1  /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
       2     Copyright (C) 2001-2023 Free Software Foundation, Inc.
       3     Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
       4  
       5  This file is part of GCC.
       6  
       7  GCC is free software; you can redistribute it and/or modify it under
       8  the terms of the GNU General Public License as published by the Free
       9  Software Foundation; either version 3, or (at your option) any later
      10  version.
      11  
      12  GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      13  WARRANTY; without even the implied warranty of MERCHANTABILITY or
      14  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      15  for more details.
      16  
      17  You should have received a copy of the GNU General Public License
      18  along with GCC; see the file COPYING3.  If not see
      19  <http://www.gnu.org/licenses/>.  */
      20  
      21  /* Get Xtensa configuration settings */
      22  #include "xtensa-dynconfig.h"
      23  
      24  /* External variables defined in xtensa.cc.  */
      25  
      26  /* Macros used in the machine description to select various Xtensa
      27     configuration options.  */
      28  #define TARGET_BIG_ENDIAN	XCHAL_HAVE_BE
      29  #define TARGET_DENSITY		XCHAL_HAVE_DENSITY
      30  #define TARGET_MAC16		XCHAL_HAVE_MAC16
      31  #define TARGET_MUL16		XCHAL_HAVE_MUL16
      32  #define TARGET_MUL32		XCHAL_HAVE_MUL32
      33  #define TARGET_MUL32_HIGH	XCHAL_HAVE_MUL32_HIGH
      34  #define TARGET_DIV32		XCHAL_HAVE_DIV32
      35  #define TARGET_NSA		XCHAL_HAVE_NSA
      36  #define TARGET_MINMAX		XCHAL_HAVE_MINMAX
      37  #define TARGET_SEXT		XCHAL_HAVE_SEXT
      38  #define TARGET_CLAMPS		XCHAL_HAVE_CLAMPS
      39  #define TARGET_BOOLEANS		XCHAL_HAVE_BOOLEANS
      40  #define TARGET_HARD_FLOAT	XCHAL_HAVE_FP
      41  #define TARGET_HARD_FLOAT_DIV	XCHAL_HAVE_FP_DIV
      42  #define TARGET_HARD_FLOAT_RECIP	XCHAL_HAVE_FP_RECIP
      43  #define TARGET_HARD_FLOAT_SQRT	XCHAL_HAVE_FP_SQRT
      44  #define TARGET_HARD_FLOAT_RSQRT	XCHAL_HAVE_FP_RSQRT
      45  #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
      46  #define TARGET_ABS		XCHAL_HAVE_ABS
      47  #define TARGET_ADDX		XCHAL_HAVE_ADDX
      48  #define TARGET_RELEASE_SYNC	XCHAL_HAVE_RELEASE_SYNC
      49  #define TARGET_S32C1I		XCHAL_HAVE_S32C1I
      50  #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
      51  #define TARGET_THREADPTR	XCHAL_HAVE_THREADPTR
      52  #define TARGET_LOOPS		XCHAL_HAVE_LOOPS
      53  #define TARGET_WINDOWED_ABI_DEFAULT (XSHAL_ABI == XTHAL_ABI_WINDOWED)
      54  #define TARGET_WINDOWED_ABI	xtensa_windowed_abi
      55  #define TARGET_DEBUG		XCHAL_HAVE_DEBUG
      56  #define TARGET_L32R		XCHAL_HAVE_L32R
      57  
      58  #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
      59  
      60  #ifndef HAVE_AS_TLS
      61  #define HAVE_AS_TLS 0
      62  #endif
      63  
      64  /* Define this if the target has no hardware divide instructions.  */
      65  #if !__XCHAL_HAVE_DIV32
      66  #define TARGET_HAS_NO_HW_DIVIDE
      67  #endif
      68  
      69  
      70  /* Target CPU builtins.  */
      71  #define TARGET_CPU_CPP_BUILTINS()					\
      72    do {									\
      73      const char **builtin;						\
      74      builtin_assert ("cpu=xtensa");					\
      75      builtin_assert ("machine=xtensa");					\
      76      builtin_define ("__xtensa__");					\
      77      builtin_define ("__XTENSA__");					\
      78      builtin_define (TARGET_WINDOWED_ABI ?				\
      79  		    "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
      80      builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
      81      if (!TARGET_HARD_FLOAT)						\
      82        builtin_define ("__XTENSA_SOFT_FLOAT__");				\
      83      for (builtin = xtensa_get_config_strings (); *builtin; ++builtin)	\
      84        builtin_define (*builtin);					\
      85    } while (0)
      86  
      87  #define CPP_SPEC " %(subtarget_cpp_spec) "
      88  
      89  #ifndef SUBTARGET_CPP_SPEC
      90  #define SUBTARGET_CPP_SPEC ""
      91  #endif
      92  
      93  #define EXTRA_SPECS							\
      94    { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
      95  
      96  /* Target machine storage layout */
      97  
      98  /* Define this if most significant bit is lowest numbered
      99     in instructions that operate on numbered bit-fields.  */
     100  #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
     101  
     102  /* Define this if most significant byte of a word is the lowest numbered.  */
     103  #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
     104  
     105  /* Define this if most significant word of a multiword number is the lowest.  */
     106  #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
     107  
     108  #define MAX_BITS_PER_WORD 32
     109  
     110  /* Width of a word, in units (bytes).  */
     111  #define UNITS_PER_WORD 4
     112  #define MIN_UNITS_PER_WORD 4
     113  
     114  /* Width of a floating point register.  */
     115  #define UNITS_PER_FPREG 4
     116  
     117  /* Size in bits of various types on the target machine.  */
     118  #define INT_TYPE_SIZE 32
     119  #define SHORT_TYPE_SIZE 16
     120  #define LONG_TYPE_SIZE 32
     121  #define LONG_LONG_TYPE_SIZE 64
     122  #define FLOAT_TYPE_SIZE 32
     123  #define DOUBLE_TYPE_SIZE 64
     124  #define LONG_DOUBLE_TYPE_SIZE 64
     125  
     126  /* Allocation boundary (in *bits*) for storing pointers in memory.  */
     127  #define POINTER_BOUNDARY 32
     128  
     129  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     130  #define PARM_BOUNDARY 32
     131  
     132  /* Allocation boundary (in *bits*) for the code of a function.  */
     133  #define FUNCTION_BOUNDARY 32
     134  
     135  /* Alignment of field after 'int : 0' in a structure.  */
     136  #define EMPTY_FIELD_BOUNDARY 32
     137  
     138  /* Every structure's size must be a multiple of this.  */
     139  #define STRUCTURE_SIZE_BOUNDARY 8
     140  
     141  /* There is no point aligning anything to a rounder boundary than this.  */
     142  #define BIGGEST_ALIGNMENT 128
     143  
     144  /* Set this nonzero if move instructions will actually fail to work
     145     when given unaligned data.  */
     146  #define STRICT_ALIGNMENT 1
     147  
     148  /* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
     149     for QImode, because there is no 8-bit load from memory with sign
     150     extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
     151     loads both with and without sign extension.  */
     152  #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)				\
     153    do {									\
     154      if (GET_MODE_CLASS (MODE) == MODE_INT				\
     155  	&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
     156        {									\
     157  	if ((MODE) == QImode)						\
     158  	  (UNSIGNEDP) = 1;						\
     159  	(MODE) = SImode;						\
     160        }									\
     161    } while (0)
     162  
     163  /* Imitate the way many other C compilers handle alignment of
     164     bitfields and the structures that contain them.  */
     165  #define PCC_BITFIELD_TYPE_MATTERS 1
     166  
     167  /* Align arrays, unions and records to at least a word boundary.
     168     One use of this macro is to increase alignment of medium-size
     169     data to make it all fit in fewer cache lines.  Another is to
     170     cause character arrays to be word-aligned so that 'strcpy' calls
     171     that copy constants to character arrays can be done inline.  */
     172  #undef DATA_ALIGNMENT
     173  #define DATA_ALIGNMENT(TYPE, ALIGN)					\
     174    (!optimize_size && (((ALIGN) < BITS_PER_WORD)				\
     175      && (TREE_CODE (TYPE) == ARRAY_TYPE					\
     176  	|| TREE_CODE (TYPE) == UNION_TYPE				\
     177  	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
     178  
     179  /* Operations between registers always perform the operation
     180     on the full register even if a narrower mode is specified.  */
     181  #define WORD_REGISTER_OPERATIONS 1
     182  
     183  /* Xtensa loads are zero-extended by default.  */
     184  #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
     185  
     186  /* Standard register usage.  */
     187  
     188  /* Number of actual hardware registers.
     189     The hardware registers are assigned numbers for the compiler
     190     from 0 to just below FIRST_PSEUDO_REGISTER.
     191     All registers that the compiler knows about must be given numbers,
     192     even those that are not normally considered general registers.
     193  
     194     The fake frame pointer and argument pointer will never appear in
     195     the generated code, since they will always be eliminated and replaced
     196     by either the stack pointer or the hard frame pointer.
     197  
     198     0 - 15	AR[0] - AR[15]
     199     16		FRAME_POINTER (fake = initial sp)
     200     17		ARG_POINTER (fake = initial sp + framesize)
     201     18		BR[0] for floating-point CC
     202     19 - 34	FR[0] - FR[15]
     203     35		MAC16 accumulator */
     204  
     205  #define FIRST_PSEUDO_REGISTER 36
     206  
     207  /* Return the stabs register number to use for REGNO.  */
     208  #define DEBUGGER_REGNO(REGNO) xtensa_debugger_regno (REGNO)
     209  
     210  /* 1 for registers that have pervasive standard uses
     211     and are not available for the register allocator.  */
     212  #define FIXED_REGISTERS							\
     213  {									\
     214    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     215    1, 1, 0,								\
     216    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     217    0,									\
     218  }
     219  
     220  /* 1 for registers not available across function calls.
     221     These need not include the FIXED_REGISTERS but must any
     222     registers that can be used without being saved.
     223     The latter must include the registers where values are returned
     224     and the register where structure-value addresses are passed.
     225     Aside from that, you can include as many other registers as you like.
     226  
     227     The value encoding is the following:
     228     1: register is used by all ABIs;
     229     bit 1 is set: register is used by windowed ABI;
     230     bit 2 is set: register is used by call0 ABI.
     231  
     232     Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
     233  
     234  #define CALL_REALLY_USED_REGISTERS					\
     235  {									\
     236    1, 0, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2,			\
     237    0, 0, 1,								\
     238    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
     239    1,									\
     240  }
     241  
     242  /* For the windowed register ABI on Xtensa processors, the allocation
     243     order is as specified below by REG_ALLOC_ORDER.
     244     For the call0 ABI, on the other hand, ADJUST_REG_ALLOC_ORDER hook
     245     will be called once at the start of IRA, replacing it with the
     246     appropriate one.  */
     247  
     248  #define REG_ALLOC_ORDER							\
     249  {									\
     250     8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2,		\
     251    18,									\
     252    19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,	\
     253     0,  1, 16, 17,							\
     254    35,									\
     255  }
     256  #define ADJUST_REG_ALLOC_ORDER xtensa_adjust_reg_alloc_order ()
     257  
     258  /* Internal macros to classify a register number.  */
     259  
     260  /* 16 address registers + fake registers */
     261  #define GP_REG_FIRST 0
     262  #define GP_REG_LAST  17
     263  #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
     264  
     265  /* Coprocessor registers */
     266  #define BR_REG_FIRST 18
     267  #define BR_REG_LAST  18
     268  #define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
     269  
     270  /* 16 floating-point registers */
     271  #define FP_REG_FIRST 19
     272  #define FP_REG_LAST  34
     273  #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
     274  
     275  /* MAC16 accumulator */
     276  #define ACC_REG_FIRST 35
     277  #define ACC_REG_LAST 35
     278  #define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
     279  
     280  #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
     281  #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
     282  #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
     283  #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
     284  
     285  /* Register to use for pushing function arguments.  */
     286  #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
     287  
     288  /* Base register for access to local variables of the function.  */
     289  #define HARD_FRAME_POINTER_REGNUM \
     290    (TARGET_WINDOWED_ABI \
     291     ? XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM \
     292     : XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM)
     293  
     294  #define XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
     295  #define XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 15)
     296  
     297  /* The register number of the frame pointer register, which is used to
     298     access automatic variables in the stack frame.  For Xtensa, this
     299     register never appears in the output.  It is always eliminated to
     300     either the stack pointer or the hard frame pointer.  */
     301  #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
     302  
     303  /* Base register for access to arguments of the function.  */
     304  #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
     305  
     306  /* Hard frame pointer is neither frame nor arg pointer.
     307     The definitions are here because actual hard frame pointer register
     308     definition is not a preprocessor constant.  */
     309  #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
     310  #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
     311  
     312  /* For now we don't try to use the full set of boolean registers.  Without
     313     software pipelining of FP operations, there's not much to gain and it's
     314     a real pain to get them reloaded.  */
     315  #define FPCC_REGNUM (BR_REG_FIRST + 0)
     316  
     317  /* It is as good or better to call a constant function address than to
     318     call an address kept in a register.  */
     319  #define NO_FUNCTION_CSE 1
     320  
     321  /* Xtensa processors have "register windows".  GCC does not currently
     322     take advantage of the possibility for variable-sized windows; instead,
     323     we use a fixed window size of 8.  */
     324  
     325  #define INCOMING_REGNO(OUT)						\
     326    (TARGET_WINDOWED_ABI ?						\
     327     ((GP_REG_P (OUT) &&							\
     328       ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?		\
     329      (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
     330  
     331  #define OUTGOING_REGNO(IN)						\
     332    (TARGET_WINDOWED_ABI ?						\
     333     ((GP_REG_P (IN) &&							\
     334       ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?		\
     335      (IN) + WINDOW_SIZE : (IN)) : (IN))
     336  
     337  
     338  /* Define the classes of registers for register constraints in the
     339     machine description.  */
     340  enum reg_class
     341  {
     342    NO_REGS,			/* no registers in set */
     343    BR_REGS,			/* coprocessor boolean registers */
     344    FP_REGS,			/* floating point registers */
     345    ACC_REG,			/* MAC16 accumulator */
     346    SP_REG,			/* sp register (aka a1) */
     347    ISC_REGS,			/* registers for indirect sibling calls */
     348    RL_REGS,			/* preferred reload regs (not sp or fp) */
     349    GR_REGS,			/* integer registers except sp */
     350    AR_REGS,			/* all integer registers */
     351    ALL_REGS,			/* all registers */
     352    LIM_REG_CLASSES		/* max value + 1 */
     353  };
     354  
     355  #define N_REG_CLASSES (int) LIM_REG_CLASSES
     356  
     357  #define GENERAL_REGS AR_REGS
     358  
     359  /* An initializer containing the names of the register classes as C
     360     string constants.  These names are used in writing some of the
     361     debugging dumps.  */
     362  #define REG_CLASS_NAMES							\
     363  {									\
     364    "NO_REGS",								\
     365    "BR_REGS",								\
     366    "FP_REGS",								\
     367    "ACC_REG",								\
     368    "SP_REG",								\
     369    "ISC_REGS",								\
     370    "RL_REGS",								\
     371    "GR_REGS",								\
     372    "AR_REGS",								\
     373    "ALL_REGS"								\
     374  }
     375  
     376  /* Contents of the register classes.  The Nth integer specifies the
     377     contents of class N.  The way the integer MASK is interpreted is
     378     that register R is in the class if 'MASK & (1 << R)' is 1.  */
     379  #define REG_CLASS_CONTENTS \
     380  { \
     381    { 0x00000000, 0x00000000 }, /* no registers */ \
     382    { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
     383    { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
     384    { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
     385    { 0x00000002, 0x00000000 }, /* stack pointer register */ \
     386    { 0x000001fc, 0x00000000 }, /* registers for indirect sibling calls */ \
     387    { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
     388    { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
     389    { 0x0003ffff, 0x00000000 }, /* integer registers */ \
     390    { 0xffffffff, 0x0000000f }  /* all registers */ \
     391  }
     392  
     393  /* A C expression whose value is a register class containing hard
     394     register REGNO.  In general there is more that one such class;
     395     choose a class which is "minimal", meaning that no smaller class
     396     also contains the register.  */
     397  #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
     398  
     399  /* Use the Xtensa AR register file for base registers.
     400     No index registers.  */
     401  #define BASE_REG_CLASS AR_REGS
     402  #define INDEX_REG_CLASS NO_REGS
     403  
     404  /* The small_register_classes_for_mode_p hook must always return true for
     405     Xtrnase, because all of the 16 AR registers may be explicitly used in
     406     the RTL, as either incoming or outgoing arguments.  */
     407  #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
     408  
     409  /* Stack layout; function entry, exit and calling.  */
     410  
     411  #define STACK_GROWS_DOWNWARD 1
     412  
     413  #define FRAME_GROWS_DOWNWARD (flag_stack_protect \
     414  			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
     415  
     416  /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
     417     they are eliminated to either the stack pointer or hard frame pointer.
     418     Since hard frame pointer is different register in windowed and call0
     419     ABIs list them both and only allow real HARD_FRAME_POINTER_REGNUM in
     420     TARGET_CAN_ELIMINATE.  */
     421  #define ELIMINABLE_REGS							    \
     422  {{ ARG_POINTER_REGNUM,		STACK_POINTER_REGNUM},			    \
     423   { ARG_POINTER_REGNUM,		XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM}, \
     424   { ARG_POINTER_REGNUM,		XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM},    \
     425   { FRAME_POINTER_REGNUM,	STACK_POINTER_REGNUM},			    \
     426   { FRAME_POINTER_REGNUM,	XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM}, \
     427   { FRAME_POINTER_REGNUM,	XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM}}
     428  
     429  /* Specify the initial difference between the specified pair of registers.  */
     430  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
     431    (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
     432  
     433  /* If defined, the maximum amount of space required for outgoing
     434     arguments will be computed and placed into the variable
     435     'crtl->outgoing_args_size'.  No space will be pushed
     436     onto the stack for each call; instead, the function prologue
     437     should increase the stack frame size by this amount.  */
     438  #define ACCUMULATE_OUTGOING_ARGS 1
     439  
     440  /* Offset from the argument pointer register to the first argument's
     441     address.  On some machines it may depend on the data type of the
     442     function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
     443     location above the first argument's address.  */
     444  #define FIRST_PARM_OFFSET(FNDECL) 0
     445  
     446  /* Align stack frames on 128 bits for Xtensa.  This is necessary for
     447     128-bit datatypes defined in TIE (e.g., for Vectra).  */
     448  #define STACK_BOUNDARY 128
     449  
     450  /* Use a fixed register window size of 8.  */
     451  #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
     452  
     453  /* Symbolic macros for the registers used to return integer, floating
     454     point, and values of coprocessor and user-defined modes.  */
     455  #define GP_RETURN_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
     456  #define GP_RETURN_LAST  (GP_RETURN_FIRST + 3)
     457  #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
     458  
     459  /* Symbolic macros for the first/last argument registers.  */
     460  #define GP_ARG_FIRST (GP_REG_FIRST + 2)
     461  #define GP_ARG_LAST  (GP_REG_FIRST + 7)
     462  #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
     463  #define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
     464  
     465  #define MAX_ARGS_IN_REGISTERS 6
     466  
     467  /* Don't worry about compatibility with PCC.  */
     468  #define DEFAULT_PCC_STRUCT_RETURN 0
     469  
     470  /* A C expression that is nonzero if REGNO is the number of a hard
     471     register in which function arguments are sometimes passed.  This
     472     does *not* include implicit arguments such as the static chain and
     473     the structure-value address.  On many machines, no registers can be
     474     used for this purpose since all function arguments are pushed on
     475     the stack.  */
     476  #define FUNCTION_ARG_REGNO_P(N)						\
     477    IN_RANGE ((N), GP_OUTGOING_ARG_FIRST, GP_OUTGOING_ARG_LAST)
     478  
     479  /* Record the number of argument words seen so far, along with a flag to
     480     indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
     481     is used for both incoming and outgoing args, so a separate flag is
     482     needed.  */
     483  typedef struct xtensa_args
     484  {
     485    int arg_words;
     486    int incoming;
     487  } CUMULATIVE_ARGS;
     488  
     489  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
     490    init_cumulative_args (&CUM, 0)
     491  
     492  #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)		\
     493    init_cumulative_args (&CUM, 1)
     494  
     495  /* Profiling Xtensa code is typically done with the built-in profiling
     496     feature of Tensilica's instruction set simulator, which does not
     497     require any compiler support.  Profiling code on a real (i.e.,
     498     non-simulated) Xtensa processor is currently only supported by
     499     GNU/Linux with glibc.  The glibc version of _mcount doesn't require
     500     counter variables.  The _mcount function needs the current PC and
     501     the current return address to identify an arc in the call graph.
     502     Pass the current return address as the first argument; the current
     503     PC is available as a0 in _mcount's register window.  Both of these
     504     values contain window size information in the two most significant
     505     bits; we assume that _mcount will mask off those bits.  The call to
     506     _mcount uses a window size of 8 to make sure that it doesn't clobber
     507     any incoming argument values.  */
     508  
     509  #define NO_PROFILE_COUNTERS	1
     510  
     511  #define FUNCTION_PROFILER(FILE, LABELNO) \
     512    do {									\
     513      fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
     514      if (flag_pic)							\
     515        {									\
     516  	fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE);	\
     517  	fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE);	\
     518        }									\
     519      else								\
     520        fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE);		\
     521    } while (0)
     522  
     523  /* Stack pointer value doesn't matter at exit.  */
     524  #define EXIT_IGNORE_STACK 1
     525  
     526  /* Size in bytes of the trampoline, as an integer.  Make sure this is
     527     a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
     528  #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
     529  			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
     530  			  60 : 52) : \
     531  			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
     532  			  32 : 24))
     533  
     534  /* Alignment required for trampolines, in bits.  */
     535  #define TRAMPOLINE_ALIGNMENT 32
     536  
     537  /* If defined, a C expression that produces the machine-specific code
     538     to setup the stack so that arbitrary frames can be accessed.
     539  
     540     On Xtensa, a stack back-trace must always begin from the stack pointer,
     541     so that the register overflow save area can be located.  However, the
     542     stack-walking code in GCC always begins from the hard_frame_pointer
     543     register, not the stack pointer.  The frame pointer is usually equal
     544     to the stack pointer, but the __builtin_return_address and
     545     __builtin_frame_address functions will not work if count > 0 and
     546     they are called from a routine that uses alloca.  These functions
     547     are not guaranteed to work at all if count > 0 so maybe that is OK.
     548  
     549     A nicer solution would be to allow the architecture-specific files to
     550     specify whether to start from the stack pointer or frame pointer.  That
     551     would also allow us to skip the machine->accesses_prev_frame stuff that
     552     we currently need to ensure that there is a frame pointer when these
     553     builtin functions are used.  */
     554  
     555  #define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
     556  
     557  /* A C expression whose value is RTL representing the address in a
     558     stack frame where the pointer to the caller's frame is stored.
     559     Assume that FRAMEADDR is an RTL expression for the address of the
     560     stack frame itself.
     561  
     562     For Xtensa, there is no easy way to get the frame pointer if it is
     563     not equivalent to the stack pointer.  Moreover, the result of this
     564     macro is used for continuing to walk back up the stack, so it must
     565     return the stack pointer address.  Thus, there is some inconsistency
     566     here in that __builtin_frame_address will return the frame pointer
     567     when count == 0 and the stack pointer when count > 0.  */
     568  
     569  #define DYNAMIC_CHAIN_ADDRESS(frame)					\
     570    gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
     571  
     572  /* Define this if the return address of a particular stack frame is
     573     accessed from the frame pointer of the previous stack frame.  */
     574  #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
     575  
     576  /* A C expression whose value is RTL representing the value of the
     577     return address for the frame COUNT steps up from the current
     578     frame, after the prologue.  */
     579  #define RETURN_ADDR_RTX  xtensa_return_addr
     580  
     581  /* Addressing modes, and classification of registers for them.  */
     582  
     583  /* C expressions which are nonzero if register number NUM is suitable
     584     for use as a base or index register in operand addresses.  */
     585  
     586  #define REGNO_OK_FOR_INDEX_P(NUM) 0
     587  #define REGNO_OK_FOR_BASE_P(NUM) \
     588    (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
     589  
     590  /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
     591     valid for use as a base or index register.  */
     592  
     593  #define BASE_REG_P(X, STRICT)						\
     594    ((!(STRICT) && ! HARD_REGISTER_P (X))					\
     595     || REGNO_OK_FOR_BASE_P (REGNO (X)))
     596  
     597  /* Maximum number of registers that can appear in a valid memory address.  */
     598  #define MAX_REGS_PER_ADDRESS 1
     599  
     600  /* A C expression that is 1 if the RTX X is a constant which is a
     601     valid address.  This is defined to be the same as 'CONSTANT_P (X)',
     602     but rejecting CONST_DOUBLE.  */
     603  #define CONSTANT_ADDRESS_P(X)						\
     604    ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
     605      || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
     606      || (GET_CODE (X) == CONST)))
     607  
     608  /* A C expression that is nonzero if X is a legitimate immediate
     609     operand on the target machine when generating position independent
     610     code.  */
     611  #define LEGITIMATE_PIC_OPERAND_P(X)					\
     612    ((GET_CODE (X) != SYMBOL_REF						\
     613      || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))		\
     614     && GET_CODE (X) != LABEL_REF						\
     615     && GET_CODE (X) != CONST)
     616  
     617  /* Specify the machine mode that this machine uses
     618     for the index in the tablejump instruction.  */
     619  #define CASE_VECTOR_MODE (SImode)
     620  
     621  /* Define this as 1 if 'char' should by default be signed; else as 0.  */
     622  #define DEFAULT_SIGNED_CHAR 0
     623  
     624  /* Max number of bytes we can move from memory to memory
     625     in one reasonably fast instruction.  */
     626  #define MOVE_MAX 4
     627  #define MAX_MOVE_MAX 4
     628  
     629  /* Prefer word-sized loads.  */
     630  #define SLOW_BYTE_ACCESS 1
     631  
     632  /* Shift instructions ignore all but the low-order few bits.  */
     633  #define SHIFT_COUNT_TRUNCATED 1
     634  
     635  #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
     636  #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = -1, 1)
     637  
     638  /* Specify the machine mode that pointers have.
     639     After generation of rtl, the compiler makes no further distinction
     640     between pointers and any other objects of this machine mode.  */
     641  #define Pmode SImode
     642  
     643  /* A function address in a call instruction is a word address (for
     644     indexing purposes) so give the MEM rtx a words's mode.  */
     645  #define FUNCTION_MODE SImode
     646  
     647  #define BRANCH_COST(speed_p, predictable_p) 3
     648  
     649  /* How to refer to registers in assembler output.
     650     This sequence is indexed by compiler's hard-register-number (see above).  */
     651  #define REGISTER_NAMES							\
     652  {									\
     653    "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",		\
     654    "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",	\
     655    "fp",   "argp", "b0",							\
     656    "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",		\
     657    "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",	\
     658    "acc"									\
     659  }
     660  
     661  /* If defined, a C initializer for an array of structures containing a
     662     name and a register number.  This macro defines additional names
     663     for hard registers, thus allowing the 'asm' option in declarations
     664     to refer to registers using alternate names.  */
     665  #define ADDITIONAL_REGISTER_NAMES					\
     666  {									\
     667    { "a1",	 1 + GP_REG_FIRST }					\
     668  }
     669  
     670  #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
     671  #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
     672  
     673  /* Globalizing directive for a label.  */
     674  #define GLOBAL_ASM_OP "\t.global\t"
     675  
     676  /* Declare an uninitialized external linkage data object.  */
     677  #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
     678    asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
     679  
     680  /* This is how to output an element of a case-vector that is absolute.  */
     681  #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
     682    fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),		\
     683  	   LOCAL_LABEL_PREFIX, VALUE)
     684  
     685  /* This is how to output an element of a case-vector that is relative.
     686     This is used for pc-relative code.  */
     687  #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
     688    do {									\
     689      fprintf (STREAM, "%s%sL%u-%sL%u\n",	integer_asm_op (4, TRUE),	\
     690  	     LOCAL_LABEL_PREFIX, (VALUE),				\
     691  	     LOCAL_LABEL_PREFIX, (REL));				\
     692    } while (0)
     693  
     694  /* This is how to output an assembler line that says to advance the
     695     location counter to a multiple of 2**LOG bytes.  */
     696  #define ASM_OUTPUT_ALIGN(STREAM, LOG)					\
     697    do {									\
     698      if ((LOG) != 0)							\
     699        fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));			\
     700    } while (0)
     701  
     702  /* Indicate that jump tables go in the text section.  This is
     703     necessary when compiling PIC code.  */
     704  #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
     705  
     706  
     707  /* Define the strings to put out for each section in the object file.  */
     708  #define TEXT_SECTION_ASM_OP	"\t.text"
     709  #define DATA_SECTION_ASM_OP	"\t.data"
     710  #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
     711  
     712  
     713  /* Define output to appear before the constant pool.  */
     714  #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)		\
     715    do {									\
     716      if ((SIZE) > 0 || !TARGET_WINDOWED_ABI)				\
     717        {									\
     718  	resolve_unique_section ((FUNDECL), 0, flag_function_sections);	\
     719  	switch_to_section (function_section (FUNDECL));			\
     720  	fprintf (FILE, "\t.literal_position\n");			\
     721        }									\
     722    } while (0)
     723  
     724  
     725  /* A C statement (with or without semicolon) to output a constant in
     726     the constant pool, if it needs special treatment.  */
     727  #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
     728    do {									\
     729      xtensa_output_literal (FILE, X, MODE, LABELNO);			\
     730      goto JUMPTO;							\
     731    } while (0)
     732  
     733  /* How to start an assembler comment.  */
     734  #define ASM_COMMENT_START "#"
     735  
     736  /* Exception handling.  Xtensa uses much of the standard DWARF2 unwinding
     737     machinery, but the variable size register window save areas are too
     738     complicated to efficiently describe with CFI entries.  The CFA must
     739     still be specified in DWARF so that DW_AT_frame_base is set correctly
     740     for debugging.  */
     741  #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
     742  #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
     743  #define DWARF_ALT_FRAME_RETURN_COLUMN 16
     744  #define DWARF_FRAME_REGISTERS (TARGET_WINDOWED_ABI \
     745  			       ? DWARF_ALT_FRAME_RETURN_COLUMN		\
     746  			       : DWARF_ALT_FRAME_RETURN_COLUMN + 1)
     747  #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
     748  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			\
     749    (flag_pic								\
     750     ? (((GLOBAL) ? DW_EH_PE_indirect : 0)				\
     751        | DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
     752     : DW_EH_PE_absptr)
     753  
     754  #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
     755  
     756  /* Emit a PC-relative relocation.  */
     757  #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)			\
     758    do {									\
     759      fputs (integer_asm_op (SIZE, FALSE), FILE);				\
     760      assemble_name (FILE, LABEL);					\
     761      fputs ("@pcrel", FILE);						\
     762    } while (0)
     763  
     764  /* Xtensa constant pool breaks the devices in crtstuff.c to control
     765     section in where code resides.  We have to write it as asm code.  Use
     766     a MOVI and let the assembler relax it -- for the .init and .fini
     767     sections, the assembler knows to put the literal in the right
     768     place.  */
     769  #if defined(__XTENSA_WINDOWED_ABI__)
     770  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
     771      asm (SECTION_OP "\n\
     772  	movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
     773  	callx8\ta8\n" \
     774  	TEXT_SECTION_ASM_OP);
     775  #elif defined(__XTENSA_CALL0_ABI__)
     776  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
     777      asm (SECTION_OP "\n\
     778  	movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
     779  	callx0\ta0\n" \
     780  	TEXT_SECTION_ASM_OP);
     781  #endif