GCOV(1) GNU GCOV(1)
NAME
gcov - coverage testing tool
SYNOPSIS
gcov [-v|--version] [-h|--help]
[-a|--all-blocks]
[-b|--branch-probabilities]
[-c|--branch-counts]
[-d|--display-progress]
[-f|--function-summaries]
[-j|--json-format]
[-H|--human-readable]
[-k|--use-colors]
[-l|--long-file-names]
[-m|--demangled-names]
[-n|--no-output]
[-o|--object-directory directory|file]
[-p|--preserve-paths]
[-q|--use-hotness-colors]
[-r|--relative-only]
[-s|--source-prefix directory]
[-t|--stdout]
[-u|--unconditional-branches]
[-x|--hash-filenames]
files
DESCRIPTION
gcov is a test coverage program. Use it in concert with GCC to analyze your programs to help create more
efficient, faster running code and to discover untested parts of your program. You can use gcov as a profiling
tool to help discover where your optimization efforts will best affect your code. You can also use gcov along
with the other profiling tool, gprof, to assess which parts of your code use the greatest amount of computing
time.
Profiling tools help you analyze your code's performance. Using a profiler such as gcov or gprof, you can find
out some basic performance statistics, such as:
* how often each line of code executes
* what lines of code are actually executed
* how much computing time each section of code uses
Once you know these things about how your code works when compiled, you can look at each module to see which
modules should be optimized. gcov helps you determine where to work on optimization.
Software developers also use coverage testing in concert with testsuites, to make sure software is actually good
enough for a release. Testsuites can verify that a program works as expected; a coverage program tests to see
how much of the program is exercised by the testsuite. Developers can then determine what kinds of test cases
need to be added to the testsuites to create both better testing and a better final product.
You should compile your code without optimization if you plan to use gcov because the optimization, by combining
some lines of code into one function, may not give you as much information as you need to look for ‘hot spots'
where the code is using a great deal of computer time. Likewise, because gcov accumulates statistics by line (at
the lowest resolution), it works best with a programming style that places only one statement on each line. If
you use complicated macros that expand to loops or to other control structures, the statistics are less
helpful---they only report on the line where the macro call appears. If your complex macros behave like
functions, you can replace them with inline functions to solve this problem.
gcov creates a logfile called sourcefile.gcov which indicates how many times each line of a source file
sourcefile.c has executed. You can use these logfiles along with gprof to aid in fine-tuning the performance of
your programs. gprof gives timing information you can use along with the information you get from gcov.
gcov works only on code compiled with GCC. It is not compatible with any other profiling or test coverage
mechanism.
OPTIONS
-a
--all-blocks
Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the
main blocks of a line. With this option you can determine if blocks within a single line are not being
executed.
-b
--branch-probabilities
Write branch frequencies to the output file, and write branch summary info to the standard output. This
option allows you to see how often each branch in your program was taken. Unconditional branches will not be
shown, unless the -u option is given.
-c
--branch-counts
Write branch frequencies as the number of branches taken, rather than the percentage of branches taken.
-d
--display-progress
Display the progress on the standard output.
-f
--function-summaries
Output summaries for each function in addition to the file level summary.
-h
--help
Display help about using gcov (on the standard output), and exit without doing any further processing.
-j
--json-format
Output gcov file in an easy-to-parse JSON intermediate format which does not require source code for
generation. The JSON file is compressed with gzip compression algorithm and the files have .gcov.json.gz
extension.
Structure of the JSON is following:
{
"current_working_directory": "foo/bar",
"data_file": "a.out",
"format_version": "1",
"gcc_version": "11.1.1 20210510"
"files": ["$file"]
}
Fields of the root element have following semantics:
* current_working_directory: working directory where a compilation unit was compiled
* data_file: name of the data file (GCDA)
* format_version: semantic version of the format
* gcc_version: version of the GCC compiler
Each file has the following form:
{
"file": "a.c",
"functions": ["$function"],
"lines": ["$line"]
}
Fields of the file element have following semantics:
* file_name: name of the source file
Each function has the following form:
{
"blocks": 2,
"blocks_executed": 2,
"demangled_name": "foo",
"end_column": 1,
"end_line": 4,
"execution_count": 1,
"name": "foo",
"start_column": 5,
"start_line": 1
}
Fields of the function element have following semantics:
* blocks: number of blocks that are in the function
* blocks_executed: number of executed blocks of the function
* demangled_name: demangled name of the function
* end_column: column in the source file where the function ends
* end_line: line in the source file where the function ends
* execution_count: number of executions of the function
* name: name of the function
* start_column: column in the source file where the function begins
* start_line: line in the source file where the function begins
Note that line numbers and column numbers number from 1. In the current implementation, start_line and
start_column do not include any template parameters and the leading return type but that this is likely to be
fixed in the future.
Each line has the following form:
{
"branches": ["$branch"],
"count": 2,
"line_number": 15,
"unexecuted_block": false,
"function_name": "foo",
}
Branches are present only with -b option. Fields of the line element have following semantics:
* count: number of executions of the line
* line_number: line number
* unexecuted_block: flag whether the line contains an unexecuted block (not all statements on the line are
executed)
* function_name: a name of a function this line belongs to (for a line with an inlined statements can be
not set)
Each branch has the following form:
{
"count": 11,
"fallthrough": true,
"throw": false
}
Fields of the branch element have following semantics:
* count: number of executions of the branch
* fallthrough: true when the branch is a fall through branch
* throw: true when the branch is an exceptional branch
-H
--human-readable
Write counts in human readable format (like 24.6k).
-k
--use-colors
Use colors for lines of code that have zero coverage. We use red color for non-exceptional lines and cyan
for exceptional. Same colors are used for basic blocks with -a option.
-l
--long-file-names
Create long file names for included source files. For example, if the header file x.h contains code, and was
included in the file a.c, then running gcov on the file a.c will produce an output file called a.c##x.h.gcov
instead of x.h.gcov. This can be useful if x.h is included in multiple source files and you want to see the
individual contributions. If you use the -p option, both the including and included file names will be
complete path names.
-m
--demangled-names
Display demangled function names in output. The default is to show mangled function names.
-n
--no-output
Do not create the gcov output file.
-o directory|file
--object-directory directory
--object-file file
Specify either the directory containing the gcov data files, or the object path name. The .gcno, and .gcda
data files are searched for using this option. If a directory is specified, the data files are in that
directory and named after the input file name, without its extension. If a file is specified here, the data
files are named after that file, without its extension.
-p
--preserve-paths
Preserve complete path information in the names of generated .gcov files. Without this option, just the
filename component is used. With this option, all directories are used, with / characters translated to #
characters, . directory components removed and unremoveable .. components renamed to ^. This is useful if
sourcefiles are in several different directories.
-q
--use-hotness-colors
Emit perf-like colored output for hot lines. Legend of the color scale is printed at the very beginning of
the output file.
-r
--relative-only
Only output information about source files with a relative pathname (after source prefix elision). Absolute
paths are usually system header files and coverage of any inline functions therein is normally uninteresting.
-s directory
--source-prefix directory
A prefix for source file names to remove when generating the output coverage files. This option is useful
when building in a separate directory, and the pathname to the source directory is not wanted when
determining the output file names. Note that this prefix detection is applied before determining whether the
source file is absolute.
-t
--stdout
Output to standard output instead of output files.
-u
--unconditional-branches
When branch probabilities are given, include those of unconditional branches. Unconditional branches are
normally not interesting.
-v
--version
Display the gcov version number (on the standard output), and exit without doing any further processing.
-w
--verbose
Print verbose informations related to basic blocks and arcs.
-x
--hash-filenames
When using --preserve-paths, gcov uses the full pathname of the source files to create an output filename.
This can lead to long filenames that can overflow filesystem limits. This option creates names of the form
source-file##md5.gcov, where the source-file component is the final filename part and the md5 component is
calculated from the full mangled name that would have been used otherwise. The option is an alternative to
the --preserve-paths on systems which have a filesystem limit.
gcov should be run with the current directory the same as that when you invoked the compiler. Otherwise it will
not be able to locate the source files. gcov produces files called mangledname.gcov in the current directory.
These contain the coverage information of the source file they correspond to. One .gcov file is produced for
each source (or header) file containing code, which was compiled to produce the data files. The mangledname part
of the output file name is usually simply the source file name, but can be something more complicated if the -l
or -p options are given. Refer to those options for details.
If you invoke gcov with multiple input files, the contributions from each input file are summed. Typically you
would invoke it with the same list of files as the final link of your executable.
The .gcov files contain the : separated fields along with program source code. The format is
<execution_count>:<line_number>:<source line text>
Additional block information may succeed each line, when requested by command line option. The execution_count
is - for lines containing no code. Unexecuted lines are marked ##### or =====, depending on whether they are
reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. Given
the -a option, unexecuted blocks are marked $$$$$ or %%%%%, depending on whether a basic block is reachable via
non-exceptional or exceptional paths. Executed basic blocks having a statement with zero execution_count end
with * character and are colored with magenta color with the -k option. This functionality is not supported in
Ada.
Note that GCC can completely remove the bodies of functions that are not needed -- for instance if they are
inlined everywhere. Such functions are marked with -, which can be confusing. Use the -fkeep-inline-functions
and -fkeep-static-functions options to retain these functions and allow gcov to properly show their
execution_count.
Some lines of information at the start have line_number of zero. These preamble lines are of the form
-:0:<tag>:<value>
The ordering and number of these preamble lines will be augmented as gcov development progresses --- do not rely
on them remaining unchanged. Use tag to locate a particular preamble line.
The additional block information is of the form
<tag> <information>
The information is human readable, but designed to be simple enough for machine parsing too.
When printing percentages, 0% and 100% are only printed when the values are exactly 0% and 100% respectively.
Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary
value.
When using gcov, you must first compile your program with a special GCC option --coverage. This tells the
compiler to generate additional information needed by gcov (basically a flow graph of the program) and also
includes additional code in the object files for generating the extra profiling information needed by gcov.
These additional files are placed in the directory where the object file is located.
Running the program will cause profile output to be generated. For each source file compiled with
-fprofile-arcs, an accompanying .gcda file will be placed in the object file directory.
Running gcov with your program's source file names as arguments will now produce a listing of the code along with
frequency of execution for each line. For example, if your program is called tmp.cpp, this is what you see when
you use the basic gcov facility:
$ g++ --coverage tmp.cpp -c
$ g++ --coverage tmp.o
$ a.out
$ gcov tmp.cpp -m
File 'tmp.cpp'
Lines executed:92.86% of 14
Creating 'tmp.cpp.gcov'
The file tmp.cpp.gcov contains output from gcov. Here is a sample:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
-: 22:
1: 23: counter.inc();
1: 24: counter.inc();
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
-: 31:
1: 32: if (total != 45)
#####: 33: printf ("Failure\n");
-: 34: else
1: 35: printf ("Success\n");
1: 36: return 0;
-: 37:}
Note that line 7 is shown in the report multiple times. First occurrence presents total number of execution of
the line and the next two belong to instances of class Foo constructors. As you can also see, line 30 contains
some unexecuted basic blocks and thus execution count has asterisk symbol.
When you use the -a option, you will get individual block counts, and the output looks like this:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
1: 21-block 0
-: 22:
1: 23: counter.inc();
1: 23-block 0
1: 24: counter.inc();
1: 24-block 0
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
1: 27-block 0
11: 27-block 1
10: 28: total += i;
10: 28-block 0
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
1: 30-block 0
%%%%%: 30-block 1
1: 30-block 2
-: 31:
1: 32: if (total != 45)
1: 32-block 0
#####: 33: printf ("Failure\n");
%%%%%: 33-block 0
-: 34: else
1: 35: printf ("Success\n");
1: 35-block 0
1: 36: return 0;
1: 36-block 0
-: 37:}
In this mode, each basic block is only shown on one line -- the last line of the block. A multi-line block will
only contribute to the execution count of that last line, and other lines will not be shown to contain code,
unless previous blocks end on those lines. The total execution count of a line is shown and subsequent lines
show the execution counts for individual blocks that end on that line. After each block, the branch and call
counts of the block will be shown, if the -b option is given.
Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As
you can see, line 33 contains a basic block that was not executed.
When you use the -b option, your output looks like this:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
function Foo<char>::Foo() called 0 returned 0% blocks executed 0%
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
function Foo<int>::Foo() called 1 returned 100% blocks executed 100%
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
function Foo<char>::inc() called 0 returned 0% blocks executed 0%
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
function Foo<int>::inc() called 2 returned 100% blocks executed 100%
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
function main called 1 returned 100% blocks executed 81%
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
-: 22:
1: 23: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 24: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
-: 31:
1: 32: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 33: printf ("Failure\n");
call 0 never executed
branch 1 never executed
branch 2 never executed
-: 34: else
1: 35: printf ("Success\n");
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 36: return 0;
-: 37:}
For each function, a line is printed showing how many times the function is called, how many times it returns and
what percentage of the function's blocks were executed.
For each basic block, a line is printed after the last line of the basic block describing the branch or call that
ends the basic block. There can be multiple branches and calls listed for a single source line if there are
multiple basic blocks that end on that line. In this case, the branches and calls are each given a number.
There is no simple way to map these branches and calls back to source constructs. In general, though, the lowest
numbered branch or call will correspond to the leftmost construct on the source line.
For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was
taken divided by the number of times the branch was executed will be printed. Otherwise, the message "never
executed" is printed.
For a call, if it was executed at least once, then a percentage indicating the number of times the call returned
divided by the number of times the call was executed will be printed. This will usually be 100%, but may be less
for functions that call "exit" or "longjmp", and thus may not return every time they are called.
The execution counts are cumulative. If the example program were executed again without removing the .gcda file,
the count for the number of times each line in the source was executed would be added to the results of the
previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data
over a number of program runs as part of a test verification suite, or to provide more accurate long-term
information over a large number of program runs.
The data in the .gcda files is saved immediately before the program exits. For each source file compiled with
-fprofile-arcs, the profiling code first attempts to read in an existing .gcda file; if the file doesn't match
the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in
the new execution counts and finally writes the data to the file.
Using gcov with GCC Optimization
If you plan to use gcov to help optimize your code, you must first compile your program with a special GCC option
--coverage. Aside from that, you can use any other GCC options; but if you want to prove that every single line
in your program was executed, you should not compile with optimization at the same time. On some machines the
optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this:
if (a != b)
c = 1;
else
c = 0;
can be compiled into one instruction on some machines. In this case, there is no way for gcov to calculate
separate execution counts for each line because there isn't separate code for each line. Hence the gcov output
looks like this if you compiled the program with optimization:
100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
The output shows that this block of code, combined by optimization, executed 100 times. In one sense this result
is correct, because there was only one instruction representing all four of these lines. However, the output
does not indicate how many times the result was 0 and how many times the result was 1.
Inlineable functions can create unexpected line counts. Line counts are shown for the source code of the
inlineable function, but what is shown depends on where the function is inlined, or if it is not inlined at all.
If the function is not inlined, the compiler must emit an out of line copy of the function, in any object file
that needs it. If fileA.o and fileB.o both contain out of line bodies of a particular inlineable function, they
will also both contain coverage counts for that function. When fileA.o and fileB.o are linked together, the
linker will, on many systems, select one of those out of line bodies for all calls to that function, and remove
or ignore the other. Unfortunately, it will not remove the coverage counters for the unused function body.
Hence when instrumented, all but one use of that function will show zero counts.
If the function is inlined in several places, the block structure in each location might not be the same. For
instance, a condition might now be calculable at compile time in some instances. Because the coverage of all the
uses of the inline function will be shown for the same source lines, the line counts themselves might seem
inconsistent.
Long-running applications can use the "__gcov_reset" and "__gcov_dump" facilities to restrict profile collection
to the program region of interest. Calling "__gcov_reset(void)" will clear all run-time profile counters to zero,
and calling "__gcov_dump(void)" will cause the profile information collected at that point to be dumped to .gcda
output files. Instrumented applications use a static destructor with priority 99 to invoke the "__gcov_dump"
function. Thus "__gcov_dump" is executed after all user defined static destructors, as well as handlers
registered with "atexit".
If an executable loads a dynamic shared object via dlopen functionality, -Wl,--dynamic-list-data is needed to
dump all profile data.
Profiling run-time library reports various errors related to profile manipulation and profile saving. Errors are
printed into standard error output or GCOV_ERROR_FILE file, if environment variable is used. In order to
terminate immediately after an errors occurs set GCOV_EXIT_AT_ERROR environment variable. That can help users to
find profile clashing which leads to a misleading profile.
SEE ALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1) and the Info entry for gcc.
COPYRIGHT
Copyright (c) 1996-2023 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Funding Free Software", the Front-Cover texts being
(a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the
gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
gcc-13.2.0 2023-07-27 GCOV(1)
NAME
gcov - coverage testing tool
SYNOPSIS
gcov [-v|--version] [-h|--help]
[-a|--all-blocks]
[-b|--branch-probabilities]
[-c|--branch-counts]
[-d|--display-progress]
[-f|--function-summaries]
[-j|--json-format]
[-H|--human-readable]
[-k|--use-colors]
[-l|--long-file-names]
[-m|--demangled-names]
[-n|--no-output]
[-o|--object-directory directory|file]
[-p|--preserve-paths]
[-q|--use-hotness-colors]
[-r|--relative-only]
[-s|--source-prefix directory]
[-t|--stdout]
[-u|--unconditional-branches]
[-x|--hash-filenames]
files
DESCRIPTION
gcov is a test coverage program. Use it in concert with GCC to analyze your programs to help create more
efficient, faster running code and to discover untested parts of your program. You can use gcov as a profiling
tool to help discover where your optimization efforts will best affect your code. You can also use gcov along
with the other profiling tool, gprof, to assess which parts of your code use the greatest amount of computing
time.
Profiling tools help you analyze your code's performance. Using a profiler such as gcov or gprof, you can find
out some basic performance statistics, such as:
* how often each line of code executes
* what lines of code are actually executed
* how much computing time each section of code uses
Once you know these things about how your code works when compiled, you can look at each module to see which
modules should be optimized. gcov helps you determine where to work on optimization.
Software developers also use coverage testing in concert with testsuites, to make sure software is actually good
enough for a release. Testsuites can verify that a program works as expected; a coverage program tests to see
how much of the program is exercised by the testsuite. Developers can then determine what kinds of test cases
need to be added to the testsuites to create both better testing and a better final product.
You should compile your code without optimization if you plan to use gcov because the optimization, by combining
some lines of code into one function, may not give you as much information as you need to look for ‘hot spots'
where the code is using a great deal of computer time. Likewise, because gcov accumulates statistics by line (at
the lowest resolution), it works best with a programming style that places only one statement on each line. If
you use complicated macros that expand to loops or to other control structures, the statistics are less
helpful---they only report on the line where the macro call appears. If your complex macros behave like
functions, you can replace them with inline functions to solve this problem.
gcov creates a logfile called sourcefile.gcov which indicates how many times each line of a source file
sourcefile.c has executed. You can use these logfiles along with gprof to aid in fine-tuning the performance of
your programs. gprof gives timing information you can use along with the information you get from gcov.
gcov works only on code compiled with GCC. It is not compatible with any other profiling or test coverage
mechanism.
OPTIONS
-a
--all-blocks
Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the
main blocks of a line. With this option you can determine if blocks within a single line are not being
executed.
-b
--branch-probabilities
Write branch frequencies to the output file, and write branch summary info to the standard output. This
option allows you to see how often each branch in your program was taken. Unconditional branches will not be
shown, unless the -u option is given.
-c
--branch-counts
Write branch frequencies as the number of branches taken, rather than the percentage of branches taken.
-d
--display-progress
Display the progress on the standard output.
-f
--function-summaries
Output summaries for each function in addition to the file level summary.
-h
--help
Display help about using gcov (on the standard output), and exit without doing any further processing.
-j
--json-format
Output gcov file in an easy-to-parse JSON intermediate format which does not require source code for
generation. The JSON file is compressed with gzip compression algorithm and the files have .gcov.json.gz
extension.
Structure of the JSON is following:
{
"current_working_directory": "foo/bar",
"data_file": "a.out",
"format_version": "1",
"gcc_version": "11.1.1 20210510"
"files": ["$file"]
}
Fields of the root element have following semantics:
* current_working_directory: working directory where a compilation unit was compiled
* data_file: name of the data file (GCDA)
* format_version: semantic version of the format
* gcc_version: version of the GCC compiler
Each file has the following form:
{
"file": "a.c",
"functions": ["$function"],
"lines": ["$line"]
}
Fields of the file element have following semantics:
* file_name: name of the source file
Each function has the following form:
{
"blocks": 2,
"blocks_executed": 2,
"demangled_name": "foo",
"end_column": 1,
"end_line": 4,
"execution_count": 1,
"name": "foo",
"start_column": 5,
"start_line": 1
}
Fields of the function element have following semantics:
* blocks: number of blocks that are in the function
* blocks_executed: number of executed blocks of the function
* demangled_name: demangled name of the function
* end_column: column in the source file where the function ends
* end_line: line in the source file where the function ends
* execution_count: number of executions of the function
* name: name of the function
* start_column: column in the source file where the function begins
* start_line: line in the source file where the function begins
Note that line numbers and column numbers number from 1. In the current implementation, start_line and
start_column do not include any template parameters and the leading return type but that this is likely to be
fixed in the future.
Each line has the following form:
{
"branches": ["$branch"],
"count": 2,
"line_number": 15,
"unexecuted_block": false,
"function_name": "foo",
}
Branches are present only with -b option. Fields of the line element have following semantics:
* count: number of executions of the line
* line_number: line number
* unexecuted_block: flag whether the line contains an unexecuted block (not all statements on the line are
executed)
* function_name: a name of a function this line belongs to (for a line with an inlined statements can be
not set)
Each branch has the following form:
{
"count": 11,
"fallthrough": true,
"throw": false
}
Fields of the branch element have following semantics:
* count: number of executions of the branch
* fallthrough: true when the branch is a fall through branch
* throw: true when the branch is an exceptional branch
-H
--human-readable
Write counts in human readable format (like 24.6k).
-k
--use-colors
Use colors for lines of code that have zero coverage. We use red color for non-exceptional lines and cyan
for exceptional. Same colors are used for basic blocks with -a option.
-l
--long-file-names
Create long file names for included source files. For example, if the header file x.h contains code, and was
included in the file a.c, then running gcov on the file a.c will produce an output file called a.c##x.h.gcov
instead of x.h.gcov. This can be useful if x.h is included in multiple source files and you want to see the
individual contributions. If you use the -p option, both the including and included file names will be
complete path names.
-m
--demangled-names
Display demangled function names in output. The default is to show mangled function names.
-n
--no-output
Do not create the gcov output file.
-o directory|file
--object-directory directory
--object-file file
Specify either the directory containing the gcov data files, or the object path name. The .gcno, and .gcda
data files are searched for using this option. If a directory is specified, the data files are in that
directory and named after the input file name, without its extension. If a file is specified here, the data
files are named after that file, without its extension.
-p
--preserve-paths
Preserve complete path information in the names of generated .gcov files. Without this option, just the
filename component is used. With this option, all directories are used, with / characters translated to #
characters, . directory components removed and unremoveable .. components renamed to ^. This is useful if
sourcefiles are in several different directories.
-q
--use-hotness-colors
Emit perf-like colored output for hot lines. Legend of the color scale is printed at the very beginning of
the output file.
-r
--relative-only
Only output information about source files with a relative pathname (after source prefix elision). Absolute
paths are usually system header files and coverage of any inline functions therein is normally uninteresting.
-s directory
--source-prefix directory
A prefix for source file names to remove when generating the output coverage files. This option is useful
when building in a separate directory, and the pathname to the source directory is not wanted when
determining the output file names. Note that this prefix detection is applied before determining whether the
source file is absolute.
-t
--stdout
Output to standard output instead of output files.
-u
--unconditional-branches
When branch probabilities are given, include those of unconditional branches. Unconditional branches are
normally not interesting.
-v
--version
Display the gcov version number (on the standard output), and exit without doing any further processing.
-w
--verbose
Print verbose informations related to basic blocks and arcs.
-x
--hash-filenames
When using --preserve-paths, gcov uses the full pathname of the source files to create an output filename.
This can lead to long filenames that can overflow filesystem limits. This option creates names of the form
source-file##md5.gcov, where the source-file component is the final filename part and the md5 component is
calculated from the full mangled name that would have been used otherwise. The option is an alternative to
the --preserve-paths on systems which have a filesystem limit.
gcov should be run with the current directory the same as that when you invoked the compiler. Otherwise it will
not be able to locate the source files. gcov produces files called mangledname.gcov in the current directory.
These contain the coverage information of the source file they correspond to. One .gcov file is produced for
each source (or header) file containing code, which was compiled to produce the data files. The mangledname part
of the output file name is usually simply the source file name, but can be something more complicated if the -l
or -p options are given. Refer to those options for details.
If you invoke gcov with multiple input files, the contributions from each input file are summed. Typically you
would invoke it with the same list of files as the final link of your executable.
The .gcov files contain the : separated fields along with program source code. The format is
<execution_count>:<line_number>:<source line text>
Additional block information may succeed each line, when requested by command line option. The execution_count
is - for lines containing no code. Unexecuted lines are marked ##### or =====, depending on whether they are
reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. Given
the -a option, unexecuted blocks are marked $$$$$ or %%%%%, depending on whether a basic block is reachable via
non-exceptional or exceptional paths. Executed basic blocks having a statement with zero execution_count end
with * character and are colored with magenta color with the -k option. This functionality is not supported in
Ada.
Note that GCC can completely remove the bodies of functions that are not needed -- for instance if they are
inlined everywhere. Such functions are marked with -, which can be confusing. Use the -fkeep-inline-functions
and -fkeep-static-functions options to retain these functions and allow gcov to properly show their
execution_count.
Some lines of information at the start have line_number of zero. These preamble lines are of the form
-:0:<tag>:<value>
The ordering and number of these preamble lines will be augmented as gcov development progresses --- do not rely
on them remaining unchanged. Use tag to locate a particular preamble line.
The additional block information is of the form
<tag> <information>
The information is human readable, but designed to be simple enough for machine parsing too.
When printing percentages, 0% and 100% are only printed when the values are exactly 0% and 100% respectively.
Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary
value.
When using gcov, you must first compile your program with a special GCC option --coverage. This tells the
compiler to generate additional information needed by gcov (basically a flow graph of the program) and also
includes additional code in the object files for generating the extra profiling information needed by gcov.
These additional files are placed in the directory where the object file is located.
Running the program will cause profile output to be generated. For each source file compiled with
-fprofile-arcs, an accompanying .gcda file will be placed in the object file directory.
Running gcov with your program's source file names as arguments will now produce a listing of the code along with
frequency of execution for each line. For example, if your program is called tmp.cpp, this is what you see when
you use the basic gcov facility:
$ g++ --coverage tmp.cpp -c
$ g++ --coverage tmp.o
$ a.out
$ gcov tmp.cpp -m
File 'tmp.cpp'
Lines executed:92.86% of 14
Creating 'tmp.cpp.gcov'
The file tmp.cpp.gcov contains output from gcov. Here is a sample:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
-: 22:
1: 23: counter.inc();
1: 24: counter.inc();
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
-: 31:
1: 32: if (total != 45)
#####: 33: printf ("Failure\n");
-: 34: else
1: 35: printf ("Success\n");
1: 36: return 0;
-: 37:}
Note that line 7 is shown in the report multiple times. First occurrence presents total number of execution of
the line and the next two belong to instances of class Foo constructors. As you can also see, line 30 contains
some unexecuted basic blocks and thus execution count has asterisk symbol.
When you use the -a option, you will get individual block counts, and the output looks like this:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
1: 21-block 0
-: 22:
1: 23: counter.inc();
1: 23-block 0
1: 24: counter.inc();
1: 24-block 0
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
1: 27-block 0
11: 27-block 1
10: 28: total += i;
10: 28-block 0
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
1: 30-block 0
%%%%%: 30-block 1
1: 30-block 2
-: 31:
1: 32: if (total != 45)
1: 32-block 0
#####: 33: printf ("Failure\n");
%%%%%: 33-block 0
-: 34: else
1: 35: printf ("Success\n");
1: 35-block 0
1: 36: return 0;
1: 36-block 0
-: 37:}
In this mode, each basic block is only shown on one line -- the last line of the block. A multi-line block will
only contribute to the execution count of that last line, and other lines will not be shown to contain code,
unless previous blocks end on those lines. The total execution count of a line is shown and subsequent lines
show the execution counts for individual blocks that end on that line. After each block, the branch and call
counts of the block will be shown, if the -b option is given.
Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As
you can see, line 33 contains a basic block that was not executed.
When you use the -b option, your output looks like this:
-: 0:Source:tmp.cpp
-: 0:Working directory:/home/gcc/testcase
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
function Foo<char>::Foo() called 0 returned 0% blocks executed 0%
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
function Foo<int>::Foo() called 1 returned 100% blocks executed 100%
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
function Foo<char>::inc() called 0 returned 0% blocks executed 0%
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
function Foo<int>::inc() called 2 returned 100% blocks executed 100%
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
function main called 1 returned 100% blocks executed 81%
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
-: 22:
1: 23: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 24: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
-: 31:
1: 32: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 33: printf ("Failure\n");
call 0 never executed
branch 1 never executed
branch 2 never executed
-: 34: else
1: 35: printf ("Success\n");
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 36: return 0;
-: 37:}
For each function, a line is printed showing how many times the function is called, how many times it returns and
what percentage of the function's blocks were executed.
For each basic block, a line is printed after the last line of the basic block describing the branch or call that
ends the basic block. There can be multiple branches and calls listed for a single source line if there are
multiple basic blocks that end on that line. In this case, the branches and calls are each given a number.
There is no simple way to map these branches and calls back to source constructs. In general, though, the lowest
numbered branch or call will correspond to the leftmost construct on the source line.
For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was
taken divided by the number of times the branch was executed will be printed. Otherwise, the message "never
executed" is printed.
For a call, if it was executed at least once, then a percentage indicating the number of times the call returned
divided by the number of times the call was executed will be printed. This will usually be 100%, but may be less
for functions that call "exit" or "longjmp", and thus may not return every time they are called.
The execution counts are cumulative. If the example program were executed again without removing the .gcda file,
the count for the number of times each line in the source was executed would be added to the results of the
previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data
over a number of program runs as part of a test verification suite, or to provide more accurate long-term
information over a large number of program runs.
The data in the .gcda files is saved immediately before the program exits. For each source file compiled with
-fprofile-arcs, the profiling code first attempts to read in an existing .gcda file; if the file doesn't match
the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in
the new execution counts and finally writes the data to the file.
Using gcov with GCC Optimization
If you plan to use gcov to help optimize your code, you must first compile your program with a special GCC option
--coverage. Aside from that, you can use any other GCC options; but if you want to prove that every single line
in your program was executed, you should not compile with optimization at the same time. On some machines the
optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this:
if (a != b)
c = 1;
else
c = 0;
can be compiled into one instruction on some machines. In this case, there is no way for gcov to calculate
separate execution counts for each line because there isn't separate code for each line. Hence the gcov output
looks like this if you compiled the program with optimization:
100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
The output shows that this block of code, combined by optimization, executed 100 times. In one sense this result
is correct, because there was only one instruction representing all four of these lines. However, the output
does not indicate how many times the result was 0 and how many times the result was 1.
Inlineable functions can create unexpected line counts. Line counts are shown for the source code of the
inlineable function, but what is shown depends on where the function is inlined, or if it is not inlined at all.
If the function is not inlined, the compiler must emit an out of line copy of the function, in any object file
that needs it. If fileA.o and fileB.o both contain out of line bodies of a particular inlineable function, they
will also both contain coverage counts for that function. When fileA.o and fileB.o are linked together, the
linker will, on many systems, select one of those out of line bodies for all calls to that function, and remove
or ignore the other. Unfortunately, it will not remove the coverage counters for the unused function body.
Hence when instrumented, all but one use of that function will show zero counts.
If the function is inlined in several places, the block structure in each location might not be the same. For
instance, a condition might now be calculable at compile time in some instances. Because the coverage of all the
uses of the inline function will be shown for the same source lines, the line counts themselves might seem
inconsistent.
Long-running applications can use the "__gcov_reset" and "__gcov_dump" facilities to restrict profile collection
to the program region of interest. Calling "__gcov_reset(void)" will clear all run-time profile counters to zero,
and calling "__gcov_dump(void)" will cause the profile information collected at that point to be dumped to .gcda
output files. Instrumented applications use a static destructor with priority 99 to invoke the "__gcov_dump"
function. Thus "__gcov_dump" is executed after all user defined static destructors, as well as handlers
registered with "atexit".
If an executable loads a dynamic shared object via dlopen functionality, -Wl,--dynamic-list-data is needed to
dump all profile data.
Profiling run-time library reports various errors related to profile manipulation and profile saving. Errors are
printed into standard error output or GCOV_ERROR_FILE file, if environment variable is used. In order to
terminate immediately after an errors occurs set GCOV_EXIT_AT_ERROR environment variable. That can help users to
find profile clashing which leads to a misleading profile.
SEE ALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1) and the Info entry for gcc.
COPYRIGHT
Copyright (c) 1996-2023 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Funding Free Software", the Front-Cover texts being
(a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the
gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
gcc-13.2.0 2023-07-27 GCOV(1)