.  END_LOCATION is the location of the end
     457    // of the block, more or less the location of the final curly brace.
     458    // The statements will be added after the block is created.
     459    virtual Bblock*
     460    block(Bfunction* function, Bblock* enclosing,
     461  	const std::vector<Bvariable*>& vars,
     462  	Location start_location, Location end_location) = 0;
     463  
     464    // Add the statements to a block.  The block is created first.  Then
     465    // the statements are created.  Then the statements are added to the
     466    // block.  This will called exactly once per block.  The vector may
     467    // be empty if there are no statements.
     468    virtual void
     469    block_add_statements(Bblock*, const std::vector<Bstatement*>&) = 0;
     470  
     471    // Return the block as a statement.  This is used to include a block
     472    // in a list of statements.
     473    virtual Bstatement*
     474    block_statement(Bblock*) = 0;
     475  
     476    // Variables.
     477  
     478    // Create an error variable.  This is used for cases which should
     479    // not occur in a correct program, in order to keep the compilation
     480    // going without crashing.
     481    virtual Bvariable*
     482    error_variable() = 0;
     483  
     484    // Bit flags to pass to the various methods that return Bvariable*.
     485    // Not all flags are meaningful for all methods.
     486  
     487    // Set if the variable's address is taken.  For a local variable
     488    // this implies that the address does not escape the function, as
     489    // otherwise the variable would be on the heap.
     490    static const unsigned int variable_address_is_taken = 1 << 0;
     491  
     492    // Set if the variable is defined in some other package.  Only
     493    // meaningful for the global_variable method.  At most one of
     494    // is_external, is_hidden, and is_common may be set.
     495    static const unsigned int variable_is_external = 1 << 1;
     496  
     497    // Set if the variable is not exported, and as such is only defined
     498    // in the current package.  Only meaningful for global_variable,
     499    // implicit_variable, and immutable_struct.  At most one of
     500    // is_external, is_hidden, and is_common may be set.
     501    static const unsigned variable_is_hidden = 1 << 2;
     502  
     503    // Set if the variable should be treated as a common variable:
     504    // multiple definitions with different sizes permitted in different
     505    // object files, all merged into the largest definition at link
     506    // time.  Only meaningful for implicit_variable and immutable_struct.
     507    // At most one of is_external, is_hidden, and is_common may be set.
     508    static const unsigned int variable_is_common = 1 << 3;
     509  
     510    // Set if the variable should be put into a unique section if
     511    // possible; this is intended to permit the linker to garbage
     512    // collect the value if it is not referenced.  Only meaningful for
     513    // global_variable.
     514    static const unsigned int variable_in_unique_section = 1 << 4;
     515  
     516    // Set if the variable should be treated as immutable.  Only
     517    // meaningful for implicit_variable.  For example, this is set for
     518    // slice initializers if the values must be copied to the heap.
     519    static const unsigned int variable_is_constant = 1 << 5;
     520  
     521    // Create a global variable. NAME is the package-qualified name of
     522    // the variable.  ASM_NAME is the encoded identifier for the
     523    // variable, incorporating the package, and made safe for the
     524    // assembler.  BTYPE is the type of the variable.  FLAGS is the bit
     525    // flags defined above.  LOCATION is where the variable was defined.
     526    virtual Bvariable*
     527    global_variable(const std::string& name, const std::string& asm_name,
     528  		  Btype* btype, unsigned int flags, Location location) = 0;
     529  
     530    // A global variable will 1) be initialized to zero, or 2) be
     531    // initialized to a constant value, or 3) be initialized in the init
     532    // function.  In case 2, the frontend will call
     533    // global_variable_set_init to set the initial value.  If this is
     534    // not called, the backend should initialize a global variable to 0.
     535    // The init function may then assign a value to it.
     536    virtual void
     537    global_variable_set_init(Bvariable*, Bexpression*) = 0;
     538  
     539    // Create a local variable.  The frontend will create the local
     540    // variables first, and then create the block which contains them.
     541    // FUNCTION is the function in which the variable is defined.  NAME
     542    // is the name of the variable.  TYPE is the type.  DECL_VAR, if not
     543    // null, gives the location at which the value of this variable may
     544    // be found, typically used to create an inner-scope reference to an
     545    // outer-scope variable, to extend the lifetime of the variable beyond
     546    // the inner scope.  FLAGS is the bit flags defined above.
     547    // LOCATION is where the variable is defined.  For each local variable
     548    // the frontend will call init_statement to set the initial value.
     549    virtual Bvariable*
     550    local_variable(Bfunction* function, const std::string& name, Btype* type,
     551  		 Bvariable* decl_var, unsigned int flags,
     552  		 Location location) = 0;
     553  
     554    // Create a function parameter.  This is an incoming parameter, not
     555    // a result parameter (result parameters are treated as local
     556    // variables).  The arguments are as for local_variable.
     557    virtual Bvariable*
     558    parameter_variable(Bfunction* function, const std::string& name,
     559  		     Btype* type, unsigned int flags, Location location) = 0;
     560  
     561    // Create a static chain parameter.  This is the closure parameter.
     562    virtual Bvariable*
     563    static_chain_variable(Bfunction* function, const std::string& name,
     564  		        Btype* type, unsigned int flags,
     565  			Location location) = 0;
     566  
     567    // Create a temporary variable.  A temporary variable has no name,
     568    // just a type.  We pass in FUNCTION and BLOCK in case they are
     569    // needed.  If INIT is not NULL, the variable should be initialized
     570    // to that value.  Otherwise the initial value is irrelevant--the
     571    // backend does not have to explicitly initialize it to zero.
     572    // FLAGS is the bit flags defined above.  LOCATION is the location of
     573    // the statement or expression which requires creating the temporary
     574    // variable, and may not be very useful.  This function should
     575    // return a variable which can be referenced later and should set
     576    // *PSTATEMENT to a statement which initializes the variable.
     577    virtual Bvariable*
     578    temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init,
     579  		     unsigned int flags, Location location,
     580  		     Bstatement** pstatement) = 0;
     581  
     582    // Create an implicit variable that is compiler-defined.  This is
     583    // used when generating GC data and roots, when storing the values
     584    // of a slice constructor, and for the zero value of types.  This returns a
     585    // Bvariable because it corresponds to an initialized variable in C.
     586    //
     587    // NAME is the name to use for the initialized variable this will create.
     588    //
     589    // ASM_NAME is encoded assembler-friendly version of the name, or the
     590    // empty string if no encoding is needed.
     591    //
     592    // TYPE is the type of the implicit variable.
     593    //
     594    // FLAGS is the bit flags defined above.
     595    //
     596    // If ALIGNMENT is not zero, it is the desired alignment of the variable.
     597    virtual Bvariable*
     598    implicit_variable(const std::string& name, const std::string& asm_name,
     599                      Btype* type, unsigned int flags, int64_t alignment) = 0;
     600  
     601  
     602    // Set the initial value of a variable created by implicit_variable.
     603    // This must be called even if there is no initializer, i.e., INIT is NULL.
     604    // The NAME, TYPE, and FLAGS parameters are the same ones passed to
     605    // implicit_variable.  INIT will be a composite literal of type
     606    // TYPE.  It will not contain any function calls or anything else
     607    // that can not be put into a read-only data section.  It may
     608    // contain the address of variables created by implicit_variable.
     609    //
     610    // If variable_is_common is set in FLAGS, INIT will be NULL, and the
     611    // variable should be initialized to all zeros.
     612    virtual void
     613    implicit_variable_set_init(Bvariable*, const std::string& name, Btype* type,
     614  			     unsigned int flags, Bexpression* init) = 0;
     615  
     616    // Create a reference to a named implicit variable defined in some
     617    // other package.  This will be a variable created by a call to
     618    // implicit_variable with the same NAME, ASM_NAME and TYPE and with
     619    // variable_is_common not set in FLAGS.  This corresponds to an
     620    // extern global variable in C.
     621    virtual Bvariable*
     622    implicit_variable_reference(const std::string& name,
     623                                const std::string& asm_name,
     624                                Btype* type) = 0;
     625  
     626    // Create a named immutable initialized data structure.  This is
     627    // used for type descriptors, map descriptors, and function
     628    // descriptors.  This returns a Bvariable because it corresponds to
     629    // an initialized const variable in C.
     630    //
     631    // NAME is the name to use for the initialized global variable which
     632    // this call will create.
     633    //
     634    // ASM_NAME is the encoded, assembler-friendly version of NAME, or
     635    // the empty string if no encoding is needed.
     636    //
     637    // FLAGS is the bit flags defined above.  The variable_is_common
     638    // flag will be set if NAME may be defined by several packages, and
     639    // the linker should merge all such definitions.  If the
     640    // variable_is_common flag is not set, NAME should be defined in
     641    // only one file.  In general variable_is_common will be set for the
     642    // type descriptor of an unnamed type or a builtin type.
     643    //
     644    // TYPE will be a struct type; the type of the returned expression
     645    // must be a pointer to this struct type.
     646    //
     647    // We must create the named structure before we know its
     648    // initializer, because the initializer may refer to its own
     649    // address.  After calling this the frontend will call
     650    // immutable_struct_set_init.
     651    virtual Bvariable*
     652    immutable_struct(const std::string& name, const std::string& asm_name,
     653  		   unsigned int flags, Btype* type, Location) = 0;
     654  
     655    // Set the initial value of a variable created by immutable_struct.
     656    // The NAME, FLAGS, TYPE, and location parameters are the same ones
     657    // passed to immutable_struct.  INITIALIZER will be a composite
     658    // literal of type TYPE.  It will not contain any function calls or
     659    // anything else that can not be put into a read-only data section.
     660    // It may contain the address of variables created by
     661    // immutable_struct.
     662    virtual void
     663    immutable_struct_set_init(Bvariable*, const std::string& name,
     664  			    unsigned int flags, Btype* type,
     665  			    Location, Bexpression* initializer) = 0;
     666  
     667    // Create a reference to a named immutable initialized data
     668    // structure defined in some other package.  This will be a
     669    // structure created by a call to immutable_struct with the same
     670    // NAME, ASM_NAME and TYPE and with variable_is_common not set in
     671    // flags.  This corresponds to an extern const global variable in C.
     672    virtual Bvariable*
     673    immutable_struct_reference(const std::string& name,
     674                               const std::string& asm_name,
     675                               Btype* type, Location) = 0;
     676  
     677    // Labels.
     678  
     679    // Create a new label.  NAME will be empty if this is a label
     680    // created by the frontend for a loop construct.  The location is
     681    // where the label is defined.
     682    virtual Blabel*
     683    label(Bfunction*, const std::string& name, Location) = 0;
     684  
     685    // Create a statement which defines a label.  This statement will be
     686    // put into the codestream at the point where the label should be
     687    // defined.
     688    virtual Bstatement*
     689    label_definition_statement(Blabel*) = 0;
     690  
     691    // Create a goto statement to a label.
     692    virtual Bstatement*
     693    goto_statement(Blabel*, Location) = 0;
     694  
     695    // Create an expression for the address of a label.  This is used to
     696    // get the return address of a deferred function which may call
     697    // recover.
     698    virtual Bexpression*
     699    label_address(Blabel*, Location) = 0;
     700  
     701    // Functions.
     702  
     703    // Create an error function.  This is used for cases which should
     704    // not occur in a correct program, in order to keep the compilation
     705    // going without crashing.
     706    virtual Bfunction*
     707    error_function() = 0;
     708  
     709    // Bit flags to pass to the function method.
     710  
     711    // Set if the function should be visible outside of the current
     712    // compilation unit.
     713    static const unsigned int function_is_visible = 1 << 0;
     714  
     715    // Set if this is a function declaration rather than a definition;
     716    // the definition will be in another compilation unit.
     717    static const unsigned int function_is_declaration = 1 << 1;
     718  
     719    // Set if the function can be inlined.  This is normally set, but is
     720    // false for functions that may not be inlined because they call
     721    // recover and must be visible for correct panic recovery.
     722    static const unsigned int function_is_inlinable = 1 << 2;
     723  
     724    // Set if the function may not split the stack.  This is set for the
     725    // implementation of recover itself, among other things.
     726    static const unsigned int function_no_split_stack = 1 << 3;
     727  
     728    // Set if the function does not return.  This is set for the
     729    // implementation of panic.
     730    static const unsigned int function_does_not_return = 1 << 4;
     731  
     732    // Set if the function should be put in a unique section if
     733    // possible.  This is used for field tracking.
     734    static const unsigned int function_in_unique_section = 1 << 5;
     735  
     736    // Set if the function should be available for inlining in the
     737    // backend, but should not be emitted as a standalone function.  Any
     738    // call to the function that is not inlined should be treated as a
     739    // call to a function defined in a different compilation unit.  This
     740    // is like a C99 function marked inline but not extern.
     741    static const unsigned int function_only_inline = 1 << 6;
     742  
     743    // Declare or define a function of FNTYPE.
     744    // NAME is the Go name of the function.  ASM_NAME, if not the empty
     745    // string, is the name that should be used in the symbol table; this
     746    // will be non-empty if a magic extern comment is used.  FLAGS is
     747    // bit flags described above.
     748    virtual Bfunction*
     749    function(Btype* fntype, const std::string& name, const std::string& asm_name,
     750  	   unsigned int flags, Location) = 0;
     751  
     752    // Create a statement that runs all deferred calls for FUNCTION.  This should
     753    // be a statement that looks like this in C++:
     754    //   finish:
     755    //     try { DEFER_RETURN; } catch { CHECK_DEFER; goto finish; }
     756    virtual Bstatement*
     757    function_defer_statement(Bfunction* function, Bexpression* undefer,
     758                             Bexpression* check_defer, Location) = 0;
     759  
     760    // Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
     761    // This will only be called for a function definition.  Returns true on
     762    // success, false on failure.
     763    virtual bool
     764    function_set_parameters(Bfunction* function,
     765                           const std::vector<Bvariable*>& param_vars) = 0;
     766  
     767    // Set the function body for FUNCTION using the code in CODE_STMT.  Returns
     768    // true on success, false on failure.
     769    virtual bool
     770    function_set_body(Bfunction* function, Bstatement* code_stmt) = 0;
     771  
     772    // Look up a named built-in function in the current backend implementation.
     773    // Returns NULL if no built-in function by that name exists.
     774    virtual Bfunction*
     775    lookup_builtin(const std::string&) = 0;
     776  
     777    // Utility.
     778  
     779    // Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
     780    // FUNCTION_DECLS, and VARIABLE_DECLS declared globally.
     781    virtual void
     782    write_global_definitions(const std::vector<Btype*>& type_decls,
     783                             const std::vector<Bexpression*>& constant_decls,
     784                             const std::vector<Bfunction*>& function_decls,
     785                             const std::vector<Bvariable*>& variable_decls) = 0;
     786  
     787    // Write SIZE bytes of export data from BYTES to the proper
     788    // section in the output object file.
     789    virtual void
     790    write_export_data(const char* bytes, unsigned int size) = 0;
     791  };
     792  
     793  #endif // !defined(GO_BACKEND_H)