(root)/
gcc-13.2.0/
gcc/
config/
pa/
pa32-regs.h
       1  /* Copyright (C) 2000-2023 Free Software Foundation, Inc.
       2  
       3  This file is part of GCC.
       4  
       5  GCC is free software; you can redistribute it and/or modify it under
       6  the terms of the GNU General Public License as published by the Free
       7  Software Foundation; either version 3, or (at your option) any later
       8  version.
       9  
      10  GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      11  WARRANTY; without even the implied warranty of MERCHANTABILITY or
      12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      13  for more details.
      14  
      15  Under Section 7 of GPL version 3, you are granted additional
      16  permissions described in the GCC Runtime Library Exception, version
      17  3.1, as published by the Free Software Foundation.
      18  
      19  You should have received a copy of the GNU General Public License and
      20  a copy of the GCC Runtime Library Exception along with this program;
      21  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      22  <http://www.gnu.org/licenses/>.  */
      23  
      24  /* Standard register usage.  */
      25  
      26  /* Number of actual hardware registers.
      27     The hardware registers are assigned numbers for the compiler
      28     from 0 to just below FIRST_PSEUDO_REGISTER.
      29     All registers that the compiler knows about must be given numbers,
      30     even those that are not normally considered general registers.
      31  
      32     HP-PA 1.0 has 32 fullword registers and 16 floating point
      33     registers. The floating point registers hold either word or double
      34     word values.
      35  
      36     16 additional registers are reserved.
      37  
      38     HP-PA 1.1 has 32 fullword registers and 32 floating point
      39     registers. However, the floating point registers behave
      40     differently: the left and right halves of registers are addressable
      41     as 32-bit registers. So, we will set things up like the 68k which
      42     has different fp units: define separate register sets for the 1.0
      43     and 1.1 fp units.  */
      44  
      45  #define FIRST_PSEUDO_REGISTER 90  /* 32 general regs + 56 fp regs +
      46  				     + 1 shift reg + frame pointer */
      47  
      48  /* 1 for registers that have pervasive standard uses
      49     and are not available for the register allocator.
      50  
      51     On the HP-PA, these are:
      52     Reg 0	= 0 (hardware). However, 0 is used for condition code,
      53                    so is not fixed.
      54     Reg 1	= ADDIL target/Temporary (hardware).
      55     Reg 2	= Return Pointer
      56     Reg 3	= Frame Pointer
      57     Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
      58     Reg 4-18	= Preserved Registers
      59     Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
      60     Reg 20-22	= Temporary Registers
      61     Reg 23-26	= Temporary/Parameter Registers
      62     Reg 27	= Global Data Pointer (hp)
      63     Reg 28	= Temporary/Return Value register
      64     Reg 29	= Temporary/Static Chain/Return Value register #2
      65     Reg 30	= stack pointer
      66     Reg 31	= Temporary/Millicode Return Pointer (hp)
      67  
      68     Freg 0-3	= Status Registers	 -- Not known to the compiler.
      69     Freg 4-7	= Arguments/Return Value
      70     Freg 8-11	= Temporary Registers
      71     Freg 12-15	= Preserved Registers
      72  
      73     Freg 16-31	= Reserved
      74  
      75     On the Snake, fp regs are
      76  
      77     Freg 0-3	= Status Registers	-- Not known to the compiler.
      78     Freg 4L-7R	= Arguments/Return Value
      79     Freg 8L-11R	= Temporary Registers
      80     Freg 12L-21R	= Preserved Registers
      81     Freg 22L-31R = Temporary Registers
      82  
      83  */
      84  
      85  #define FIXED_REGISTERS  \
      86   {0, 0, 0, 0, 0, 0, 0, 0, \
      87    0, 0, 0, 0, 0, 0, 0, 0, \
      88    0, 0, 0, 0, 0, 0, 0, 0, \
      89    0, 0, 0, 1, 0, 0, 1, 0, \
      90    /* fp registers */	  \
      91    0, 0, 0, 0, 0, 0, 0, 0, \
      92    0, 0, 0, 0, 0, 0, 0, 0, \
      93    0, 0, 0, 0, 0, 0, 0, 0, \
      94    0, 0, 0, 0, 0, 0, 0, 0, \
      95    0, 0, 0, 0, 0, 0, 0, 0, \
      96    0, 0, 0, 0, 0, 0, 0, 0, \
      97    0, 0, 0, 0, 0, 0, 0, 0, \
      98    /* shift register and soft frame pointer */ \
      99    0, 1}
     100  
     101  /* 1 for registers not available across function calls.
     102     These must include the FIXED_REGISTERS and also any
     103     registers that can be used without being saved.
     104     The latter must include the registers where values are returned
     105     and the register where structure-value addresses are passed.
     106     Aside from that, you can include as many other registers as you like.  */
     107  #define CALL_USED_REGISTERS  \
     108   {1, 1, 1, 0, 0, 0, 0, 0, \
     109    0, 0, 0, 0, 0, 0, 0, 0, \
     110    0, 0, 0, 1, 1, 1, 1, 1, \
     111    1, 1, 1, 1, 1, 1, 1, 1, \
     112    /* fp registers */	  \
     113    1, 1, 1, 1, 1, 1, 1, 1, \
     114    1, 1, 1, 1, 1, 1, 1, 1, \
     115    0, 0, 0, 0, 0, 0, 0, 0, \
     116    0, 0, 0, 0, 0, 0, 0, 0, \
     117    0, 0, 0, 0, 1, 1, 1, 1, \
     118    1, 1, 1, 1, 1, 1, 1, 1, \
     119    1, 1, 1, 1, 1, 1, 1, 1, \
     120    /* shift register and soft frame pointer */ \
     121    1, 1}
     122  
     123  /* Allocate the call used registers first.  This should minimize
     124     the number of registers that need to be saved (as call used
     125     registers will generally not be allocated across a call).
     126  
     127     Experimentation has shown slightly better results by allocating
     128     FP registers first.  We allocate the caller-saved registers more
     129     or less in reverse order to their allocation as arguments.
     130  
     131     FP registers are ordered so that all L registers are selected before
     132     R registers.  This works around a false dependency interlock on the
     133     PA8000 when accessing the high and low parts of an FP register
     134     independently.  */
     135  
     136  #define REG_ALLOC_ORDER \
     137   {					\
     138    /* caller-saved fp regs.  */		\
     139    68, 70, 72, 74, 76, 78, 80, 82,	\
     140    84, 86, 40, 42, 44, 46, 38, 36,	\
     141    34, 32,				\
     142    69, 71, 73, 75, 77, 79, 81, 83,	\
     143    85, 87, 41, 43, 45, 47, 39, 37,	\
     144    35, 33,				\
     145    /* caller-saved general regs.  */	\
     146    28, 19, 20, 21, 22, 31, 27, 29,	\
     147    23, 24, 25, 26,  2,			\
     148    /* callee-saved fp regs.  */		\
     149    48, 50, 52, 54, 56, 58, 60, 62,	\
     150    64, 66,				\
     151    49, 51, 53, 55, 57, 59, 61, 63,	\
     152    65, 67,				\
     153    /* callee-saved general regs.  */	\
     154     3,  4,  5,  6,  7,  8,  9, 10, 	\
     155    11, 12, 13, 14, 15, 16, 17, 18,	\
     156    /* special registers.  */		\
     157     1, 30,  0, 88, 89}
     158  
     159  
     160  /* Return number of consecutive hard regs needed starting at reg REGNO
     161     to hold something of mode MODE.
     162     This is ordinarily the length in words of a value of mode MODE
     163     but can be less for certain modes in special long registers.
     164  
     165     On the HP-PA, general registers are 32 bits wide.  The floating
     166     point registers are 64 bits wide.  Snake fp regs are treated as
     167     32 bits wide since the left and right parts are independently
     168     accessible.  */
     169  #define PA_HARD_REGNO_NREGS(REGNO, MODE)				\
     170    (FP_REGNO_P (REGNO)							\
     171     ? (!TARGET_PA_11							\
     172        ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
     173        : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) 	                        \
     174     : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
     175  
     176  /* There are no instructions that use DImode in PA 1.0, so we only
     177     allow it in PA 1.1 and later.  */
     178  #define VALID_FP_MODE_P(MODE)						\
     179    ((MODE) == SFmode || (MODE) == DFmode					\
     180     || (MODE) == SCmode || (MODE) == DCmode				\
     181     || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
     182  
     183  /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
     184  
     185     On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
     186     For the 64-bit modes, we choose a set of non-overlapping general registers
     187     that includes the incoming arguments and the return value.  We specify a
     188     set with no overlaps so that we don't have to specify that the destination
     189     register is an early clobber in patterns using this mode.  Except for the
     190     return value, the starting registers are odd.  For 128 and 256 bit modes,
     191     we similarly specify non-overlapping sets of cpu registers.  However,
     192     there aren't any patterns defined for modes larger than 64 bits at the
     193     moment.
     194  
     195     We limit the modes allowed in the floating point registers to the
     196     set of modes used in the machine definition.  In addition, we allow
     197     the complex modes SCmode and DCmode.  The real and imaginary parts
     198     of complex modes are allocated to separate registers.  This might
     199     allow patterns to be defined in the future to operate on these values.
     200  
     201     The PA 2.0 architecture specifies that quad-precision floating-point
     202     values should start on an even floating point register.  Thus, we
     203     choose non-overlapping sets of registers starting on even register
     204     boundaries for large modes.  However, there is currently no support
     205     in the machine definition for modes larger than 64 bits.  TFmode is
     206     supported under HP-UX using libcalls.  Since TFmode values are passed
     207     by reference, they never need to be loaded into the floating-point
     208     registers.  */
     209  #define PA_HARD_REGNO_MODE_OK(REGNO, MODE) \
     210    ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\
     211     : (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE)				\
     212     : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\
     213       ? (VALID_FP_MODE_P (MODE)						\
     214  	&& (GET_MODE_SIZE (MODE) <= 8					\
     215  	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))	\
     216     : FP_REGNO_P (REGNO)							\
     217       ? (VALID_FP_MODE_P (MODE)						\
     218  	&& (GET_MODE_SIZE (MODE) <= 4					\
     219  	    || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0)	\
     220  	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)	\
     221  	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))	\
     222     : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
     223        || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
     224  	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
     225        || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
     226  	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)			\
     227        || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD			\
     228  	  && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
     229  
     230  /* How to renumber registers for gdb.
     231  
     232     Registers 0  - 31 remain unchanged.
     233  
     234     Registers 32 - 87 are mapped to 72 - 127
     235  
     236     Register 88 is mapped to 32.  */
     237  
     238  #define DEBUGGER_REGNO(REGNO) \
     239    ((REGNO) <= 31 ? (REGNO) :						\
     240     ((REGNO) <= 87 ? (REGNO) + 40 : 32))
     241  
     242  /* We must not use the debugger register numbers for the DWARF 2 CFA column
     243     numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
     244     Instead use the identity mapping.  */
     245  #define DWARF_FRAME_REGNUM(REG) REG
     246  
     247  /* Define the classes of registers for register constraints in the
     248     machine description.  Also define ranges of constants.
     249  
     250     One of the classes must always be named ALL_REGS and include all hard regs.
     251     If there is more than one class, another class must be named NO_REGS
     252     and contain no registers.
     253  
     254     The name GENERAL_REGS must be the name of a class (or an alias for
     255     another name such as ALL_REGS).  This is the class of registers
     256     that is allowed by "g" or "r" in a register constraint.
     257     Also, registers outside this class are allocated only when
     258     instructions express preferences for them.
     259  
     260     The classes must be numbered in nondecreasing order; that is,
     261     a larger-numbered class must never be contained completely
     262     in a smaller-numbered class.
     263  
     264     For any two classes, it is very desirable that there be another
     265     class that represents their union.  */
     266  
     267    /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
     268       1.1 fp regs, and the high 1.1 fp regs, to which the operands of
     269       fmpyadd and fmpysub are restricted.  */
     270  
     271  enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
     272  		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
     273  
     274  #define N_REG_CLASSES (int) LIM_REG_CLASSES
     275  
     276  /* Give names of register classes as strings for dump file.  */
     277  
     278  #define REG_CLASS_NAMES \
     279    {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
     280     "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
     281  
     282  /* Define which registers fit in which classes.
     283     This is an initializer for a vector of HARD_REG_SET
     284     of length N_REG_CLASSES. Register 0, the "condition code" register,
     285     is in no class.  */
     286  
     287  #define REG_CLASS_CONTENTS	\
     288   {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\
     289    {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\
     290    {0xfffffffe, 0x00000000, 0x02000000},	/* GENERAL_REGS */		\
     291    {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\
     292    {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\
     293    {0xfffffffe, 0xffffffff, 0x02ffffff},	/* GENERAL_OR_FP_REGS */	\
     294    {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\
     295    {0xfffffffe, 0xffffffff, 0x03ffffff}}	/* ALL_REGS */
     296  
     297  /* Return the class number of the smallest class containing
     298     reg number REGNO.  This could be a conditional expression
     299     or could index an array.  */
     300  
     301  #define REGNO_REG_CLASS(REGNO)						\
     302    ((REGNO) == 0 ? NO_REGS 						\
     303     : (REGNO) == 1 ? R1_REGS						\
     304     : (REGNO) < 32 || (REGNO) == 89 ? GENERAL_REGS			\
     305     : (REGNO) < 56 ? FP_REGS						\
     306     : (REGNO) < 88 ? FPUPPER_REGS					\
     307     : SHIFT_REGS)
     308  
     309  /* Return the maximum number of consecutive registers
     310     needed to represent mode MODE in a register of class CLASS.  */
     311  #define CLASS_MAX_NREGS(CLASS, MODE)					\
     312    ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\
     313     ? (!TARGET_PA_11							\
     314        ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
     315        : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)				\
     316     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
     317  
     318  /* 1 if N is a possible register number for function argument passing.  */
     319  
     320  #define FUNCTION_ARG_REGNO_P(N) \
     321    (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) 
     322  
     323  /* How to refer to registers in assembler output.
     324     This sequence is indexed by compiler's hard-register-number (see above).  */
     325  
     326  #define REGISTER_NAMES \
     327  {"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
     328   "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
     329   "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
     330   "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
     331   "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
     332   "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
     333   "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
     334   "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
     335   "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
     336   "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
     337   "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
     338   "SAR",   "sfp"}
     339  
     340  #define ADDITIONAL_REGISTER_NAMES \
     341  {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\
     342   {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\
     343   {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\
     344   {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\
     345   {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\
     346   {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\
     347   {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\
     348   {"%cr11",88}}
     349  
     350  #define FP_SAVED_REG_LAST 66
     351  #define FP_SAVED_REG_FIRST 48
     352  #define FP_REG_STEP 2
     353  #define FP_REG_FIRST 32
     354  #define FP_REG_LAST 87