1  /* Definitions of target machine for GNU compiler. NEC V850 series
       2     Copyright (C) 1996-2023 Free Software Foundation, Inc.
       3     Contributed by Jeff Law (law@cygnus.com).
       4  
       5     This file is part of GCC.
       6  
       7     GCC is free software; you can redistribute it and/or modify
       8     it under the terms of the GNU General Public License as published by
       9     the Free Software Foundation; either version 3, or (at your option)
      10     any later version.
      11  
      12     GCC is distributed in the hope that it will be useful,
      13     but WITHOUT ANY WARRANTY; without even the implied warranty of
      14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15     GNU General Public License for more details.
      16  
      17     Under Section 7 of GPL version 3, you are granted additional
      18     permissions described in the GCC Runtime Library Exception, version
      19     3.1, as published by the Free Software Foundation.
      20  
      21     You should have received a copy of the GNU General Public License and
      22     a copy of the GCC Runtime Library Exception along with this program;
      23     see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      24     <http://www.gnu.org/licenses/>.  */
      25  
      26  #ifndef GCC_V850_H
      27  #define GCC_V850_H
      28  
      29  #undef LIB_SPEC
      30  #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -lgcc --end-group}}"
      31  
      32  #undef ENDFILE_SPEC
      33  #undef LINK_SPEC
      34  #undef STARTFILE_SPEC
      35  #undef ASM_SPEC
      36  
      37  #define TARGET_CPU_generic 	1
      38  #define TARGET_CPU_v850e   	2
      39  #define TARGET_CPU_v850e1	3
      40  #define TARGET_CPU_v850e2	4
      41  #define TARGET_CPU_v850e2v3	5
      42  #define TARGET_CPU_v850e3v5	6
      43  
      44  #ifndef TARGET_CPU_DEFAULT
      45  #define TARGET_CPU_DEFAULT	TARGET_CPU_generic
      46  #endif
      47  
      48  #define MASK_DEFAULT            MASK_V850
      49  #define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850}"
      50  #define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850__}"
      51  
      52  /* Choose which processor will be the default.
      53     We must pass a -mv850xx option to the assembler if no explicit -mv* option
      54     is given, because the assembler's processor default may not be correct.  */
      55  #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
      56  #undef  MASK_DEFAULT
      57  #define MASK_DEFAULT            MASK_V850E
      58  #undef  SUBTARGET_ASM_SPEC
      59  #define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e}"
      60  #undef  SUBTARGET_CPP_SPEC
      61  #define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e__}"
      62  #endif
      63  
      64  #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
      65  #undef  MASK_DEFAULT
      66  #define MASK_DEFAULT            MASK_V850E     /* No practical difference.  */     
      67  #undef  SUBTARGET_ASM_SPEC
      68  #define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e1}"
      69  #undef  SUBTARGET_CPP_SPEC
      70  #define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
      71  #endif
      72  
      73  #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2
      74  #undef  MASK_DEFAULT
      75  #define MASK_DEFAULT            MASK_V850E2	
      76  #undef  SUBTARGET_ASM_SPEC
      77  #define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e2}"
      78  #undef  SUBTARGET_CPP_SPEC
      79  #define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e2__} %{mv850e2:-D__v850e2__}"
      80  #endif
      81  
      82  #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2v3
      83  #undef  MASK_DEFAULT
      84  #define MASK_DEFAULT            MASK_V850E2V3
      85  #undef  SUBTARGET_ASM_SPEC
      86  #define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e2v3}"
      87  #undef  SUBTARGET_CPP_SPEC
      88  #define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e2v3__} %{mv850e2v3:-D__v850e2v3__}"
      89  #endif
      90  
      91  #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e3v5
      92  #undef  MASK_DEFAULT
      93  #define MASK_DEFAULT            MASK_V850E3V5
      94  #undef  SUBTARGET_ASM_SPEC
      95  #define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e3v5}"
      96  #undef  SUBTARGET_CPP_SPEC
      97  #define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e3v5__} %{mv850e3v5:-D__v850e3v5__}"
      98  #undef  TARGET_VERSION
      99  #define TARGET_VERSION		fprintf (stderr, " (Renesas V850E3V5)");
     100  #endif
     101  
     102  #define TARGET_V850E3V5_UP ((TARGET_V850E3V5))     
     103  #define TARGET_V850E2V3_UP ((TARGET_V850E2V3) || TARGET_V850E3V5_UP)
     104  #define TARGET_V850E2_UP   ((TARGET_V850E2)   || TARGET_V850E2V3_UP)
     105  #define TARGET_V850E_UP    ((TARGET_V850E)    || TARGET_V850E2_UP)
     106  #define TARGET_ALL         ((TARGET_V850)     || TARGET_V850E_UP)
     107  
     108  #define ASM_SPEC "%{m850es:-mv850e1}%{!mv850es:%{mv*:-mv%*}} \
     109  %{mrelax:-mrelax} \
     110  %{m8byte-align:-m8byte-align} \
     111  %{msoft-float:-msoft-float} \
     112  %{mhard-float:-mhard-float} \
     113  %{mgcc-abi:-mgcc-abi}"
     114  
     115  #define LINK_SPEC "%{mgcc-abi:-m v850}"
     116  
     117  #define CPP_SPEC "\
     118    %{mv850e3v5:-D__v850e3v5__} \
     119    %{mv850e2v3:-D__v850e2v3__} \
     120    %{mv850e2:-D__v850e2__} \
     121    %{mv850es:-D__v850e1__} \
     122    %{mv850e1:-D__v850e1__} \
     123    %{mv850e:-D__v850e__} \
     124    %{mv850:-D__v850__} \
     125    %(subtarget_cpp_spec) \
     126    %{mep:-D__EP__}"
     127  
     128  #define EXTRA_SPECS \
     129   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
     130   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC } 
     131  
     132  
     133  /* Macro to decide when FPU instructions can be used.  */
     134  #define TARGET_USE_FPU  (TARGET_V850E2V3_UP && ! TARGET_SOFT_FLOAT)
     135  
     136  #define TARGET_CPU_CPP_BUILTINS()		\
     137    do						\
     138      {						\
     139        builtin_define( "__v851__" );		\
     140        builtin_define( "__v850" );		\
     141        builtin_define( "__v850__" );		\
     142        builtin_assert( "machine=v850" );		\
     143        builtin_assert( "cpu=v850" );		\
     144        if (TARGET_EP)				\
     145  	builtin_define ("__EP__");		\
     146        if (TARGET_GCC_ABI)			\
     147  	builtin_define ("__V850_GCC_ABI__");	\
     148        else					\
     149  	builtin_define ("__V850_RH850_ABI__");	\
     150        if (! TARGET_DISABLE_CALLT)		\
     151  	builtin_define ("__V850_CALLT__");	\
     152        if (TARGET_8BYTE_ALIGN)			\
     153  	builtin_define ("__V850_8BYTE_ALIGN__");\
     154        builtin_define (TARGET_USE_FPU ?		\
     155  		      "__FPU_OK__" : "__NO_FPU__");\
     156      }						\
     157    while(0)
     158  
     159  #define MASK_CPU (MASK_V850 | MASK_V850E | MASK_V850E1 | MASK_V850E2 | MASK_V850E2V3 | MASK_V850E3V5)
     160  
     161  /* Target machine storage layout */
     162  
     163  /* Define this if most significant bit is lowest numbered
     164     in instructions that operate on numbered bit-fields.
     165     This is not true on the NEC V850.  */
     166  #define BITS_BIG_ENDIAN 0
     167  
     168  /* Define this if most significant byte of a word is the lowest numbered.  */
     169  /* This is not true on the NEC V850.  */
     170  #define BYTES_BIG_ENDIAN 0
     171  
     172  /* Define this if most significant word of a multiword number is lowest
     173     numbered.
     174     This is not true on the NEC V850.  */
     175  #define WORDS_BIG_ENDIAN 0
     176  
     177  /* Width of a word, in units (bytes).  */
     178  #define UNITS_PER_WORD		4
     179  
     180  /* Define this macro if it is advisable to hold scalars in registers
     181     in a wider mode than that declared by the program.  In such cases,
     182     the value is constrained to be within the bounds of the declared
     183     type, but kept valid in the wider mode.  The signedness of the
     184     extension may differ from that of the type.
     185  
     186     Some simple experiments have shown that leaving UNSIGNEDP alone
     187     generates the best overall code.  */
     188  
     189  #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
     190    if (GET_MODE_CLASS (MODE) == MODE_INT \
     191        && GET_MODE_SIZE (MODE) < 4)      \
     192      { (MODE) = SImode; }
     193  
     194  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     195  #define PARM_BOUNDARY		32
     196  
     197  /* The stack goes in 32-bit lumps.  */
     198  #define STACK_BOUNDARY 		BIGGEST_ALIGNMENT
     199  
     200  /* Allocation boundary (in *bits*) for the code of a function.
     201     16 is the minimum boundary; 32 would give better performance.  */
     202  #define FUNCTION_BOUNDARY 	(((! TARGET_GCC_ABI) || optimize_size) ? 16 : 32)
     203  
     204  /* No data type wants to be aligned rounder than this.  */
     205  #define BIGGEST_ALIGNMENT	(TARGET_8BYTE_ALIGN ? 64 : 32)
     206  
     207  /* Alignment of field after `int : 0' in a structure.  */
     208  #define EMPTY_FIELD_BOUNDARY 32
     209  
     210  /* No structure field wants to be aligned rounder than this.  */
     211  #define BIGGEST_FIELD_ALIGNMENT BIGGEST_ALIGNMENT
     212  
     213  /* Define this if move instructions will actually fail to work
     214     when given unaligned data.  */
     215  #define STRICT_ALIGNMENT  (!TARGET_NO_STRICT_ALIGN)
     216  
     217  /* Define this as 1 if `char' should by default be signed; else as 0.
     218  
     219     On the NEC V850, loads do sign extension, so make this default.  */
     220  #define DEFAULT_SIGNED_CHAR 1
     221  
     222  #undef  SIZE_TYPE
     223  #define SIZE_TYPE "unsigned int"
     224  
     225  #undef  PTRDIFF_TYPE
     226  #define PTRDIFF_TYPE "int"
     227  
     228  #undef  WCHAR_TYPE
     229  #define WCHAR_TYPE "long int"
     230  
     231  #undef  WCHAR_TYPE_SIZE
     232  #define WCHAR_TYPE_SIZE BITS_PER_WORD
     233  
     234  /* Standard register usage.  */
     235  
     236  /* Number of actual hardware registers.
     237     The hardware registers are assigned numbers for the compiler
     238     from 0 to just below FIRST_PSEUDO_REGISTER.
     239  
     240     All registers that the compiler knows about must be given numbers,
     241     even those that are not normally considered general registers.  */
     242  
     243  #define FIRST_PSEUDO_REGISTER 36
     244  
     245  /* 1 for registers that have pervasive standard uses
     246     and are not available for the register allocator.  */
     247  
     248  #define FIXED_REGISTERS \
     249    { 1, 1, 1, 1, 1, 1, 0, 0, \
     250      0, 0, 0, 0, 0, 0, 0, 0, \
     251      0, 0, 0, 0, 0, 0, 0, 0, \
     252      0, 0, 0, 0, 0, 0, 1, 0, \
     253      1, 1,	\
     254      1, 1}
     255  
     256  /* 1 for registers not available across function calls.
     257     These must include the FIXED_REGISTERS and also any
     258     registers that can be used without being saved.
     259     The latter must include the registers where values are returned
     260     and the register where structure-value addresses are passed.
     261     Aside from that, you can include as many other registers as you
     262     like.  */
     263  
     264  #define CALL_USED_REGISTERS \
     265    { 1, 1, 1, 1, 1, 1, 1, 1, \
     266      1, 1, 1, 1, 1, 1, 1, 1, \
     267      1, 1, 1, 1, 0, 0, 0, 0, \
     268      0, 0, 0, 0, 0, 0, 1, 1, \
     269      1, 1,	\
     270      1, 1}
     271  
     272  /* List the order in which to allocate registers.  Each register must be
     273     listed once, even those in FIXED_REGISTERS.
     274  
     275     On the 850, we make the return registers first, then all of the volatile
     276     registers, then the saved registers in reverse order to better save the
     277     registers with an out of line function, and finally the fixed
     278     registers.  */
     279  
     280  #define REG_ALLOC_ORDER							\
     281  {									\
     282    10, 11,				/* return registers */		\
     283    12, 13, 14, 15, 16, 17, 18, 19,	/* scratch registers */		\
     284     6,  7,  8,  9, 31,			/* argument registers */	\
     285    29, 28, 27, 26, 25, 24, 23, 22,	/* saved registers */		\
     286    21, 20,  2,								\
     287     0,  1,  3,  4,  5, 30, 32, 33,      /* fixed registers */           \
     288    34, 35								\
     289  }
     290  
     291  
     292  /* Define the classes of registers for register constraints in the
     293     machine description.  Also define ranges of constants.
     294  
     295     One of the classes must always be named ALL_REGS and include all hard regs.
     296     If there is more than one class, another class must be named NO_REGS
     297     and contain no registers.
     298  
     299     The name GENERAL_REGS must be the name of a class (or an alias for
     300     another name such as ALL_REGS).  This is the class of registers
     301     that is allowed by "g" or "r" in a register constraint.
     302     Also, registers outside this class are allocated only when
     303     instructions express preferences for them.
     304  
     305     The classes must be numbered in nondecreasing order; that is,
     306     a larger-numbered class must never be contained completely
     307     in a smaller-numbered class.
     308  
     309     For any two classes, it is very desirable that there be another
     310     class that represents their union.  */
     311     
     312  enum reg_class
     313  {
     314    NO_REGS, EVEN_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
     315  };
     316  
     317  #define N_REG_CLASSES (int) LIM_REG_CLASSES
     318  
     319  /* Give names of register classes as strings for dump file.  */
     320  
     321  #define REG_CLASS_NAMES \
     322  { "NO_REGS", "EVEN_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
     323  
     324  /* Define which registers fit in which classes.
     325     This is an initializer for a vector of HARD_REG_SET
     326     of length N_REG_CLASSES.  */
     327  
     328  #define REG_CLASS_CONTENTS                     \
     329  {                                              \
     330    { 0x00000000,0x0 }, /* NO_REGS      */       \
     331    { 0x55555554,0x0 }, /* EVEN_REGS */          \
     332    { 0xfffffffe,0x0 }, /* GENERAL_REGS */       \
     333    { 0xffffffff,0x0 }, /* ALL_REGS      */      \
     334  }
     335  
     336  /* The same information, inverted:
     337     Return the class number of the smallest class containing
     338     reg number REGNO.  This could be a conditional expression
     339     or could index an array.  */
     340  
     341  #define REGNO_REG_CLASS(REGNO)  ((REGNO == CC_REGNUM || REGNO == FCC_REGNUM) ? NO_REGS : GENERAL_REGS)
     342  
     343  /* The class value for index registers, and the one for base regs.  */
     344  
     345  #define INDEX_REG_CLASS NO_REGS
     346  #define BASE_REG_CLASS  GENERAL_REGS
     347  
     348  /* Macros to check register numbers against specific register classes.  */
     349  
     350  /* These assume that REGNO is a hard or pseudo reg number.
     351     They give nonzero only if REGNO is a hard reg of the suitable class
     352     or a pseudo reg currently allocated to a suitable hard reg.
     353     Since they use reg_renumber, they are safe only once reg_renumber
     354     has been allocated, which happens in reginfo.cc during register
     355     allocation.  */
     356   
     357  #define REGNO_OK_FOR_BASE_P(regno)             \
     358    (((regno) < FIRST_PSEUDO_REGISTER            \
     359      && (regno) != CC_REGNUM                    \
     360      && (regno) != FCC_REGNUM)                  \
     361     || reg_renumber[regno] >= 0)
     362  
     363  #define REGNO_OK_FOR_INDEX_P(regno) 0
     364  
     365  /* Convenience wrappers around insn_const_int_ok_for_constraint.  */
     366  
     367  #define CONST_OK_FOR_I(VALUE) \
     368    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_I)
     369  #define CONST_OK_FOR_J(VALUE) \
     370    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_J)
     371  #define CONST_OK_FOR_K(VALUE) \
     372    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_K)
     373  #define CONST_OK_FOR_L(VALUE) \
     374    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_L)
     375  #define CONST_OK_FOR_M(VALUE) \
     376    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_M)
     377  #define CONST_OK_FOR_N(VALUE) \
     378    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_N)
     379  #define CONST_OK_FOR_O(VALUE) \
     380    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_O)
     381  #define CONST_OK_FOR_W(VALUE) \
     382    insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_W)
     383  
     384  /* Stack layout; function entry, exit and calling.  */
     385  
     386  /* Define this if pushing a word on the stack
     387     makes the stack pointer a smaller address.  */
     388  
     389  #define STACK_GROWS_DOWNWARD 1
     390  
     391  /* Define this to nonzero if the nominal address of the stack frame
     392     is at the high-address end of the local variables;
     393     that is, each additional local variable allocated
     394     goes at a more negative offset in the frame.  */
     395  
     396  #define FRAME_GROWS_DOWNWARD 1
     397  
     398  /* Offset of first parameter from the argument pointer register value.  */
     399  /* Is equal to the size of the saved fp + pc, even if an fp isn't
     400     saved since the value is used before we know.  */
     401  
     402  #define FIRST_PARM_OFFSET(FNDECL) 0
     403  
     404  /* Specify the registers used for certain standard purposes.
     405     The values of these macros are register numbers.  */
     406  
     407  /* Register to use for pushing function arguments.  */
     408  #define STACK_POINTER_REGNUM SP_REGNUM
     409  
     410  /* Base register for access to local variables of the function.  */
     411  #define FRAME_POINTER_REGNUM 34
     412  
     413  /* Register containing return address from latest function call.  */
     414  #define LINK_POINTER_REGNUM LP_REGNUM
     415       
     416  /* On some machines the offset between the frame pointer and starting
     417     offset of the automatic variables is not known until after register
     418     allocation has been done (for example, because the saved registers
     419     are between these two locations).  On those machines, define
     420     `FRAME_POINTER_REGNUM' the number of a special, fixed register to
     421     be used internally until the offset is known, and define
     422     `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
     423     used for the frame pointer.
     424  
     425     You should define this macro only in the very rare circumstances
     426     when it is not possible to calculate the offset between the frame
     427     pointer and the automatic variables until after register
     428     allocation has been completed.  When this macro is defined, you
     429     must also indicate in your definition of `ELIMINABLE_REGS' how to
     430     eliminate `FRAME_POINTER_REGNUM' into either
     431     `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
     432  
     433     Do not define this macro if it would be the same as
     434     `FRAME_POINTER_REGNUM'.  */
     435  #undef  HARD_FRAME_POINTER_REGNUM 
     436  #define HARD_FRAME_POINTER_REGNUM 29
     437  
     438  /* Base register for access to arguments of the function.  */
     439  #define ARG_POINTER_REGNUM 35
     440  
     441  /* Register in which static-chain is passed to a function.
     442     This must be a call used register.  */
     443  #define STATIC_CHAIN_REGNUM 19
     444  
     445  /* If defined, this macro specifies a table of register pairs used to
     446     eliminate unneeded registers that point into the stack frame.  If
     447     it is not defined, the only elimination attempted by the compiler
     448     is to replace references to the frame pointer with references to
     449     the stack pointer.
     450  
     451     The definition of this macro is a list of structure
     452     initializations, each of which specifies an original and
     453     replacement register.
     454  
     455     On some machines, the position of the argument pointer is not
     456     known until the compilation is completed.  In such a case, a
     457     separate hard register must be used for the argument pointer.
     458     This register can be eliminated by replacing it with either the
     459     frame pointer or the argument pointer, depending on whether or not
     460     the frame pointer has been eliminated.
     461  
     462     In this case, you might specify:
     463          #define ELIMINABLE_REGS  \
     464          {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
     465           {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
     466           {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
     467  
     468     Note that the elimination of the argument pointer with the stack
     469     pointer is specified first since that is the preferred elimination.  */
     470  
     471  #define ELIMINABLE_REGS							\
     472  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
     473   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },			\
     474   { ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM },			\
     475   { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM }}			\
     476  
     477  /* This macro returns the initial difference between the specified pair
     478     of registers.  */
     479  
     480  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
     481  {									\
     482    if ((FROM) == FRAME_POINTER_REGNUM)					\
     483      (OFFSET) = get_frame_size () + crtl->outgoing_args_size;	\
     484    else if ((FROM) == ARG_POINTER_REGNUM)				\
     485     (OFFSET) = compute_frame_size (get_frame_size (), (long *)0);	\
     486    else									\
     487      gcc_unreachable ();							\
     488  }
     489  
     490  /* Keep the stack pointer constant throughout the function.  */
     491  #define ACCUMULATE_OUTGOING_ARGS 1
     492  
     493  #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
     494  
     495  /* Define a data type for recording info about an argument list
     496     during the scan of that argument list.  This data type should
     497     hold all necessary information about the function itself
     498     and about the args processed so far, enough to enable macros
     499     such as FUNCTION_ARG to determine where the next arg should go.  */
     500  
     501  #define CUMULATIVE_ARGS struct cum_arg
     502  struct cum_arg { int nbytes; };
     503  
     504  /* Initialize a variable CUM of type CUMULATIVE_ARGS
     505     for a call to a function whose data type is FNTYPE.
     506     For a library call, FNTYPE is 0.  */
     507  
     508  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
     509    do { (CUM).nbytes = 0; } while (0)
     510  
     511  /* When a parameter is passed in a register, stack space is still
     512     allocated for it.  */
     513  #define REG_PARM_STACK_SPACE(DECL) 0
     514  
     515  /* 1 if N is a possible register number for function argument passing.  */
     516  
     517  #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
     518  
     519  #define DEFAULT_PCC_STRUCT_RETURN 0
     520  
     521  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
     522     the stack pointer does not matter.  The value is tested only in
     523     functions that have frame pointers.
     524     No definition is equivalent to always zero.  */
     525  
     526  #define EXIT_IGNORE_STACK 1
     527  
     528  /* Define this macro as a C expression that is nonzero for registers
     529     used by the epilogue or the `return' pattern.  */
     530  
     531  #define EPILOGUE_USES(REGNO) \
     532    (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
     533  
     534  /* Output assembler code to FILE to increment profiler label # LABELNO
     535     for profiling a function entry.  */
     536  
     537  #define FUNCTION_PROFILER(FILE, LABELNO) ;
     538  
     539  /* Length in units of the trampoline for entering a nested function.  */
     540  
     541  #define TRAMPOLINE_SIZE 24
     542  
     543  /* Addressing modes, and classification of registers for them.  */
     544  
     545  
     546  /* 1 if X is an rtx for a constant that is a valid address.  */
     547  
     548  /* ??? This seems too exclusive.  May get better code by accepting more
     549     possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs.  */
     550  
     551  #define CONSTANT_ADDRESS_P(X) constraint_satisfied_p (X, CONSTRAINT_K)
     552  
     553  /* Maximum number of registers that can appear in a valid memory address.  */
     554  
     555  #define MAX_REGS_PER_ADDRESS 1
     556  
     557  /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
     558     return the mode to be used for the comparison.
     559  
     560     For floating-point equality comparisons, CCFPEQmode should be used.
     561     VOIDmode should be used in all other cases.
     562  
     563     For integer comparisons against zero, reduce to CCNOmode or CCZmode if
     564     possible, to allow for more combinations.  */
     565  
     566  #define SELECT_CC_MODE(OP, X, Y)       v850_select_cc_mode (OP, X, Y)
     567  
     568  /* Nonzero if access to memory by bytes or half words is no faster
     569     than accessing full words.  */
     570  #define SLOW_BYTE_ACCESS 1
     571  
     572  /* According expr.cc, a value of around 6 should minimize code size, and
     573     for the V850 series, that's our primary concern.  */
     574  #define MOVE_RATIO(speed) 6
     575  
     576  /* Indirect calls are expensive, never turn a direct call
     577     into an indirect call.  */
     578  #define NO_FUNCTION_CSE 1
     579  
     580  /* The four different data regions on the v850.  */
     581  typedef enum 
     582  {
     583    DATA_AREA_NORMAL,
     584    DATA_AREA_SDA,
     585    DATA_AREA_TDA,
     586    DATA_AREA_ZDA
     587  } v850_data_area;
     588  
     589  #define TEXT_SECTION_ASM_OP  "\t.section .text"
     590  #define DATA_SECTION_ASM_OP  "\t.section .data"
     591  #define BSS_SECTION_ASM_OP   "\t.section .bss"
     592  #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
     593  #define SBSS_SECTION_ASM_OP  "\t.section .sbss,\"aw\""
     594  
     595  #define SCOMMON_ASM_OP 	       "\t.scomm\t"
     596  #define ZCOMMON_ASM_OP 	       "\t.zcomm\t"
     597  #define TCOMMON_ASM_OP 	       "\t.tcomm\t"
     598  
     599  #define ASM_COMMENT_START "#"
     600  
     601  /* Output to assembler file text saying following lines
     602     may contain character constants, extra white space, comments, etc.  */
     603  
     604  #define ASM_APP_ON "#APP\n"
     605  
     606  /* Output to assembler file text saying following lines
     607     no longer contain unusual constructs.  */
     608  
     609  #define ASM_APP_OFF "#NO_APP\n"
     610  
     611  #undef  USER_LABEL_PREFIX
     612  #define USER_LABEL_PREFIX "_"
     613  
     614  /* This says how to output the assembler to define a global
     615     uninitialized but not common symbol.  */
     616  
     617  #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
     618    asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
     619  
     620  #undef  ASM_OUTPUT_ALIGNED_BSS 
     621  #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
     622    v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
     623  
     624  /* This says how to output the assembler to define a global
     625     uninitialized, common symbol.  */
     626  #undef  ASM_OUTPUT_ALIGNED_COMMON
     627  #undef  ASM_OUTPUT_COMMON
     628  #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
     629       v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
     630  
     631  /* This says how to output the assembler to define a local
     632     uninitialized symbol.  */
     633  #undef  ASM_OUTPUT_ALIGNED_LOCAL
     634  #undef  ASM_OUTPUT_LOCAL
     635  #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
     636       v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
     637       
     638  /* Globalizing directive for a label.  */
     639  #define GLOBAL_ASM_OP "\t.global "
     640  
     641  #define ASM_PN_FORMAT "%s___%lu"
     642  
     643  /* This is how we tell the assembler that two symbols have the same value.  */
     644  
     645  #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
     646    do { assemble_name(FILE, NAME1); 	 \
     647         fputs(" = ", FILE);		 \
     648         assemble_name(FILE, NAME2);	 \
     649         fputc('\n', FILE); } while (0)
     650  
     651  
     652  /* How to refer to registers in assembler output.
     653     This sequence is indexed by compiler's hard-register-number (see above).  */
     654  
     655  #define REGISTER_NAMES                                         \
     656  {  "r0",  "r1",  "r2",  "sp",  "gp",  "r5",  "r6" , "r7",      \
     657     "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",      \
     658    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",      \
     659    "r24", "r25", "r26", "r27", "r28", "r29",  "ep", "r31",      \
     660    "psw", "fcc",      \
     661    ".fp", ".ap"}
     662  
     663  /* Register numbers */
     664  
     665  #define ADDITIONAL_REGISTER_NAMES              \
     666  { { "zero",    ZERO_REGNUM },                  \
     667    { "hp",      2 },                            \
     668    { "r3",      3 },                            \
     669    { "r4",      4 },                            \
     670    { "tp",      5 },                            \
     671    { "fp",      29 },                           \
     672    { "r30",     30 },                           \
     673    { "lp",      LP_REGNUM} }
     674  
     675  /* This is how to output an element of a case-vector that is absolute.  */
     676  
     677  #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
     678    fprintf (FILE, "\t%s .L%d\n",					\
     679  	   (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
     680  
     681  /* This is how to output an element of a case-vector that is relative.  */
     682  
     683  /* Disable the shift, which is for the currently disabled "switch"
     684     opcode.  Se casesi in v850.md.  */
     685  
     686  #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) 		\
     687    fprintf (FILE, "\t%s %s.L%d-.L%d%s\n",				\
     688  	   (TARGET_BIG_SWITCH ? ".long" : ".short"),			\
     689  	   (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? "(" : ""),             \
     690  	   VALUE, REL,							\
     691  	   (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? ")>>1" : ""))
     692  
     693  #define ASM_OUTPUT_ALIGN(FILE, LOG)	\
     694    if ((LOG) != 0)			\
     695      fprintf (FILE, "\t.align %d\n", (LOG))
     696  
     697  /* Use dwarf2 debugging info by default.  */
     698  #undef  PREFERRED_DEBUGGING_TYPE
     699  #define PREFERRED_DEBUGGING_TYPE   DWARF2_DEBUG
     700  #define DWARF2_DEBUGGING_INFO	   1
     701  
     702  #define DWARF2_FRAME_INFO          1
     703  #define DWARF2_UNWIND_INFO         0
     704  #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_POINTER_REGNUM)
     705  #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_POINTER_REGNUM)
     706  
     707  #ifndef ASM_GENERATE_INTERNAL_LABEL
     708  #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM)  \
     709    sprintf (STRING, "*.%s%u", PREFIX, (unsigned int)(NUM))
     710  #endif
     711  
     712  /* Specify the machine mode that this machine uses
     713     for the index in the tablejump instruction.  */
     714  #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
     715  
     716  /* Define as C expression which evaluates to nonzero if the tablejump
     717     instruction expects the table to contain offsets from the address of the
     718     table.
     719     Do not define this if the table should contain absolute addresses.  */
     720  #define CASE_VECTOR_PC_RELATIVE 1
     721  
     722  /* The switch instruction requires that the jump table immediately follow
     723     it.  */
     724  #define JUMP_TABLES_IN_TEXT_SECTION (!TARGET_JUMP_TABLES_IN_DATA_SECTION)
     725  
     726  #undef ASM_OUTPUT_BEFORE_CASE_LABEL
     727  #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
     728    ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1))
     729  
     730  #define WORD_REGISTER_OPERATIONS 1
     731  
     732  /* Byte and short loads sign extend the value to a word.  */
     733  #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
     734  
     735  /* Max number of bytes we can move from memory to memory
     736     in one reasonably fast instruction.  */
     737  #define MOVE_MAX	4
     738  
     739  /* Define if shifts truncate the shift count
     740     which implies one can omit a sign-extension or zero-extension
     741     of a shift count.  */
     742  #define SHIFT_COUNT_TRUNCATED 1
     743  
     744  /* Specify the machine mode that pointers have.
     745     After generation of rtl, the compiler makes no further distinction
     746     between pointers and any other objects of this machine mode.  */
     747  #define Pmode SImode
     748  
     749  /* A function address in a call instruction
     750     is a byte address (for indexing purposes)
     751     so give the MEM rtx a byte's mode.  */
     752  #define FUNCTION_MODE QImode
     753  
     754  /* Tell compiler we want to support GHS pragmas */
     755  #define REGISTER_TARGET_PRAGMAS() do {				\
     756    c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt);	\
     757    c_register_pragma ("ghs", "section",   ghs_pragma_section);	\
     758    c_register_pragma ("ghs", "starttda",  ghs_pragma_starttda);	\
     759    c_register_pragma ("ghs", "startsda",  ghs_pragma_startsda);	\
     760    c_register_pragma ("ghs", "startzda",  ghs_pragma_startzda);	\
     761    c_register_pragma ("ghs", "endtda",    ghs_pragma_endtda);	\
     762    c_register_pragma ("ghs", "endsda",    ghs_pragma_endsda);	\
     763    c_register_pragma ("ghs", "endzda",    ghs_pragma_endzda);	\
     764  } while (0)
     765  
     766  /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
     767     can appear in the "ghs section" pragma.  These names are used to index
     768     into the GHS_default_section_names[] and GHS_current_section_names[]
     769     that are defined in v850.cc, and so the ordering of each must remain
     770     consistent. 
     771  
     772     These arrays give the default and current names for each kind of 
     773     section defined by the GHS pragmas.  The current names can be changed
     774     by the "ghs section" pragma.  If the current names are null, use 
     775     the default names.  Note that the two arrays have different types.
     776  
     777     For the *normal* section kinds (like .data, .text, etc.) we do not
     778     want to explicitly force the name of these sections, but would rather
     779     let the linker (or at least the back end) choose the name of the 
     780     section, UNLESS the user has forced a specific name for these section
     781     kinds.  To accomplish this set the name in ghs_default_section_names
     782     to null.  */
     783  
     784  enum GHS_section_kind
     785  { 
     786    GHS_SECTION_KIND_DEFAULT,
     787  
     788    GHS_SECTION_KIND_TEXT,
     789    GHS_SECTION_KIND_DATA, 
     790    GHS_SECTION_KIND_RODATA,
     791    GHS_SECTION_KIND_BSS,
     792    GHS_SECTION_KIND_SDATA,
     793    GHS_SECTION_KIND_ROSDATA,
     794    GHS_SECTION_KIND_TDATA,
     795    GHS_SECTION_KIND_ZDATA,
     796    GHS_SECTION_KIND_ROZDATA,
     797  
     798    COUNT_OF_GHS_SECTION_KINDS  /* must be last */
     799  };
     800  
     801  /* The following code is for handling pragmas supported by the
     802     v850 compiler produced by Green Hills Software.  This is at
     803     the specific request of a customer.  */
     804  
     805  typedef struct data_area_stack_element
     806  {
     807    struct data_area_stack_element * prev;
     808    v850_data_area                   data_area; /* Current default data area.  */
     809  } data_area_stack_element;
     810  
     811  /* Track the current data area set by the
     812     data area pragma (which can be nested).  */
     813  extern data_area_stack_element * data_area_stack;
     814  
     815  /* Names of the various data areas used on the v850.  */
     816  extern const char * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
     817  extern const char * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
     818  
     819  /* The assembler op to start the file.  */
     820  
     821  #define FILE_ASM_OP "\t.file\n"
     822  
     823  /* Implement ZDA, TDA, and SDA */
     824  
     825  #define EP_REGNUM 30	/* ep register number */
     826  
     827  #define SYMBOL_FLAG_ZDA		(SYMBOL_FLAG_MACH_DEP << 0)
     828  #define SYMBOL_FLAG_TDA		(SYMBOL_FLAG_MACH_DEP << 1)
     829  #define SYMBOL_FLAG_SDA		(SYMBOL_FLAG_MACH_DEP << 2)
     830  #define SYMBOL_REF_ZDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
     831  #define SYMBOL_REF_TDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
     832  #define SYMBOL_REF_SDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
     833  
     834  #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
     835  
     836  #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
     837    ((LENGTH) = v850_adjust_insn_length ((INSN), (LENGTH)))
     838  
     839  #endif /* ! GCC_V850_H */