1  /* Definitions of target machine for GNU compiler, for the HP Spectrum.
       2     Copyright (C) 1992-2023 Free Software Foundation, Inc.
       3     Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
       4     and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
       5     Software Science at the University of Utah.
       6  
       7  This file is part of GCC.
       8  
       9  GCC is free software; you can redistribute it and/or modify
      10  it under the terms of the GNU General Public License as published by
      11  the Free Software Foundation; either version 3, or (at your option)
      12  any later version.
      13  
      14  GCC is distributed in the hope that it will be useful,
      15  but WITHOUT ANY WARRANTY; without even the implied warranty of
      16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17  GNU General Public License for more details.
      18  
      19  You should have received a copy of the GNU General Public License
      20  along with GCC; see the file COPYING3.  If not see
      21  <http://www.gnu.org/licenses/>.  */
      22  
      23  /* For long call handling.  */
      24  extern unsigned long total_code_bytes;
      25  
      26  #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
      27  
      28  #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
      29  
      30  /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
      31  #ifndef TARGET_64BIT
      32  #define TARGET_64BIT 0
      33  #endif
      34  
      35  /* Generate code for ELF32 ABI.  */
      36  #ifndef TARGET_ELF32
      37  #define TARGET_ELF32 0
      38  #endif
      39  
      40  /* Generate code for SOM 32bit ABI.  */
      41  #ifndef TARGET_SOM
      42  #define TARGET_SOM 0
      43  #endif
      44  
      45  /* HP-UX UNIX features.  */
      46  #ifndef TARGET_HPUX
      47  #define TARGET_HPUX 0
      48  #endif
      49  
      50  /* HP-UX 10.10 UNIX 95 features.  */
      51  #ifndef TARGET_HPUX_10_10
      52  #define TARGET_HPUX_10_10 0
      53  #endif
      54  
      55  /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.)  */
      56  #ifndef TARGET_HPUX_11
      57  #define TARGET_HPUX_11 0
      58  #endif
      59  
      60  /* HP-UX 11i multibyte and UNIX 98 extensions.  */
      61  #ifndef TARGET_HPUX_11_11
      62  #define TARGET_HPUX_11_11 0
      63  #endif
      64  
      65  /* HP-UX 11i multibyte and UNIX 2003 extensions.  */
      66  #ifndef TARGET_HPUX_11_31
      67  #define TARGET_HPUX_11_31 0
      68  #endif
      69  
      70  /* HP-UX long double library.  */
      71  #ifndef HPUX_LONG_DOUBLE_LIBRARY
      72  #define HPUX_LONG_DOUBLE_LIBRARY 0
      73  #endif
      74  
      75  /* Sync libcall support.  */
      76  #define TARGET_SYNC_LIBCALLS (flag_sync_libcalls)
      77  
      78  /* The maximum size of the sync library functions supported.  DImode
      79     is supported on 32-bit targets using floating point loads and stores.  */
      80  #define MAX_SYNC_LIBFUNC_SIZE 8
      81  
      82  /* The following three defines are potential target switches.  The current
      83     defines are optimal given the current capabilities of GAS and GNU ld.  */
      84  
      85  /* Define to a C expression evaluating to true to use long absolute calls.
      86     Currently, only the HP assembler and SOM linker support long absolute
      87     calls.  They are used only in non-pic code.  */
      88  #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
      89  
      90  /* Define to a C expression evaluating to true to use long PIC symbol
      91     difference calls.  Long PIC symbol difference calls are only used with
      92     the HP assembler and linker.  The HP assembler detects this instruction
      93     sequence and treats it as long pc-relative call.  Currently, GAS only
      94     allows a difference of two symbols in the same subspace, and it doesn't
      95     detect the sequence as a pc-relative call.  */
      96  #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
      97  
      98  /* Define to a C expression evaluating to true to use SOM secondary
      99     definition symbols for weak support.  Linker support for secondary
     100     definition symbols is buggy prior to HP-UX 11.X.  */
     101  #define TARGET_SOM_SDEF 0
     102  
     103  /* Define to a C expression evaluating to true to save the entry value
     104     of SP in the current frame marker.  This is normally unnecessary.
     105     However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
     106     HP compilers don't use this flag but it is supported by the assembler.
     107     We set this flag to indicate that register %r3 has been saved at the
     108     start of the frame.  Thus, when the HP unwind library is used, we
     109     need to generate additional code to save SP into the frame marker.  */
     110  #define TARGET_HPUX_UNWIND_LIBRARY 0
     111  
     112  #ifndef TARGET_DEFAULT
     113  #define TARGET_DEFAULT MASK_GAS
     114  #endif
     115  
     116  #ifndef TARGET_CPU_DEFAULT
     117  #define TARGET_CPU_DEFAULT 0
     118  #endif
     119  
     120  #ifndef TARGET_SCHED_DEFAULT
     121  #define TARGET_SCHED_DEFAULT PROCESSOR_8000
     122  #endif
     123  
     124  /* Support for a compile-time default CPU, et cetera.  The rules are:
     125     --with-schedule is ignored if -mschedule is specified.
     126     --with-arch is ignored if -march is specified.  */
     127  #define OPTION_DEFAULT_SPECS \
     128    {"arch", "%{!march=*:-march=%(VALUE)}" }, \
     129    {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
     130  
     131  /* Specify the dialect of assembler to use.  New mnemonics is dialect one
     132     and the old mnemonics are dialect zero.  */
     133  #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
     134  
     135  /* We do not have to be compatible with dbx, so we enable gdb extensions
     136     by default.  */
     137  #define DEFAULT_GDB_EXTENSIONS 1
     138  
     139  /* Select dwarf2 as the preferred debug format.  */
     140  #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
     141  
     142  /* GDB always assumes the current function's frame begins at the value
     143     of the stack pointer upon entry to the current function.  Accessing
     144     local variables and parameters passed on the stack is done using the
     145     base of the frame + an offset provided by GCC.
     146  
     147     For functions which have frame pointers this method works fine;
     148     the (frame pointer) == (stack pointer at function entry) and GCC provides
     149     an offset relative to the frame pointer.
     150  
     151     This loses for functions without a frame pointer; GCC provides an offset
     152     which is relative to the stack pointer after adjusting for the function's
     153     frame size.  GDB would prefer the offset to be relative to the value of
     154     the stack pointer at the function's entry.  Yuk!  */
     155  #define DEBUGGER_AUTO_OFFSET(X) \
     156    ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
     157      + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
     158  
     159  #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
     160    ((GET_CODE (X) == PLUS ? OFFSET : 0) \
     161      + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
     162  
     163  #define TARGET_CPU_CPP_BUILTINS()				\
     164  do {								\
     165       builtin_assert("cpu=hppa");				\
     166       builtin_assert("machine=hppa");				\
     167       builtin_define("__hppa");					\
     168       builtin_define("__hppa__");				\
     169       builtin_define("__BIG_ENDIAN__");				\
     170       if (TARGET_PA_20)						\
     171         builtin_define("_PA_RISC2_0");				\
     172       else if (TARGET_PA_11)					\
     173         builtin_define("_PA_RISC1_1");				\
     174       else							\
     175         builtin_define("_PA_RISC1_0");				\
     176       if (HPUX_LONG_DOUBLE_LIBRARY)				\
     177         builtin_define("__SIZEOF_FLOAT128__=16");		\
     178       if (TARGET_SOFT_FLOAT)					\
     179         builtin_define("__SOFTFP__");				\
     180  } while (0)
     181  
     182  /* An old set of OS defines for various BSD-like systems.  */
     183  #define TARGET_OS_CPP_BUILTINS()				\
     184    do								\
     185      {								\
     186  	builtin_define_std ("REVARGV");				\
     187  	builtin_define_std ("hp800");				\
     188  	builtin_define_std ("hp9000");				\
     189  	builtin_define_std ("hp9k8");				\
     190  	if (!c_dialect_cxx () && !flag_iso)			\
     191  	  builtin_define ("hppa");				\
     192  	builtin_define_std ("spectrum");			\
     193  	builtin_define_std ("unix");				\
     194  	builtin_assert ("system=bsd");				\
     195  	builtin_assert ("system=unix");				\
     196      }								\
     197    while (0)
     198  
     199  #define CC1_SPEC "%{pg:} %{p:}"
     200  
     201  #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
     202  
     203  /* We don't want -lg.  */
     204  #ifndef LIB_SPEC
     205  #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
     206  #endif
     207  
     208  /* Make gcc agree with <machine/ansi.h> */
     209  
     210  #define SIZE_TYPE "unsigned int"
     211  #define PTRDIFF_TYPE "int"
     212  #define WCHAR_TYPE "unsigned int"
     213  #define WCHAR_TYPE_SIZE 32
     214  
     215  /* target machine storage layout */
     216  typedef struct GTY(()) machine_function
     217  {
     218    /* Flag indicating that a .NSUBSPA directive has been output for
     219       this function.  */
     220    int in_nsubspa;
     221  } machine_function;
     222  
     223  /* Define this macro if it is advisable to hold scalars in registers
     224     in a wider mode than that declared by the program.  In such cases, 
     225     the value is constrained to be within the bounds of the declared
     226     type, but kept valid in the wider mode.  The signedness of the
     227     extension may differ from that of the type.  */
     228  
     229  #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
     230    if (GET_MODE_CLASS (MODE) == MODE_INT	\
     231        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
     232      (MODE) = word_mode;
     233  
     234  /* Define this if most significant bit is lowest numbered
     235     in instructions that operate on numbered bit-fields.  */
     236  #define BITS_BIG_ENDIAN 1
     237  
     238  /* Define this if most significant byte of a word is the lowest numbered.  */
     239  /* That is true on the HP-PA.  */
     240  #define BYTES_BIG_ENDIAN 1
     241  
     242  /* Define this if most significant word of a multiword number is lowest
     243     numbered.  */
     244  #define WORDS_BIG_ENDIAN 1
     245  
     246  #define MAX_BITS_PER_WORD 64
     247  
     248  /* Width of a word, in units (bytes).  */
     249  #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
     250  
     251  /* Minimum number of units in a word.  If this is undefined, the default
     252     is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
     253     smallest value that UNITS_PER_WORD can have at run-time.
     254  
     255     This needs to be 8 when TARGET_64BIT is true to allow building various
     256     TImode routines in libgcc.  However, we also need the DImode DIVMOD
     257     routines because they are not currently implemented in pa.md.
     258     
     259     The HP runtime specification doesn't provide the alignment requirements
     260     and calling conventions for TImode variables.  */
     261  #ifdef IN_LIBGCC2
     262  #define MIN_UNITS_PER_WORD      UNITS_PER_WORD
     263  #else
     264  #define MIN_UNITS_PER_WORD      4
     265  #endif
     266  
     267  /* The widest floating point format supported by the hardware.  Note that
     268     setting this influences some Ada floating point type sizes, currently
     269     required for GNAT to operate properly.  */
     270  #define WIDEST_HARDWARE_FP_SIZE 64
     271  
     272  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     273  #define PARM_BOUNDARY BITS_PER_WORD
     274  
     275  /* Largest alignment required for any stack parameter, in bits.
     276     Don't define this if it is equal to PARM_BOUNDARY */
     277  #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
     278  
     279  /* Boundary (in *bits*) on which stack pointer is always aligned;
     280     certain optimizations in combine depend on this.
     281  
     282     The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
     283     the stack on the 32 and 64-bit ports, respectively.  However, we
     284     are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
     285     in main.  Thus, we treat the former as the preferred alignment.  */
     286  #define STACK_BOUNDARY BIGGEST_ALIGNMENT
     287  #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
     288  
     289  /* Allocation boundary (in *bits*) for the code of a function.  */
     290  #define FUNCTION_BOUNDARY BITS_PER_WORD
     291  
     292  /* Alignment of field after `int : 0' in a structure.  */
     293  #define EMPTY_FIELD_BOUNDARY 32
     294  
     295  /* Every structure's size must be a multiple of this.  */
     296  #define STRUCTURE_SIZE_BOUNDARY 8
     297  
     298  /* A bit-field declared as `int' forces `int' alignment for the struct.  */
     299  #define PCC_BITFIELD_TYPE_MATTERS 1
     300  
     301  /* No data type wants to be aligned rounder than this.  The long double
     302     type has 16-byte alignment on the 64-bit target even though it was never
     303     implemented in hardware.  The software implementation only needs 8-byte
     304     alignment.  This matches the biggest alignment of the HP compilers.  */
     305  #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
     306  
     307  /* Alignment, in bits, a C conformant malloc implementation has to provide.
     308     The HP-UX malloc implementation provides a default alignment of 8 bytes.
     309     It should be 16 bytes on the 64-bit target since long double has 16-byte
     310     alignment.  It can be increased with mallopt but it's non critical since
     311     long double was never implemented in hardware.  The glibc implementation
     312     currently provides 8-byte alignment.  It should be 16 bytes since various
     313     POSIX types such as pthread_mutex_t require 16-byte alignment.  Again,
     314     this is non critical since 16-byte alignment is no longer needed for
     315     atomic operations.  */
     316  #define MALLOC_ABI_ALIGNMENT (TARGET_64BIT ? 128 : 64)
     317  
     318  /* Make arrays of chars word-aligned for the same reasons.  */
     319  #define DATA_ALIGNMENT(TYPE, ALIGN)		\
     320    (TREE_CODE (TYPE) == ARRAY_TYPE		\
     321     && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
     322     && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
     323  
     324  /* Set this nonzero if move instructions will actually fail to work
     325     when given unaligned data.  */
     326  #define STRICT_ALIGNMENT 1
     327  
     328  /* Specify the registers used for certain standard purposes.
     329     The values of these macros are register numbers.  */
     330  
     331  /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
     332  /* #define PC_REGNUM  */
     333  
     334  /* Register to use for pushing function arguments.  */
     335  #define STACK_POINTER_REGNUM 30
     336  
     337  /* Fixed register for local variable access.  Always eliminated.  */
     338  #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
     339  
     340  /* Base register for access to local variables of the function.  */
     341  #define HARD_FRAME_POINTER_REGNUM 3
     342  
     343  /* Don't allow hard registers to be renamed into r2 unless r2
     344     is already live or already being saved (due to eh).  */
     345  
     346  #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
     347    ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
     348  
     349  /* Base register for access to arguments of the function.  */
     350  #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
     351  
     352  /* Register in which static-chain is passed to a function.  */
     353  #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
     354  
     355  /* Register used to address the offset table for position-independent
     356     data references.  */
     357  #define PIC_OFFSET_TABLE_REGNUM \
     358    (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
     359  
     360  #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
     361  
     362  /* Function to return the rtx used to save the pic offset table register
     363     across function calls.  */
     364  extern rtx hppa_pic_save_rtx (void);
     365  
     366  #define DEFAULT_PCC_STRUCT_RETURN 0
     367  
     368  /* Register in which address to store a structure value
     369     is passed to a function.  */
     370  #define PA_STRUCT_VALUE_REGNUM 28
     371  
     372  /* Definitions for register eliminations.
     373  
     374     We have two registers that can be eliminated.  First, the frame pointer
     375     register can often be eliminated in favor of the stack pointer register.
     376     Secondly, the argument pointer register can always be eliminated in the
     377     32-bit runtimes.  */
     378  
     379  /* This is an array of structures.  Each structure initializes one pair
     380     of eliminable registers.  The "from" register number is given first,
     381     followed by "to".  Eliminations of the same "from" register are listed
     382     in order of preference.
     383  
     384     The argument pointer cannot be eliminated in the 64-bit runtime.  It
     385     is the same register as the hard frame pointer in the 32-bit runtime.
     386     So, it does not need to be listed.  */
     387  #define ELIMINABLE_REGS                                 \
     388  {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
     389   { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
     390   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
     391  
     392  /* Define the offset between two registers, one to be eliminated,
     393     and the other its replacement, at the start of a routine.  */
     394  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
     395    ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
     396  
     397  /* Describe how we implement __builtin_eh_return.  */
     398  #define EH_RETURN_DATA_REGNO(N)	\
     399    ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
     400  #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
     401  #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
     402  
     403  /* Offset from the frame pointer register value to the top of stack.  */
     404  #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
     405  
     406  /* The maximum number of hard registers that can be saved in the call
     407     frame.  The soft frame pointer is not included.  */
     408  #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
     409  
     410  /* A C expression whose value is RTL representing the location of the
     411     incoming return address at the beginning of any function, before the
     412     prologue.  You only need to define this macro if you want to support
     413     call frame debugging information like that provided by DWARF 2.  */
     414  #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
     415  #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
     416  
     417  /* A C expression whose value is an integer giving a DWARF 2 column
     418     number that may be used as an alternate return column.  This should
     419     be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
     420     register, but an alternate column needs to be used for signal frames.
     421  
     422     Column 0 is not used but unfortunately its register size is set to
     423     4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
     424  #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
     425  
     426  /* This macro chooses the encoding of pointers embedded in the exception
     427     handling sections.  If at all possible, this should be defined such
     428     that the exception handling section will not require dynamic relocations,
     429     and so may be read-only.
     430  
     431     Because the HP assembler auto aligns, it is necessary to use
     432     DW_EH_PE_aligned.  It's not possible to make the data read-only
     433     on the HP-UX SOM port since the linker requires fixups for label
     434     differences in different sections to be word aligned.  However,
     435     the SOM linker can do unaligned fixups for absolute pointers.
     436     We also need aligned pointers for global and function pointers.
     437  
     438     Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
     439     fixups, the runtime doesn't have a consistent relationship between
     440     text and data for dynamically loaded objects.  Thus, it's not possible
     441     to use pc-relative encoding for pointers on this target.  It may be
     442     possible to use segment relative encodings but GAS doesn't currently
     443     have a mechanism to generate these encodings.  For other targets, we
     444     use pc-relative encoding for pointers.  If the pointer might require
     445     dynamic relocation, we make it indirect.  */
     446  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
     447    (TARGET_GAS && !TARGET_HPUX						\
     448     ? (DW_EH_PE_pcrel							\
     449        | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
     450        | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
     451     : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
     452        ? DW_EH_PE_aligned : DW_EH_PE_absptr))
     453  
     454  /* Handle special EH pointer encodings.  Absolute, pc-relative, and
     455     indirect are handled automatically.  We output pc-relative, and
     456     indirect pc-relative ourself since we need some special magic to
     457     generate pc-relative relocations, and to handle indirect function
     458     pointers.  */
     459  #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
     460    do {									\
     461      if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
     462        {									\
     463  	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
     464  	if ((ENCODING) & DW_EH_PE_indirect)				\
     465  	  output_addr_const (FILE, pa_get_deferred_plabel (ADDR));	\
     466  	else								\
     467  	  assemble_name (FILE, XSTR ((ADDR), 0));			\
     468  	fputs ("+8-$PIC_pcrel$0", FILE);				\
     469  	goto DONE;							\
     470        }									\
     471      } while (0)
     472  
     473  
     474  /* The class value for index registers, and the one for base regs.  */
     475  #define INDEX_REG_CLASS GENERAL_REGS
     476  #define BASE_REG_CLASS GENERAL_REGS
     477  
     478  #define FP_REG_CLASS_P(CLASS) \
     479    ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
     480  
     481  /* True if register is floating-point.  */
     482  #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
     483  
     484  #define MAYBE_FP_REG_CLASS_P(CLASS) \
     485    reg_classes_intersect_p ((CLASS), FP_REGS)
     486  
     487  
     488  /* Stack layout; function entry, exit and calling.  */
     489  
     490  /* Define this if pushing a word on the stack
     491     makes the stack pointer a smaller address.  */
     492  /* #define STACK_GROWS_DOWNWARD */
     493  
     494  /* Believe it or not.  */
     495  #define ARGS_GROW_DOWNWARD 1
     496  
     497  /* Define this to nonzero if the nominal address of the stack frame
     498     is at the high-address end of the local variables;
     499     that is, each additional local variable allocated
     500     goes at a more negative offset in the frame.  */
     501  #define FRAME_GROWS_DOWNWARD 0
     502  
     503  /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
     504     of the stack.  The default is to align it to STACK_BOUNDARY.  */
     505  #define STACK_ALIGNMENT_NEEDED 0
     506  
     507  /* If we generate an insn to push BYTES bytes,
     508     this says how many the stack pointer really advances by.
     509     On the HP-PA, don't define this because there are no push insns.  */
     510  /*  #define PUSH_ROUNDING(BYTES) */
     511  
     512  /* Offset of first parameter from the argument pointer register value.
     513     This value will be negated because the arguments grow down.
     514     Also note that on STACK_GROWS_UPWARD machines (such as this one)
     515     this is the distance from the frame pointer to the end of the first
     516     argument, not it's beginning.  To get the real offset of the first
     517     argument, the size of the argument must be added.  */
     518  
     519  #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
     520  
     521  /* When a parameter is passed in a register, stack space is still
     522     allocated for it.  */
     523  #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
     524  
     525  /* Define this if the above stack space is to be considered part of the
     526     space allocated by the caller.  */
     527  #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
     528  
     529  /* Keep the stack pointer constant throughout the function.
     530     This is both an optimization and a necessity: longjmp
     531     doesn't behave itself when the stack pointer moves within
     532     the function!  */
     533  #define ACCUMULATE_OUTGOING_ARGS 1
     534  
     535  /* The weird HPPA calling conventions require a minimum of 48 bytes on
     536     the stack: 16 bytes for register saves, and 32 bytes for magic.
     537     This is the difference between the logical top of stack and the
     538     actual sp.
     539  
     540     On the 64-bit port, the HP C compiler allocates a 48-byte frame
     541     marker, although the runtime documentation only describes a 16
     542     byte marker.  For compatibility, we allocate 48 bytes.  */
     543  #define STACK_POINTER_OFFSET \
     544    (TARGET_64BIT ? -(crtl->outgoing_args_size + 48) : poly_int64 (-32))
     545  
     546  #define STACK_DYNAMIC_OFFSET(FNDECL)	\
     547    (TARGET_64BIT				\
     548     ? (STACK_POINTER_OFFSET)		\
     549     : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
     550  
     551  
     552  /* Define a data type for recording info about an argument list
     553     during the scan of that argument list.  This data type should
     554     hold all necessary information about the function itself
     555     and about the args processed so far, enough to enable macros
     556     such as FUNCTION_ARG to determine where the next arg should go.
     557  
     558     On the HP-PA, the WORDS field holds the number of words
     559     of arguments scanned so far (including the invisible argument,
     560     if any, which holds the structure-value-address).  Thus, 4 or
     561     more means all following args should go on the stack.
     562     
     563     The INCOMING field tracks whether this is an "incoming" or
     564     "outgoing" argument.
     565     
     566     The INDIRECT field indicates whether this is an indirect
     567     call or not.
     568     
     569     The NARGS_PROTOTYPE field indicates that an argument does not
     570     have a prototype when it less than or equal to 0.  */
     571  
     572  struct hppa_args {int words, nargs_prototype, incoming, indirect; };
     573  
     574  #define CUMULATIVE_ARGS struct hppa_args
     575  
     576  /* Initialize a variable CUM of type CUMULATIVE_ARGS
     577     for a call to a function whose data type is FNTYPE.
     578     For a library call, FNTYPE is 0.  */
     579  
     580  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
     581    (CUM).words = 0, 							\
     582    (CUM).incoming = 0,							\
     583    (CUM).indirect = (FNTYPE) && !(FNDECL),				\
     584    (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE)		\
     585  			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
     586  			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
     587  				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
     588  			   : 0)
     589  
     590  
     591  
     592  /* Similar, but when scanning the definition of a procedure.  We always
     593     set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
     594  
     595  #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
     596    (CUM).words = 0,				\
     597    (CUM).incoming = 1,				\
     598    (CUM).indirect = 0,				\
     599    (CUM).nargs_prototype = 1000
     600  
     601  /* Determine where to put an argument to a function.
     602     Value is zero to push the argument on the stack,
     603     or a hard register in which to store the argument.
     604  
     605     MODE is the argument's machine mode.
     606     TYPE is the data type of the argument (as a tree).
     607      This is null for libcalls where that information may
     608      not be available.
     609     CUM is a variable of type CUMULATIVE_ARGS which gives info about
     610      the preceding args and about the function being called.
     611     NAMED is nonzero if this argument is a named parameter
     612      (otherwise it is an extra parameter matching an ellipsis).
     613  
     614     On the HP-PA the first four words of args are normally in registers
     615     and the rest are pushed.  But any arg that won't entirely fit in regs
     616     is pushed.
     617  
     618     Arguments passed in registers are either 1 or 2 words long.
     619  
     620     The caller must make a distinction between calls to explicitly named
     621     functions and calls through pointers to functions -- the conventions
     622     are different!  Calls through pointers to functions only use general
     623     registers for the first four argument words.
     624  
     625     Of course all this is different for the portable runtime model
     626     HP wants everyone to use for ELF.  Ugh.  Here's a quick description
     627     of how it's supposed to work.
     628  
     629     1) callee side remains unchanged.  It expects integer args to be
     630     in the integer registers, float args in the float registers and
     631     unnamed args in integer registers.
     632  
     633     2) caller side now depends on if the function being called has
     634     a prototype in scope (rather than if it's being called indirectly).
     635  
     636        2a) If there is a prototype in scope, then arguments are passed
     637        according to their type (ints in integer registers, floats in float
     638        registers, unnamed args in integer registers.
     639  
     640        2b) If there is no prototype in scope, then floating point arguments
     641        are passed in both integer and float registers.  egad.
     642  
     643    FYI: The portable parameter passing conventions are almost exactly like
     644    the standard parameter passing conventions on the RS6000.  That's why
     645    you'll see lots of similar code in rs6000.h.  */
     646  
     647  /* Specify padding for the last element of a block move between registers
     648     and memory.
     649  
     650     The 64-bit runtime specifies that objects need to be left justified
     651     (i.e., the normal justification for a big endian target).  The 32-bit
     652     runtime specifies right justification for objects smaller than 64 bits.
     653     We use a DImode register in the parallel for 5 to 7 byte structures
     654     so that there is only one element.  This allows the object to be
     655     correctly padded.  */
     656  #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
     657    targetm.calls.function_arg_padding ((MODE), (TYPE))
     658  
     659  
     660  /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
     661     as assembly via FUNCTION_PROFILER.  Just output a local label.
     662     We can't use the function label because the GAS SOM target can't
     663     handle the difference of a global symbol and a local symbol.  */
     664  
     665  #ifndef FUNC_BEGIN_PROLOG_LABEL
     666  #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
     667  #endif
     668  
     669  #define FUNCTION_PROFILER(FILE, LABEL) \
     670    (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
     671  
     672  #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
     673  
     674  /* The profile counter if emitted must come before the prologue.  */
     675  #define PROFILE_BEFORE_PROLOGUE 1
     676  
     677  /* We never want final.cc to emit profile counters.  When profile
     678     counters are required, we have to defer emitting them to the end
     679     of the current file.  */
     680  #define NO_PROFILE_COUNTERS 1
     681  
     682  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
     683     the stack pointer does not matter.  The value is tested only in
     684     functions that have frame pointers.
     685     No definition is equivalent to always zero.  */
     686  
     687  extern int may_call_alloca;
     688  
     689  #define EXIT_IGNORE_STACK	\
     690   (maybe_ne (get_frame_size (), 0)	\
     691    || cfun->calls_alloca || maybe_ne (crtl->outgoing_args_size, 0))
     692  
     693  /* Length in units of the trampoline for entering a nested function.  */
     694  
     695  #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 64)
     696  
     697  /* Alignment required by the trampoline.  */
     698  
     699  #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
     700  
     701  /* Minimum length of a cache line.  A length of 16 will work on all
     702     PA-RISC processors.  All PA 1.1 processors have a cache line of
     703     32 bytes.  Most but not all PA 2.0 processors have a cache line
     704     of 64 bytes.  As cache flushes are expensive and we don't support
     705     PA 1.0, we use a minimum length of 32.  */
     706  
     707  #define MIN_CACHELINE_SIZE 32
     708  
     709  
     710  /* Addressing modes, and classification of registers for them. 
     711  
     712     Using autoincrement addressing modes on PA8000 class machines is
     713     not profitable.  */
     714  
     715  #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
     716  #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
     717  
     718  #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
     719  #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
     720  
     721  /* Macros to check register numbers against specific register classes.  */
     722  
     723  /* The following macros assume that X is a hard or pseudo reg number.
     724     They give nonzero only if X is a hard reg of the suitable class
     725     or a pseudo reg currently allocated to a suitable hard reg.
     726     Since they use reg_renumber, they are safe only once reg_renumber
     727     has been allocated, which happens in reginfo.cc during register
     728     allocation.  */
     729  
     730  #define REGNO_OK_FOR_INDEX_P(X) \
     731    ((X) && ((X) < 32							\
     732     || ((X) == FRAME_POINTER_REGNUM)					\
     733     || ((X) >= FIRST_PSEUDO_REGISTER					\
     734         && reg_renumber							\
     735         && (unsigned) reg_renumber[X] < 32)))
     736  #define REGNO_OK_FOR_BASE_P(X) \
     737    ((X) && ((X) < 32							\
     738     || ((X) == FRAME_POINTER_REGNUM)					\
     739     || ((X) >= FIRST_PSEUDO_REGISTER					\
     740         && reg_renumber							\
     741         && (unsigned) reg_renumber[X] < 32)))
     742  #define REGNO_OK_FOR_FP_P(X) \
     743    (FP_REGNO_P (X)							\
     744     || (X >= FIRST_PSEUDO_REGISTER					\
     745         && reg_renumber							\
     746         && FP_REGNO_P (reg_renumber[X])))
     747  
     748  /* Now macros that check whether X is a register and also,
     749     strictly, whether it is in a specified class.
     750  
     751     These macros are specific to the HP-PA, and may be used only
     752     in code for printing assembler insns and in conditions for
     753     define_optimization.  */
     754  
     755  /* 1 if X is an fp register.  */
     756  
     757  #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
     758  
     759  /* Maximum number of registers that can appear in a valid memory address.  */
     760  
     761  #define MAX_REGS_PER_ADDRESS 2
     762  
     763  /* TLS symbolic reference.  */
     764  #define PA_SYMBOL_REF_TLS_P(X) \
     765    (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (X) != 0)
     766  
     767  /* Recognize any constant value that is a valid address except
     768     for symbolic addresses.  We get better CSE by rejecting them
     769     here and allowing hppa_legitimize_address to break them up.  We
     770     use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
     771  
     772  #define CONSTANT_ADDRESS_P(X) \
     773    ((GET_CODE (X) == LABEL_REF 						\
     774     || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
     775     || GET_CODE (X) == CONST_INT						\
     776     || (GET_CODE (X) == CONST && !tls_referenced_p (X))			\
     777     || GET_CODE (X) == HIGH) 						\
     778     && (reload_in_progress || reload_completed				\
     779         || ! pa_symbolic_expression_p (X)))
     780  
     781  /* A C expression that is nonzero if we are using the new HP assembler.  */
     782  
     783  #ifndef NEW_HP_ASSEMBLER
     784  #define NEW_HP_ASSEMBLER 0
     785  #endif
     786  
     787  /* The macros below define the immediate range for CONST_INTS on
     788     the 64-bit port.  Constants in this range can be loaded in three
     789     instructions using a ldil/ldo/depdi sequence.  Constants outside
     790     this range are forced to the constant pool prior to reload.  */
     791  
     792  #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
     793  #define MIN_LEGIT_64BIT_CONST_INT \
     794    ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -32 << 31))
     795  #define LEGITIMATE_64BIT_CONST_INT_P(X) \
     796    ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
     797  
     798  /* Target flags set on a symbol_ref.  */
     799  
     800  /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
     801  #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
     802  #define SYMBOL_REF_REFERENCED_P(RTX) \
     803    ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
     804  
     805  /* Defines for constraints.md.  */
     806  
     807  /* Return 1 iff OP is a scaled or unscaled index address.  */
     808  #define IS_INDEX_ADDR_P(OP) \
     809    (GET_CODE (OP) == PLUS				\
     810     && GET_MODE (OP) == Pmode				\
     811     && (GET_CODE (XEXP (OP, 0)) == MULT			\
     812         || GET_CODE (XEXP (OP, 1)) == MULT		\
     813         || (REG_P (XEXP (OP, 0))				\
     814  	   && REG_P (XEXP (OP, 1)))))
     815  
     816  /* Return 1 iff OP is a LO_SUM DLT address.  */
     817  #define IS_LO_SUM_DLT_ADDR_P(OP) \
     818    (GET_CODE (OP) == LO_SUM				\
     819     && GET_MODE (OP) == Pmode				\
     820     && REG_P (XEXP (OP, 0))				\
     821     && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
     822     && GET_CODE (XEXP (OP, 1)) == UNSPEC)
     823  
     824  /* Nonzero if 14-bit offsets can be used for all loads and stores.
     825     This is not possible when generating PA 1.x code as floating point
     826     loads and stores only support 5-bit offsets.  Note that we do not
     827     forbid the use of 14-bit offsets for integer modes.  Instead, we
     828     use secondary reloads to fix REG+D memory addresses for integer
     829     mode floating-point loads and stores.
     830  
     831     FIXME: the ELF32 linker clobbers the LSB of the FP register number
     832     in PA 2.0 floating-point insns with long displacements.  This is
     833     because R_PARISC_DPREL14WR and other relocations like it are not
     834     yet supported by GNU ld.  For now, we reject long displacements
     835     on this target.  */
     836  
     837  #define INT14_OK_STRICT \
     838    (TARGET_SOFT_FLOAT                                                   \
     839     || (TARGET_PA_20 && !TARGET_ELF32))
     840  
     841  /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
     842     and check its validity for a certain class.
     843     We have two alternate definitions for each of them.
     844     The usual definition accepts all pseudo regs; the other rejects
     845     them unless they have been allocated suitable hard regs.
     846  
     847     Most source files want to accept pseudo regs in the hope that
     848     they will get allocated to the class that the insn wants them to be in.
     849     Source files for reload pass need to be strict.
     850     After reload, it makes no difference, since pseudo regs have
     851     been eliminated by then.  */
     852  
     853  /* Nonzero if X is a hard reg that can be used as an index
     854     or if it is a pseudo reg.  */
     855  #define REG_OK_FOR_INDEX_P(X) \
     856    (REGNO (X) && (REGNO (X) < 32 				\
     857     || REGNO (X) == FRAME_POINTER_REGNUM				\
     858     || REGNO (X) >= FIRST_PSEUDO_REGISTER))
     859  
     860  /* Nonzero if X is a hard reg that can be used as a base reg
     861     or if it is a pseudo reg.  */
     862  #define REG_OK_FOR_BASE_P(X) \
     863    (REGNO (X) && (REGNO (X) < 32 				\
     864     || REGNO (X) == FRAME_POINTER_REGNUM				\
     865     || REGNO (X) >= FIRST_PSEUDO_REGISTER))
     866  
     867  /* Nonzero if X is a hard reg that can be used as an index.  */
     868  #define STRICT_REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
     869  
     870  /* Nonzero if X is a hard reg that can be used as a base reg.  */
     871  #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
     872  
     873  #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
     874  #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
     875  
     876  #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
     877  #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
     878  
     879  #define VAL_U6_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x40)
     880  #define INT_U6_BITS(X) VAL_U6_BITS_P (INTVAL (X))
     881  
     882  #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
     883  #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
     884  
     885  #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
     886  #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
     887  
     888  #if HOST_BITS_PER_WIDE_INT > 32
     889  #define VAL_32_BITS_P(X) \
     890    ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
     891     < (unsigned HOST_WIDE_INT) 2 << 31)
     892  #else
     893  #define VAL_32_BITS_P(X) 1
     894  #endif
     895  #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
     896  
     897  /* These are the modes that we allow for scaled indexing.  */
     898  #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
     899    ((TARGET_64BIT && (MODE) == DImode)					\
     900     || (MODE) == SImode							\
     901     || (MODE) == HImode							\
     902     || (MODE) == SFmode							\
     903     || (MODE) == DFmode)
     904  
     905  /* These are the modes that we allow for unscaled indexing.  */
     906  #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
     907    ((TARGET_64BIT && (MODE) == DImode)					\
     908     || (MODE) == SImode							\
     909     || (MODE) == HImode							\
     910     || (MODE) == QImode							\
     911     || (MODE) == SFmode							\
     912     || (MODE) == DFmode)
     913  
     914  /* Try a machine-dependent way of reloading an illegitimate address
     915     operand.  If we find one, push the reload and jump to WIN.  This
     916     macro is used in only one place: `find_reloads_address' in reload.cc.  */
     917  
     918  #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND_L, WIN) 	     \
     919  do {									     \
     920    rtx new_ad = pa_legitimize_reload_address (AD, MODE, OPNUM, TYPE, IND_L);  \
     921    if (new_ad)								     \
     922      {									     \
     923        AD = new_ad;							     \
     924        goto WIN;								     \
     925      }									     \
     926  } while (0)
     927  
     928  
     929  #define TARGET_ASM_SELECT_SECTION  pa_select_section
     930  
     931  /* Return a nonzero value if DECL has a section attribute.  */
     932  #define IN_NAMED_SECTION_P(DECL) \
     933    ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
     934     && DECL_SECTION_NAME (DECL) != NULL)
     935  
     936  /* Define this macro if references to a symbol must be treated
     937     differently depending on something about the variable or
     938     function named by the symbol (such as what section it is in).
     939  
     940     The macro definition, if any, is executed immediately after the
     941     rtl for DECL or other node is created.
     942     The value of the rtl will be a `mem' whose address is a
     943     `symbol_ref'.
     944  
     945     The usual thing for this macro to do is to a flag in the
     946     `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
     947     name string in the `symbol_ref' (if one bit is not enough
     948     information).
     949  
     950     On the HP-PA we use this to indicate if a symbol is in text or
     951     data space.  Also, function labels need special treatment.  */
     952  
     953  #define TEXT_SPACE_P(DECL)\
     954    (TREE_CODE (DECL) == FUNCTION_DECL					\
     955     || (TREE_CODE (DECL) == VAR_DECL					\
     956         && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
     957         && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
     958         && !flag_pic)							\
     959     || CONSTANT_CLASS_P (DECL))
     960  
     961  #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
     962  
     963  /* Specify the machine mode that this machine uses for the index in the
     964     tablejump instruction.  We use a 32-bit absolute address for non-pic code,
     965     and a 32-bit offset for 32 and 64-bit pic code.  */
     966  #define CASE_VECTOR_MODE SImode
     967  
     968  /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
     969  #define ADDR_VEC_ALIGN(ADDR_VEC) 2
     970  
     971  /* Define this as 1 if `char' should by default be signed; else as 0.  */
     972  #define DEFAULT_SIGNED_CHAR 1
     973  
     974  /* Max number of bytes we can move from memory to memory
     975     in one reasonably fast instruction.  */
     976  #define MOVE_MAX 8
     977  
     978  /* Higher than the default as we prefer to use simple move insns
     979     (better scheduling and delay slot filling) and because our
     980     built-in block move is really a 2X unrolled loop. 
     981  
     982     Believe it or not, this has to be big enough to allow for copying all
     983     arguments passed in registers to avoid infinite recursion during argument
     984     setup for a function call.  Why?  Consider how we copy the stack slots
     985     reserved for parameters when they may be trashed by a call.  */
     986  #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
     987  
     988  /* Define if operations between registers always perform the operation
     989     on the full register even if a narrower mode is specified.  */
     990  #define WORD_REGISTER_OPERATIONS 1
     991  
     992  /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
     993     will either zero-extend or sign-extend.  The value of this macro should
     994     be the code that says which one of the two operations is implicitly
     995     done, UNKNOWN if none.  */
     996  #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
     997  
     998  /* Nonzero if access to memory by bytes is slow and undesirable.  */
     999  #define SLOW_BYTE_ACCESS 1
    1000  
    1001  /* Specify the machine mode that pointers have.
    1002     After generation of rtl, the compiler makes no further distinction
    1003     between pointers and any other objects of this machine mode.  */
    1004  #define Pmode word_mode
    1005  
    1006  /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
    1007     return the mode to be used for the comparison.  For floating-point, CCFPmode
    1008     should be used.  CC_NOOVmode should be used when the first operand is a
    1009     PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
    1010     needed.  */
    1011  #define SELECT_CC_MODE(OP,X,Y) \
    1012    (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
    1013  
    1014  /* A function address in a call instruction
    1015     is a byte address (for indexing purposes)
    1016     so give the MEM rtx a byte's mode.  */
    1017  #define FUNCTION_MODE SImode
    1018  
    1019  /* Define this if addresses of constant functions
    1020     shouldn't be put through pseudo regs where they can be cse'd.
    1021     Desirable on machines where ordinary constants are expensive
    1022     but a CALL with constant address is cheap.  */
    1023  #define NO_FUNCTION_CSE 1
    1024  
    1025  /* Define this to be nonzero if shift instructions ignore all but the low-order
    1026     few bits.  */
    1027  #define SHIFT_COUNT_TRUNCATED 1
    1028  
    1029  /* Adjust the cost of branches.  */
    1030  #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
    1031  
    1032  /* Handling the special cases is going to get too complicated for a macro,
    1033     just call `pa_adjust_insn_length' to do the real work.  */
    1034  #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
    1035    ((LENGTH) = pa_adjust_insn_length ((INSN), (LENGTH)))
    1036  
    1037  /* Millicode insns are actually function calls with some special
    1038     constraints on arguments and register usage.
    1039  
    1040     Millicode calls always expect their arguments in the integer argument
    1041     registers, and always return their result in %r29 (ret1).  They
    1042     are expected to clobber their arguments, %r1, %r29, and the return
    1043     pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
    1044  
    1045     This macro tells reorg that the references to arguments and
    1046     millicode calls do not appear to happen until after the millicode call.
    1047     This allows reorg to put insns which set the argument registers into the
    1048     delay slot of the millicode call -- thus they act more like traditional
    1049     CALL_INSNs.
    1050  
    1051     Note we cannot consider side effects of the insn to be delayed because
    1052     the branch and link insn will clobber the return pointer.  If we happened
    1053     to use the return pointer in the delay slot of the call, then we lose.
    1054  
    1055     get_attr_type will try to recognize the given insn, so make sure to
    1056     filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
    1057     in particular.  */
    1058  #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
    1059  
    1060  
    1061  /* Control the assembler format that we output.  */
    1062  
    1063  /* A C string constant describing how to begin a comment in the target
    1064     assembler language.  The compiler assumes that the comment will end at
    1065     the end of the line.  */
    1066  
    1067  #define ASM_COMMENT_START ";"
    1068  
    1069  /* Output to assembler file text saying following lines
    1070     may contain character constants, extra white space, comments, etc.  */
    1071  
    1072  #define ASM_APP_ON ""
    1073  
    1074  /* Output to assembler file text saying following lines
    1075     no longer contain unusual constructs.  */
    1076  
    1077  #define ASM_APP_OFF ""
    1078  
    1079  /* This is how to output the definition of a user-level label named NAME,
    1080     such as the label on a static function or variable NAME.  */
    1081  
    1082  #define ASM_OUTPUT_LABEL(FILE,NAME) \
    1083    do {							\
    1084      assemble_name ((FILE), (NAME));			\
    1085      if (TARGET_GAS)					\
    1086        fputs (":\n", (FILE));				\
    1087      else						\
    1088        fputc ('\n', (FILE));				\
    1089    } while (0)
    1090  
    1091  /* This is how to output a reference to a user-level label named NAME.
    1092     `assemble_name' uses this.  */
    1093  
    1094  #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
    1095    do {					\
    1096      const char *xname = (NAME);		\
    1097      if (FUNCTION_NAME_P (NAME))		\
    1098        xname += 1;			\
    1099      if (xname[0] == '*')		\
    1100        xname += 1;			\
    1101      else				\
    1102        fputs (user_label_prefix, FILE);	\
    1103      fputs (xname, FILE);		\
    1104    } while (0)
    1105  
    1106  /* This how we output the symbol_ref X.  */
    1107  
    1108  #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
    1109    do {                                                 \
    1110      SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
    1111      assemble_name (FILE, XSTR (X, 0));                 \
    1112    } while (0)
    1113  
    1114  /* This is how to store into the string LABEL
    1115     the symbol_ref name of an internal numbered label where
    1116     PREFIX is the class of label and NUM is the number within the class.
    1117     This is suitable for output with `assemble_name'.  */
    1118  
    1119  #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)		\
    1120    do								\
    1121      {								\
    1122        char *__p;						\
    1123        (LABEL)[0] = '*';						\
    1124        (LABEL)[1] = (PREFIX)[0];					\
    1125        (LABEL)[2] = '$';						\
    1126        __p = stpcpy (&(LABEL)[3], &(PREFIX)[1]);			\
    1127        sprint_ul (__p, (unsigned long) (NUM));			\
    1128      }								\
    1129    while (0)
    1130  
    1131  
    1132  /* Output the definition of a compiler-generated label named NAME.  */
    1133  
    1134  #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
    1135    do {							\
    1136      assemble_name_raw ((FILE), (NAME));			\
    1137      if (TARGET_GAS)					\
    1138        fputs (":\n", (FILE));				\
    1139      else						\
    1140        fputc ('\n', (FILE));				\
    1141    } while (0)
    1142  
    1143  #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
    1144  
    1145  #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
    1146    pa_output_ascii ((FILE), (P), (SIZE))
    1147  
    1148  /* Jump tables are always placed in the text section.  We have to do
    1149     this for the HP-UX SOM target as we can't switch sections in the
    1150     middle of a function.
    1151  
    1152     On ELF targets, it is possible to put them in the readonly-data section.
    1153     This would get the table out of .text and reduce branch lengths.
    1154  
    1155     A downside is that an additional insn (addil) is needed to access
    1156     the table when generating PIC code.  The address difference table
    1157     also has to use 32-bit pc-relative relocations.
    1158  
    1159     The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
    1160     when using ELF GAS.  A simple difference can be used when using
    1161     the HP assembler.
    1162  
    1163     The final downside is GDB complains about the nesting of the label
    1164     for the table.  */
    1165  
    1166  #define JUMP_TABLES_IN_TEXT_SECTION 1
    1167  
    1168  /* This is how to output an element of a case-vector that is absolute.  */
    1169  
    1170  #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
    1171    fprintf (FILE, "\t.word L$%d\n", VALUE)
    1172  
    1173  /* This is how to output an element of a case-vector that is relative. 
    1174     Since we always place jump tables in the text section, the difference
    1175     is absolute and requires no relocation.  */
    1176  
    1177  #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
    1178    fprintf (FILE, "\t.word L$%d-L$%d\n", VALUE, REL)
    1179  
    1180  /* This is how to output an absolute case-vector.  */
    1181  
    1182  #define ASM_OUTPUT_ADDR_VEC(LAB,BODY)	\
    1183    pa_output_addr_vec ((LAB),(BODY))
    1184  
    1185  /* This is how to output a relative case-vector.  */
    1186  
    1187  #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,BODY)	\
    1188    pa_output_addr_diff_vec ((LAB),(BODY))
    1189  
    1190  /* This is how to output an assembler line that says to advance the
    1191     location counter to a multiple of 2**LOG bytes.  */
    1192  
    1193  #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
    1194      fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
    1195  
    1196  #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
    1197    fprintf (FILE, "\t.blockz " HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
    1198  	   (unsigned HOST_WIDE_INT)(SIZE))
    1199  
    1200  /* This says how to output an assembler line to define an uninitialized
    1201     global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
    1202     This macro exists to properly support languages like C++ which do not
    1203     have common data.  */
    1204  
    1205  #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
    1206    pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
    1207    
    1208  /* This says how to output an assembler line to define a global common symbol
    1209     with size SIZE (in bytes) and alignment ALIGN (in bits).  */
    1210  
    1211  #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
    1212    pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
    1213  
    1214  /* This says how to output an assembler line to define a local common symbol
    1215     with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
    1216     controls how the assembler definitions of uninitialized static variables
    1217     are output.  */
    1218  
    1219  #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
    1220    pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
    1221    
    1222  /* All HP assemblers use "!" to separate logical lines.  */
    1223  #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
    1224  
    1225  /* Print operand X (an rtx) in assembler syntax to file FILE.
    1226     CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
    1227     For `%' followed by punctuation, CODE is the punctuation and X is null.
    1228  
    1229     On the HP-PA, the CODE can be `r', meaning this is a register-only operand
    1230     and an immediate zero should be represented as `r0'.
    1231  
    1232     Several % codes are defined:
    1233     O an operation
    1234     C compare conditions
    1235     N extract conditions
    1236     M modifier to handle preincrement addressing for memory refs.
    1237     F modifier to handle preincrement addressing for fp memory refs */
    1238  
    1239  #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
    1240  
    1241  
    1242  /* Print a memory address as an operand to reference that memory location.  */
    1243  
    1244  #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
    1245  { rtx addr = ADDR;							\
    1246    switch (GET_CODE (addr))						\
    1247      {									\
    1248      case REG:								\
    1249        fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
    1250        break;								\
    1251      case PLUS:								\
    1252        gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
    1253        fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
    1254  	       reg_names [REGNO (XEXP (addr, 0))]);			\
    1255        break;								\
    1256      case LO_SUM:							\
    1257        if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
    1258  	fputs ("R'", FILE);						\
    1259        else if (flag_pic == 0)						\
    1260  	fputs ("RR'", FILE);						\
    1261        else								\
    1262  	fputs ("RT'", FILE);						\
    1263        pa_output_global_address (FILE, XEXP (addr, 1), 0);		\
    1264        fputs ("(", FILE);						\
    1265        output_operand (XEXP (addr, 0), 0);				\
    1266        fputs (")", FILE);						\
    1267        break;								\
    1268      case CONST_INT:							\
    1269        fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
    1270        break;								\
    1271      default:								\
    1272        output_addr_const (FILE, addr);					\
    1273      }}
    1274  
    1275  
    1276  /* Find the return address associated with the frame given by
    1277     FRAMEADDR.  */
    1278  #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
    1279    (pa_return_addr_rtx (COUNT, FRAMEADDR))
    1280  
    1281  /* Used to mask out junk bits from the return address, such as
    1282     processor state, interrupt status, condition codes and the like.  */
    1283  #define MASK_RETURN_ADDR						\
    1284    /* The privilege level is in the two low order bits, mask em out	\
    1285       of the return address.  */						\
    1286    (GEN_INT (-4))
    1287  
    1288  /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
    1289  #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
    1290    "__canonicalize_funcptr_for_compare"
    1291  
    1292  #ifdef HAVE_AS_TLS
    1293  #undef TARGET_HAVE_TLS
    1294  #define TARGET_HAVE_TLS true
    1295  #endif
    1296  
    1297  /* The maximum offset in bytes for a PA 1.X pc-relative call to the
    1298     head of the preceding stub table.  A long branch stub is two or three
    1299     instructions for non-PIC and PIC, respectively.  Import stubs are
    1300     seven and five instructions for HP-UX and ELF targets, respectively.
    1301     The default stub group size for ELF targets is 217856 bytes.
    1302     FIXME: We need an option to set the maximum offset.  */  
    1303  #define MAX_PCREL17F_OFFSET (TARGET_HPUX ? 198164 : 217856)
    1304  
    1305  #define NEED_INDICATE_EXEC_STACK 0
    1306  
    1307  /* Output default function prologue for hpux.  */
    1308  #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue