(root)/
gcc-13.2.0/
gcc/
config/
mips/
mips.h
       1  /* Definitions of target machine for GNU compiler.  MIPS version.
       2     Copyright (C) 1989-2023 Free Software Foundation, Inc.
       3     Contributed by A. Lichnewsky (lich@inria.inria.fr).
       4     Changed by Michael Meissner	(meissner@osf.org).
       5     64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
       6     Brendan Eich (brendan@microunity.com).
       7  
       8  This file is part of GCC.
       9  
      10  GCC is free software; you can redistribute it and/or modify
      11  it under the terms of the GNU General Public License as published by
      12  the Free Software Foundation; either version 3, or (at your option)
      13  any later version.
      14  
      15  GCC is distributed in the hope that it will be useful,
      16  but WITHOUT ANY WARRANTY; without even the implied warranty of
      17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      18  GNU General Public License for more details.
      19  
      20  You should have received a copy of the GNU General Public License
      21  along with GCC; see the file COPYING3.  If not see
      22  <http://www.gnu.org/licenses/>.  */
      23  
      24  
      25  #include "config/vxworks-dummy.h"
      26  
      27  #ifdef GENERATOR_FILE
      28  /* This is used in some insn conditions, so needs to be declared, but
      29     does not need to be defined.  */
      30  extern int target_flags_explicit;
      31  #endif
      32  
      33  /* MIPS external variables defined in mips.cc.  */
      34  
      35  /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
      36     ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
      37     to work on a 64-bit machine.  */
      38  
      39  #define ABI_32  0
      40  #define ABI_N32 1
      41  #define ABI_64  2
      42  #define ABI_EABI 3
      43  #define ABI_O64  4
      44  
      45  enum mips_isa {
      46    MIPS_ISA_MIPS1 = 1,
      47    MIPS_ISA_MIPS2 = 2,
      48    MIPS_ISA_MIPS3 = 3,
      49    MIPS_ISA_MIPS4 = 4,
      50    MIPS_ISA_MIPS32 = 32,
      51    MIPS_ISA_MIPS32R2 = 33,
      52    MIPS_ISA_MIPS32R3 = 34,
      53    MIPS_ISA_MIPS32R5 = 36,
      54    MIPS_ISA_MIPS32R6 = 37,
      55    MIPS_ISA_MIPS64 = 64,
      56    MIPS_ISA_MIPS64R2 = 65,
      57    MIPS_ISA_MIPS64R3 = 66,
      58    MIPS_ISA_MIPS64R5 = 68,
      59    MIPS_ISA_MIPS64R6 = 69
      60  };
      61  
      62  /* Masks that affect tuning.
      63  
      64     PTF_AVOID_BRANCHLIKELY_SPEED
      65  	Set if it is usually not profitable to use branch-likely instructions
      66  	for this target when optimizing code for speed, typically because
      67  	the branches are always predicted taken and so incur a large overhead
      68  	when not taken.
      69  
      70     PTF_AVOID_BRANCHLIKELY_SIZE
      71  	As above but when optimizing for size.
      72  
      73     PTF_AVOID_BRANCHLIKELY_ALWAYS
      74  	As above but regardless of whether we optimize for speed or size.
      75  
      76     PTF_AVOID_IMADD
      77  	Set if it is usually not profitable to use the integer MADD or MSUB
      78  	instructions because of the overhead of getting the result out of
      79  	the HI/LO registers.  */
      80  
      81  #define PTF_AVOID_BRANCHLIKELY_SPEED	0x1
      82  #define PTF_AVOID_BRANCHLIKELY_SIZE	0x2
      83  #define PTF_AVOID_BRANCHLIKELY_ALWAYS	(PTF_AVOID_BRANCHLIKELY_SPEED | \
      84  					 PTF_AVOID_BRANCHLIKELY_SIZE)
      85  #define PTF_AVOID_IMADD			0x4
      86  
      87  /* Information about one recognized processor.  Defined here for the
      88     benefit of TARGET_CPU_CPP_BUILTINS.  */
      89  struct mips_cpu_info {
      90    /* The 'canonical' name of the processor as far as GCC is concerned.
      91       It's typically a manufacturer's prefix followed by a numerical
      92       designation.  It should be lowercase.  */
      93    const char *name;
      94  
      95    /* The internal processor number that most closely matches this
      96       entry.  Several processors can have the same value, if there's no
      97       difference between them from GCC's point of view.  */
      98    enum processor cpu;
      99  
     100    /* The ISA level that the processor implements.  */
     101    enum mips_isa isa;
     102  
     103    /* A mask of PTF_* values.  */
     104    unsigned int tune_flags;
     105  };
     106  
     107  #include "config/mips/mips-opts.h"
     108  
     109  /* Macros to silence warnings about numbers being signed in traditional
     110     C and unsigned in ISO C when compiled on 32-bit hosts.  */
     111  
     112  #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
     113  #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
     114  #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
     115  
     116  
     117  /* Run-time compilation parameters selecting different hardware subsets.  */
     118  
     119  /* True if we are generating position-independent VxWorks RTP code.  */
     120  #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
     121  
     122  /* Compact branches must not be used if the user either selects the
     123     'never' policy or the 'optimal' / 'always' policy on a core that lacks
     124     compact branch instructions.  */
     125  #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER || !ISA_HAS_COMPACT_BRANCHES)
     126  
     127  /* Compact branches may be used if the user either selects the
     128     'always' policy or the 'optimal' policy on a core that supports
     129     compact branch instructions.  */
     130  #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS		\
     131  			 || (mips_cb == MIPS_CB_OPTIMAL \
     132  			     && ISA_HAS_COMPACT_BRANCHES))
     133  
     134  /* Compact branches must always be generated if the user selects
     135     the 'always' policy on a core support compact branches,
     136     or the 'optimal' policy on a core that lacks delay slot branch instructions.  */
     137  #define TARGET_CB_ALWAYS ((mips_cb == MIPS_CB_ALWAYS	  \
     138  			     && ISA_HAS_COMPACT_BRANCHES) \
     139  			 || (mips_cb == MIPS_CB_OPTIMAL   \
     140  			     && !ISA_HAS_DELAY_SLOTS))
     141  
     142  /* Special handling for JRC that exists in microMIPSR3 as well as R6
     143     ISAs with full compact branch support.  */
     144  #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES		\
     145  		      || TARGET_MICROMIPS)		\
     146  		     && mips_cb != MIPS_CB_NEVER)
     147  
     148  /* True if the output file is marked as ".abicalls; .option pic0"
     149     (-call_nonpic).  */
     150  #define TARGET_ABICALLS_PIC0 \
     151    (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
     152  
     153  /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
     154  #define TARGET_ABICALLS_PIC2 \
     155    (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
     156  
     157  /* True if the call patterns should be split into a jalr followed by
     158     an instruction to restore $gp.  It is only safe to split the load
     159     from the call when every use of $gp is explicit.
     160  
     161     See mips_must_initialize_gp_p for details about how we manage the
     162     global pointer.  */
     163  
     164  #define TARGET_SPLIT_CALLS \
     165    (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
     166  
     167  /* True if we're generating a form of -mabicalls in which we can use
     168     operators like %hi and %lo to refer to locally-binding symbols.
     169     We can only do this for -mno-shared, and only then if we can use
     170     relocation operations instead of assembly macros.  It isn't really
     171     worth using absolute sequences for 64-bit symbols because GOT
     172     accesses are so much shorter.  */
     173  
     174  #define TARGET_ABSOLUTE_ABICALLS	\
     175    (TARGET_ABICALLS			\
     176     && !TARGET_SHARED			\
     177     && TARGET_EXPLICIT_RELOCS		\
     178     && !ABI_HAS_64BIT_SYMBOLS)
     179  
     180  /* True if we can optimize sibling calls.  For simplicity, we only
     181     handle cases in which call_insn_operand will reject invalid
     182     sibcall addresses.  There are two cases in which this isn't true:
     183  
     184        - TARGET_MIPS16.  call_insn_operand accepts constant addresses
     185  	but there is no direct jump instruction.  It isn't worth
     186  	using sibling calls in this case anyway; they would usually
     187  	be longer than normal calls.
     188  
     189        - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
     190  	accepts global constants, but all sibcalls must be indirect.  */
     191  #define TARGET_SIBCALLS \
     192    (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
     193  
     194  /* True if we need to use a global offset table to access some symbols.  */
     195  #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
     196  
     197  /* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
     198  #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
     199  
     200  /* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
     201  #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
     202  
     203  /* True if we should use .cprestore to store to the cprestore slot.
     204  
     205     We continue to use .cprestore for explicit-reloc code so that JALs
     206     inside inline asms will work correctly.  */
     207  #define TARGET_CPRESTORE_DIRECTIVE \
     208    (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
     209  
     210  /* True if we can use the J and JAL instructions.  */
     211  #define TARGET_ABSOLUTE_JUMPS \
     212    (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
     213  
     214  /* True if indirect calls must use register class PIC_FN_ADDR_REG.
     215     This is true for both the PIC and non-PIC VxWorks RTP modes.  */
     216  #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
     217  
     218  /* True if .gpword or .gpdword should be used for switch tables.  */
     219  #define TARGET_GPWORD				\
     220    (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
     221  
     222  /* True if the output must have a writable .eh_frame.
     223     See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
     224  #ifdef HAVE_LD_PERSONALITY_RELAXATION
     225  #define TARGET_WRITABLE_EH_FRAME 0
     226  #else
     227  #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
     228  #endif
     229  
     230  /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2.  */
     231  #ifdef HAVE_AS_DSPR1_MULT
     232  #define ISA_HAS_DSP_MULT ISA_HAS_DSP
     233  #else
     234  #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
     235  #endif
     236  
     237  /* ISA has LSA available.  */
     238  #define ISA_HAS_LSA		(mips_isa_rev >= 6 || ISA_HAS_MSA)
     239  
     240  /* ISA has DLSA available.  */
     241  #define ISA_HAS_DLSA		(TARGET_64BIT \
     242  				 && (mips_isa_rev >= 6 \
     243  				     || ISA_HAS_MSA))
     244  
     245  /* ISA load/store instructions can handle unaligned address */
     246  #define ISA_HAS_UNALIGNED_ACCESS (TARGET_UNALIGNED_ACCESS \
     247  				 && (mips_isa_rev >= 6))
     248  
     249  /* The ISA compression flags that are currently in effect.  */
     250  #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
     251  
     252  /* Generate mips16 code */
     253  #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
     254  /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
     255  #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= MIPS_ISA_MIPS32)
     256  /* Generate mips16e register save/restore sequences.  */
     257  #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
     258  
     259  /* True if we're generating a form of MIPS16 code in which general
     260     text loads are allowed.  */
     261  #define TARGET_MIPS16_TEXT_LOADS \
     262    (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
     263  
     264  /* True if we're generating a form of MIPS16 code in which PC-relative
     265     loads are allowed.  */
     266  #define TARGET_MIPS16_PCREL_LOADS \
     267    (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
     268  
     269  /* Generic ISA defines.  */
     270  #define ISA_MIPS1		    (mips_isa == MIPS_ISA_MIPS1)
     271  #define ISA_MIPS2		    (mips_isa == MIPS_ISA_MIPS2)
     272  #define ISA_MIPS3                   (mips_isa == MIPS_ISA_MIPS3)
     273  #define ISA_MIPS4		    (mips_isa == MIPS_ISA_MIPS4)
     274  #define ISA_MIPS32		    (mips_isa == MIPS_ISA_MIPS32)
     275  #define ISA_MIPS32R2		    (mips_isa == MIPS_ISA_MIPS32R2)
     276  #define ISA_MIPS32R3		    (mips_isa == MIPS_ISA_MIPS32R3)
     277  #define ISA_MIPS32R5		    (mips_isa == MIPS_ISA_MIPS32R5)
     278  #define ISA_MIPS32R6		    (mips_isa == MIPS_ISA_MIPS32R6)
     279  #define ISA_MIPS64                  (mips_isa == MIPS_ISA_MIPS64)
     280  #define ISA_MIPS64R2		    (mips_isa == MIPS_ISA_MIPS64R2)
     281  #define ISA_MIPS64R3		    (mips_isa == MIPS_ISA_MIPS64R3)
     282  #define ISA_MIPS64R5		    (mips_isa == MIPS_ISA_MIPS64R5)
     283  #define ISA_MIPS64R6		    (mips_isa == MIPS_ISA_MIPS64R6)
     284  
     285  /* Architecture target defines.  */
     286  #define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
     287  #define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
     288  #define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
     289  #define TARGET_GS464		    (mips_arch == PROCESSOR_GS464)
     290  #define TARGET_GS464E		    (mips_arch == PROCESSOR_GS464E)
     291  #define TARGET_GS264E		    (mips_arch == PROCESSOR_GS264E)
     292  #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
     293  #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
     294  #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
     295  #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
     296  #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
     297  #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
     298  #define TARGET_MIPS5900             (mips_arch == PROCESSOR_R5900)
     299  #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
     300  #define TARGET_MIPS8000             (mips_arch == PROCESSOR_R8000)
     301  #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
     302  #define TARGET_OCTEON		    (mips_arch == PROCESSOR_OCTEON	\
     303  				     || mips_arch == PROCESSOR_OCTEON2	\
     304  				     || mips_arch == PROCESSOR_OCTEON3)
     305  #define TARGET_OCTEON2		    (mips_arch == PROCESSOR_OCTEON2	\
     306  				     || mips_arch == PROCESSOR_OCTEON3)
     307  #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
     308  				     || mips_arch == PROCESSOR_SB1A)
     309  #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
     310  #define TARGET_XLP                  (mips_arch == PROCESSOR_XLP)
     311  
     312  /* Scheduling target defines.  */
     313  #define TUNE_20KC		    (mips_tune == PROCESSOR_20KC)
     314  #define TUNE_24K		    (mips_tune == PROCESSOR_24KC	\
     315  				     || mips_tune == PROCESSOR_24KF2_1	\
     316  				     || mips_tune == PROCESSOR_24KF1_1)
     317  #define TUNE_74K                    (mips_tune == PROCESSOR_74KC	\
     318  				     || mips_tune == PROCESSOR_74KF2_1	\
     319  				     || mips_tune == PROCESSOR_74KF1_1  \
     320  				     || mips_tune == PROCESSOR_74KF3_2)
     321  #define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E	\
     322  				     || mips_tune == PROCESSOR_LOONGSON_2F)
     323  #define TUNE_GS464		    (mips_tune == PROCESSOR_GS464)
     324  #define TUNE_GS464E		    (mips_tune == PROCESSOR_GS464E)
     325  #define TUNE_GS264E		    (mips_tune == PROCESSOR_GS264E)
     326  #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
     327  #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
     328  #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
     329  #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
     330  #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
     331  #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
     332  #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
     333  #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
     334  #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
     335  #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
     336  #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
     337  #define TUNE_OCTEON		    (mips_tune == PROCESSOR_OCTEON	\
     338  				     || mips_tune == PROCESSOR_OCTEON2	\
     339  				     || mips_tune == PROCESSOR_OCTEON3)
     340  #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
     341  				     || mips_tune == PROCESSOR_SB1A)
     342  #define TUNE_P5600                  (mips_tune == PROCESSOR_P5600)
     343  #define TUNE_I6400                  (mips_tune == PROCESSOR_I6400)
     344  #define TUNE_P6600                  (mips_tune == PROCESSOR_P6600)
     345  
     346  /* True if the pre-reload scheduler should try to create chains of
     347     multiply-add or multiply-subtract instructions.  For example,
     348     suppose we have:
     349  
     350  	t1 = a * b
     351  	t2 = t1 + c * d
     352  	t3 = e * f
     353  	t4 = t3 - g * h
     354  
     355     t1 will have a higher priority than t2 and t3 will have a higher
     356     priority than t4.  However, before reload, there is no dependence
     357     between t1 and t3, and they can often have similar priorities.
     358     The scheduler will then tend to prefer:
     359  
     360  	t1 = a * b
     361  	t3 = e * f
     362  	t2 = t1 + c * d
     363  	t4 = t3 - g * h
     364  
     365     which stops us from making full use of macc/madd-style instructions.
     366     This sort of situation occurs frequently in Fourier transforms and
     367     in unrolled loops.
     368  
     369     To counter this, the TUNE_MACC_CHAINS code will reorder the ready
     370     queue so that chained multiply-add and multiply-subtract instructions
     371     appear ahead of any other instruction that is likely to clobber lo.
     372     In the example above, if t2 and t3 become ready at the same time,
     373     the code ensures that t2 is scheduled first.
     374  
     375     Multiply-accumulate instructions are a bigger win for some targets
     376     than others, so this macro is defined on an opt-in basis.  */
     377  #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
     378  				     || TUNE_MIPS4120		\
     379  				     || TUNE_MIPS4130		\
     380  				     || TUNE_24K		\
     381  				     || TUNE_P5600)
     382  
     383  #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
     384  #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
     385  
     386  /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
     387     directly accessible, while the command-line options select
     388     TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
     389     in use.  */
     390  #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
     391  #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
     392  
     393  /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
     394     -mfpxx, derive TARGET_FLOAT32 to represent -mfp32.  */
     395  #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
     396  
     397  /* TARGET_O32_FP64A_ABI represents all the conditions that form the
     398     o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg).  */
     399  #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
     400  			      && !TARGET_ODD_SPREG)
     401  
     402  /* False if SC acts as a memory barrier with respect to itself,
     403     otherwise a SYNC will be emitted after SC for atomic operations
     404     that require ordering between the SC and following loads and
     405     stores.  It does not tell anything about ordering of loads and
     406     stores prior to and following the SC, only about the SC itself and
     407     those loads and stores follow it.  */
     408  #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
     409  
     410  /* Define preprocessor macros for the -march and -mtune options.
     411     PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
     412     processor.  If INFO's canonical name is "foo", define PREFIX to
     413     be "foo", and define an additional macro PREFIX_FOO.  */
     414  #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
     415    do								\
     416      {								\
     417        char *macro, *p;						\
     418  								\
     419        macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
     420        for (p = macro; *p != 0; p++)				\
     421          if (*p == '+')                                          \
     422            *p = 'P';                                             \
     423          else                                                    \
     424            *p = TOUPPER (*p);                                    \
     425  								\
     426        builtin_define (macro);					\
     427        builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
     428        free (macro);						\
     429      }								\
     430    while (0)
     431  
     432  /* Target CPU builtins.  */
     433  #define TARGET_CPU_CPP_BUILTINS()					\
     434    do									\
     435      {									\
     436        builtin_assert ("machine=mips");                        		\
     437        builtin_assert ("cpu=mips");					\
     438        builtin_define ("__mips__");     					\
     439        builtin_define ("_mips");						\
     440  									\
     441        /* We do this here because __mips is defined below and so we	\
     442  	 can't use builtin_define_std.  We don't ever want to define	\
     443  	 "mips" for VxWorks because some of the VxWorks headers		\
     444  	 construct include filenames from a root directory macro,	\
     445  	 an architecture macro and a filename, where the architecture	\
     446  	 macro expands to 'mips'.  If we define 'mips' to 1, the	\
     447  	 architecture macro expands to 1 as well.  */			\
     448        if (!flag_iso && !TARGET_VXWORKS)					\
     449  	builtin_define ("mips");					\
     450  									\
     451        if (TARGET_64BIT)							\
     452  	builtin_define ("__mips64");					\
     453  									\
     454        /* Treat _R3000 and _R4000 like register-size			\
     455  	 defines, which is how they've historically			\
     456  	 been used.  */							\
     457        if (TARGET_64BIT)							\
     458  	{								\
     459  	  builtin_define_std ("R4000");					\
     460  	  builtin_define ("_R4000");					\
     461  	}								\
     462        else								\
     463  	{								\
     464  	  builtin_define_std ("R3000");					\
     465  	  builtin_define ("_R3000");					\
     466  	}								\
     467  									\
     468        if (TARGET_FLOAT64)						\
     469  	builtin_define ("__mips_fpr=64");				\
     470        else if (TARGET_FLOATXX)						\
     471  	builtin_define ("__mips_fpr=0");				\
     472        else								\
     473  	builtin_define ("__mips_fpr=32");				\
     474  									\
     475        if (mips_base_compression_flags & MASK_MIPS16)			\
     476  	builtin_define ("__mips16");					\
     477  									\
     478        if (TARGET_MIPS3D)						\
     479  	builtin_define ("__mips3d");					\
     480  									\
     481        if (TARGET_SMARTMIPS)						\
     482  	builtin_define ("__mips_smartmips");				\
     483  									\
     484        if (mips_base_compression_flags & MASK_MICROMIPS)			\
     485  	builtin_define ("__mips_micromips");				\
     486  									\
     487        if (TARGET_MCU)							\
     488  	builtin_define ("__mips_mcu");					\
     489  									\
     490        if (TARGET_EVA)							\
     491  	builtin_define ("__mips_eva");					\
     492  									\
     493        if (TARGET_DSP)							\
     494  	{								\
     495  	  builtin_define ("__mips_dsp");				\
     496  	  if (TARGET_DSPR2)						\
     497  	    {								\
     498  	      builtin_define ("__mips_dspr2");				\
     499  	      builtin_define ("__mips_dsp_rev=2");			\
     500  	    }								\
     501  	  else								\
     502  	    builtin_define ("__mips_dsp_rev=1");			\
     503  	}								\
     504  									\
     505        if (ISA_HAS_MSA)							\
     506  	{								\
     507  	  builtin_define ("__mips_msa");				\
     508  	  builtin_define ("__mips_msa_width=128");			\
     509  	}								\
     510  									\
     511        MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);		\
     512        MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);		\
     513  									\
     514        if (ISA_MIPS1)							\
     515  	{								\
     516  	  builtin_define ("__mips=1");					\
     517  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");			\
     518  	}								\
     519        else if (ISA_MIPS2)						\
     520  	{								\
     521  	  builtin_define ("__mips=2");					\
     522  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");			\
     523  	}								\
     524        else if (ISA_MIPS3)						\
     525  	{								\
     526  	  builtin_define ("__mips=3");					\
     527  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");			\
     528  	}								\
     529        else if (ISA_MIPS4)						\
     530  	{								\
     531  	  builtin_define ("__mips=4");					\
     532  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");			\
     533  	}								\
     534        else if (mips_isa >= MIPS_ISA_MIPS32				\
     535  	       && mips_isa < MIPS_ISA_MIPS64)				\
     536  	{								\
     537  	  builtin_define ("__mips=32");					\
     538  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
     539  	}								\
     540        else if (mips_isa >= MIPS_ISA_MIPS64)				\
     541  	{								\
     542  	  builtin_define ("__mips=64");					\
     543  	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
     544  	}								\
     545        if (mips_isa_rev > 0)						\
     546  	builtin_define_with_int_value ("__mips_isa_rev",		\
     547  				       mips_isa_rev);			\
     548  									\
     549        switch (mips_abi)							\
     550  	{								\
     551  	case ABI_32:							\
     552  	  builtin_define ("_ABIO32=1");					\
     553  	  builtin_define ("_MIPS_SIM=_ABIO32");				\
     554  	  break;							\
     555  									\
     556  	case ABI_N32:							\
     557  	  builtin_define ("_ABIN32=2");					\
     558  	  builtin_define ("_MIPS_SIM=_ABIN32");				\
     559  	  break;							\
     560  									\
     561  	case ABI_64:							\
     562  	  builtin_define ("_ABI64=3");					\
     563  	  builtin_define ("_MIPS_SIM=_ABI64");				\
     564  	  break;							\
     565  									\
     566  	case ABI_O64:							\
     567  	  builtin_define ("_ABIO64=4");					\
     568  	  builtin_define ("_MIPS_SIM=_ABIO64");				\
     569  	  break;							\
     570  	}								\
     571  									\
     572        builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);	\
     573        builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);	\
     574        builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);	\
     575        builtin_define_with_int_value ("_MIPS_FPSET",			\
     576  				     32 / MAX_FPRS_PER_FMT);		\
     577        builtin_define_with_int_value ("_MIPS_SPFPSET",			\
     578  				     TARGET_ODD_SPREG ? 32 : 16);	\
     579  									\
     580        /* These defines reflect the ABI in use, not whether the  	\
     581  	 FPU is directly accessible.  */				\
     582        if (TARGET_NO_FLOAT)						\
     583  	builtin_define ("__mips_no_float");				\
     584        else if (TARGET_HARD_FLOAT_ABI)					\
     585  	builtin_define ("__mips_hard_float");				\
     586        else								\
     587  	builtin_define ("__mips_soft_float");				\
     588  									\
     589        if (TARGET_SINGLE_FLOAT)						\
     590  	builtin_define ("__mips_single_float");				\
     591  									\
     592        if (TARGET_PAIRED_SINGLE_FLOAT)					\
     593  	builtin_define ("__mips_paired_single_float");			\
     594  									\
     595        if (mips_abs == MIPS_IEEE_754_2008)				\
     596  	builtin_define ("__mips_abs2008");				\
     597  									\
     598        if (mips_nan == MIPS_IEEE_754_2008)				\
     599  	builtin_define ("__mips_nan2008");				\
     600  									\
     601        if (TARGET_BIG_ENDIAN)						\
     602  	{								\
     603  	  builtin_define_std ("MIPSEB");				\
     604  	  builtin_define ("_MIPSEB");					\
     605  	}								\
     606        else								\
     607  	{								\
     608  	  builtin_define_std ("MIPSEL");				\
     609  	  builtin_define ("_MIPSEL");					\
     610  	}								\
     611                                                                          \
     612        /* Whether calls should go through $25.  The separate __PIC__	\
     613  	 macro indicates whether abicalls code might use a GOT.  */	\
     614        if (TARGET_ABICALLS)						\
     615  	builtin_define ("__mips_abicalls");				\
     616  									\
     617        /* Whether Loongson vector modes are enabled.  */			\
     618        if (TARGET_LOONGSON_MMI)						\
     619  	{								\
     620  	  builtin_define ("__mips_loongson_vector_rev");		\
     621  	  builtin_define ("__mips_loongson_mmi");			\
     622  	}								\
     623  									\
     624        /* Whether Loongson EXT modes are enabled.  */			\
     625        if (TARGET_LOONGSON_EXT)						\
     626  	{								\
     627  	  builtin_define ("__mips_loongson_ext");			\
     628  	  if (TARGET_LOONGSON_EXT2)					\
     629  	    {								\
     630  	      builtin_define ("__mips_loongson_ext2");			\
     631  	      builtin_define ("__mips_loongson_ext_rev=2");		\
     632  	    }								\
     633  	  else								\
     634  	      builtin_define ("__mips_loongson_ext_rev=1");		\
     635  	}								\
     636  									\
     637        /* Historical Octeon macro.  */					\
     638        if (TARGET_OCTEON)						\
     639  	builtin_define ("__OCTEON__");					\
     640  									\
     641        if (TARGET_SYNCI)							\
     642  	builtin_define ("__mips_synci");				\
     643  									\
     644        /* Macros dependent on the C dialect.  */				\
     645        if (preprocessing_asm_p ())					\
     646  	{								\
     647  	  builtin_define_std ("LANGUAGE_ASSEMBLY");			\
     648  	  builtin_define ("_LANGUAGE_ASSEMBLY");			\
     649  	}								\
     650        else if (c_dialect_cxx ())					\
     651  	{								\
     652  	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");			\
     653  	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");			\
     654  	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");			\
     655  	}								\
     656        else								\
     657  	{								\
     658  	  builtin_define_std ("LANGUAGE_C");				\
     659  	  builtin_define ("_LANGUAGE_C");				\
     660  	}								\
     661        if (c_dialect_objc ())						\
     662  	{								\
     663  	  builtin_define ("_LANGUAGE_OBJECTIVE_C");			\
     664  	  builtin_define ("__LANGUAGE_OBJECTIVE_C");			\
     665  	  /* Bizarre, but retained for backwards compatibility.  */	\
     666  	  builtin_define_std ("LANGUAGE_C");				\
     667  	  builtin_define ("_LANGUAGE_C");				\
     668  	}								\
     669  									\
     670        if (mips_abi == ABI_EABI)						\
     671  	builtin_define ("__mips_eabi");					\
     672  									\
     673        if (TARGET_CACHE_BUILTIN)						\
     674  	builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");		\
     675        if (!ISA_HAS_LXC1_SXC1)						\
     676  	builtin_define ("__mips_no_lxc1_sxc1");				\
     677        if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4)		\
     678  	builtin_define ("__mips_no_madd4");				\
     679  									\
     680        if (TARGET_CB_NEVER)						\
     681  	builtin_define ("__mips_compact_branches_never");		\
     682        else if (TARGET_CB_ALWAYS)					\
     683  	builtin_define ("__mips_compact_branches_always");		\
     684        else 								\
     685  	builtin_define ("__mips_compact_branches_optimal");		\
     686      }									\
     687    while (0)
     688  
     689  /* Default target_flags if no switches are specified  */
     690  
     691  #ifndef TARGET_DEFAULT
     692  #define TARGET_DEFAULT 0
     693  #endif
     694  
     695  #ifndef TARGET_CPU_DEFAULT
     696  #define TARGET_CPU_DEFAULT 0
     697  #endif
     698  
     699  #ifndef TARGET_ENDIAN_DEFAULT
     700  #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
     701  #endif
     702  
     703  #ifdef IN_LIBGCC2
     704  #undef TARGET_64BIT
     705  /* Make this compile time constant for libgcc2 */
     706  #ifdef __mips64
     707  #define TARGET_64BIT		1
     708  #else
     709  #define TARGET_64BIT		0
     710  #endif
     711  #endif /* IN_LIBGCC2 */
     712  
     713  /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
     714     when compiled with hardware floating point.  This is because MIPS16
     715     code cannot save and restore the floating-point registers, which is
     716     important if in a mixed MIPS16/non-MIPS16 environment.  */
     717  
     718  #ifdef IN_LIBGCC2
     719  #if __mips_hard_float
     720  #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
     721  #endif
     722  #endif /* IN_LIBGCC2 */
     723  
     724  #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
     725  
     726  #ifndef MULTILIB_ENDIAN_DEFAULT
     727  #if TARGET_ENDIAN_DEFAULT == 0
     728  #define MULTILIB_ENDIAN_DEFAULT "EL"
     729  #else
     730  #define MULTILIB_ENDIAN_DEFAULT "EB"
     731  #endif
     732  #endif
     733  
     734  #ifndef MULTILIB_ISA_DEFAULT
     735  #if MIPS_ISA_DEFAULT == MIPS_ISA_MIPS1
     736  #define MULTILIB_ISA_DEFAULT "mips1"
     737  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS2
     738  #define MULTILIB_ISA_DEFAULT "mips2"
     739  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS3
     740  #define MULTILIB_ISA_DEFAULT "mips3"
     741  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS4
     742  #define MULTILIB_ISA_DEFAULT "mips4"
     743  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32
     744  #define MULTILIB_ISA_DEFAULT "mips32"
     745  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R2
     746  #define MULTILIB_ISA_DEFAULT "mips32r2"
     747  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R6
     748  #define MULTILIB_ISA_DEFAULT "mips32r6"
     749  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64
     750  #define MULTILIB_ISA_DEFAULT "mips64"
     751  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R2
     752  #define MULTILIB_ISA_DEFAULT "mips64r2"
     753  #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R6
     754  #define MULTILIB_ISA_DEFAULT "mips64r6"
     755  #else
     756  #define MULTILIB_ISA_DEFAULT "mips1"
     757  #endif
     758  #endif
     759  
     760  #ifndef MIPS_ABI_DEFAULT
     761  #define MIPS_ABI_DEFAULT ABI_32
     762  #endif
     763  
     764  /* Use the most portable ABI flag for the ASM specs.  */
     765  
     766  #if MIPS_ABI_DEFAULT == ABI_32
     767  #define MULTILIB_ABI_DEFAULT "mabi=32"
     768  #elif MIPS_ABI_DEFAULT == ABI_O64
     769  #define MULTILIB_ABI_DEFAULT "mabi=o64"
     770  #elif MIPS_ABI_DEFAULT == ABI_N32
     771  #define MULTILIB_ABI_DEFAULT "mabi=n32"
     772  #elif MIPS_ABI_DEFAULT == ABI_64
     773  #define MULTILIB_ABI_DEFAULT "mabi=64"
     774  #elif MIPS_ABI_DEFAULT == ABI_EABI
     775  #define MULTILIB_ABI_DEFAULT "mabi=eabi"
     776  #endif
     777  
     778  #ifndef MULTILIB_DEFAULTS
     779  #define MULTILIB_DEFAULTS \
     780      { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
     781  #endif
     782  
     783  /* We must pass -EL to the linker by default for little endian embedded
     784     targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
     785     linker will default to using big-endian output files.  The OUTPUT_FORMAT
     786     line must be in the linker script, otherwise -EB/-EL will not work.  */
     787  
     788  #ifndef ENDIAN_SPEC
     789  #if TARGET_ENDIAN_DEFAULT == 0
     790  #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
     791  #else
     792  #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
     793  #endif
     794  #endif
     795  
     796  /* A spec condition that matches all non-mips16 -mips arguments.  */
     797  
     798  #define MIPS_ISA_LEVEL_OPTION_SPEC \
     799    "mips1|mips2|mips3|mips4|mips32*|mips64*"
     800  
     801  /* A spec condition that matches all non-mips16 architecture arguments.  */
     802  
     803  #define MIPS_ARCH_OPTION_SPEC \
     804    MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
     805  
     806  /* A spec that infers a -mips argument from an -march argument.  */
     807  
     808  #define MIPS_ISA_LEVEL_SPEC \
     809    "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
     810       %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
     811       %{march=mips2|march=r6000:-mips2} \
     812       %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
     813       %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
     814         |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
     815       %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
     816       %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
     817         |march=34k*|march=74k*|march=m14k*|march=1004k* \
     818         |march=interaptiv: -mips32r2} \
     819       %{march=mips32r3: -mips32r3} \
     820       %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
     821       %{march=mips32r6: -mips32r6} \
     822       %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
     823         |march=xlr: -mips64} \
     824       %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \
     825         |march=octeon|march=xlp: -mips64r2} \
     826       %{march=mips64r3: -mips64r3} \
     827       %{march=mips64r5: -mips64r5} \
     828       %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
     829  
     830  /* A spec that injects the default multilib ISA if no architecture is
     831     specified.  */
     832  
     833  #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
     834    "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
     835       %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
     836  
     837  /* A spec that infers a -mhard-float or -msoft-float setting from an
     838     -march argument.  Note that soft-float and hard-float code are not
     839     link-compatible.  */
     840  
     841  #define MIPS_ARCH_FLOAT_SPEC \
     842    "%{mhard-float|msoft-float|mno-float|march=mips*:; \
     843       march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
     844       |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
     845       |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
     846       march=*: -mhard-float}"
     847  
     848  /* A spec condition that matches 32-bit options.  It only works if
     849     MIPS_ISA_LEVEL_SPEC has been applied.  */
     850  
     851  #define MIPS_32BIT_OPTION_SPEC \
     852    "mips1|mips2|mips32*|mgp32"
     853  
     854  /* A spec condition that matches architectures should be targeted with
     855     o32 FPXX for compatibility reasons.  */
     856  #define MIPS_FPXX_OPTION_SPEC \
     857    "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
     858     mips64|mips64r2|mips64r3|mips64r5"
     859  
     860  /* Infer a -msynci setting from a -mips argument, on the assumption that
     861     -msynci is desired where possible.  */
     862  #define MIPS_ISA_SYNCI_SPEC \
     863    "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
     864  			  |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
     865  
     866  /* Infer a -mnan=2008 setting from a -mips argument.  */
     867  #define MIPS_ISA_NAN2008_SPEC \
     868    "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
     869  					 %{!msoft-float:-mnan=2008}}"
     870  
     871  #if (MIPS_ABI_DEFAULT == ABI_O64 \
     872       || MIPS_ABI_DEFAULT == ABI_N32 \
     873       || MIPS_ABI_DEFAULT == ABI_64)
     874  #define OPT_ARCH64 "mabi=32|mgp32:;"
     875  #define OPT_ARCH32 "mabi=32|mgp32"
     876  #else
     877  #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
     878  #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
     879  #endif
     880  
     881  /* Support for a compile-time default CPU, et cetera.  The rules are:
     882     --with-arch is ignored if -march is specified or a -mips is specified
     883       (other than -mips16); likewise --with-arch-32 and --with-arch-64.
     884     --with-tune is ignored if -mtune is specified; likewise
     885       --with-tune-32 and --with-tune-64.
     886     --with-abi is ignored if -mabi is specified.
     887     --with-float is ignored if -mhard-float or -msoft-float are
     888       specified.
     889     --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
     890       specified.
     891     --with-nan is ignored if -mnan is specified.
     892     --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
     893       specified.
     894     --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
     895       or -mno-odd-spreg are specified.
     896     --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
     897       specified. */
     898  #define OPTION_DEFAULT_SPECS \
     899    {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
     900    {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
     901    {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
     902    {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
     903    {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
     904    {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
     905    {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
     906    {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
     907    {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
     908    {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
     909    {"fp_32", "%{" OPT_ARCH32 \
     910  	    ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
     911    {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
     912  		   "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
     913    {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
     914    {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
     915    {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
     916    {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" },			\
     917    {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
     918    {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" }, \
     919    {"compact-branches", "%{!mcompact-branches=*:-mcompact-branches=%(VALUE)}" }, \
     920    {"msa", "%{!mmsa:%{!mno-msa:-m%(VALUE)}}" } \
     921  
     922  /* A spec that infers the:
     923     -mnan=2008 setting from a -mips argument,
     924     -mdsp setting from a -march argument.
     925     -mloongson-mmi setting from a -march argument.  */
     926  #define BASE_DRIVER_SELF_SPECS	\
     927    MIPS_ISA_NAN2008_SPEC,	\
     928    MIPS_ASE_DSP_SPEC, 		\
     929    MIPS_ASE_LOONGSON_MMI_SPEC,	\
     930    MIPS_ASE_LOONGSON_EXT_SPEC,	\
     931    MIPS_ASE_MSA_SPEC
     932  
     933  
     934  #define MIPS_ASE_DSP_SPEC \
     935    "%{!mno-dsp: \
     936       %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
     937         |march=interaptiv: -mdsp} \
     938       %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
     939  
     940  #define MIPS_ASE_LOONGSON_MMI_SPEC						\
     941    "%{!mno-loongson-mmi:								\
     942       %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}"
     943  
     944  #define MIPS_ASE_LOONGSON_EXT_SPEC						\
     945    "%{!mno-loongson-ext:								\
     946       %{march=loongson3a|march=gs464: -mloongson-ext}				\
     947       %{march=gs464e|march=gs264e: %{!mno-loongson-ext2:			\
     948         -mloongson-ext2 -mloongson-ext}}}"
     949  
     950  #define MIPS_ASE_MSA_SPEC						\
     951    "%{!mno-msa:								\
     952       %{march=gs264e: -mmsa}}"
     953  
     954  #define DRIVER_SELF_SPECS \
     955    MIPS_ISA_LEVEL_SPEC,	  \
     956    BASE_DRIVER_SELF_SPECS
     957  
     958  #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
     959                                 && ISA_HAS_COND_TRAP)
     960  
     961  #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
     962  
     963  /* True if the ABI can only work with 64-bit integer registers.  We
     964     generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
     965     otherwise floating-point registers must also be 64-bit.  */
     966  #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
     967  
     968  /* Likewise for 32-bit regs.  */
     969  #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
     970  
     971  /* True if the file format uses 64-bit symbols.  At present, this is
     972     only true for n64, which uses 64-bit ELF.  */
     973  #define FILE_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64)
     974  
     975  /* True if symbols are 64 bits wide.  This is usually determined by
     976     the ABI's file format, but it can be overridden by -msym32.  Note that
     977     overriding the size with -msym32 changes the ABI of relocatable objects,
     978     although it doesn't change the ABI of a fully-linked object.  */
     979  #define ABI_HAS_64BIT_SYMBOLS	(FILE_HAS_64BIT_SYMBOLS \
     980  				 && Pmode == DImode	\
     981  				 && !TARGET_SYM32)
     982  
     983  /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
     984  #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
     985  				 || ISA_MIPS4				\
     986  				 || ISA_MIPS64				\
     987  				 || ISA_MIPS64R2			\
     988  				 || ISA_MIPS64R3			\
     989  				 || ISA_MIPS64R5			\
     990  				 || ISA_MIPS64R6)
     991  
     992  #define ISA_HAS_JR		(mips_isa_rev <= 5)
     993  
     994  #define ISA_HAS_DELAY_SLOTS	1
     995  
     996  #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
     997  
     998  /* ISA has branch likely instructions (e.g. mips2).  */
     999  /* Disable branchlikely for tx39 until compare rewrite.  They haven't
    1000     been generated up to this point.  */
    1001  #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1 && mips_isa_rev <= 5)
    1002  
    1003  /* ISA has 32 single-precision registers.  */
    1004  #define ISA_HAS_ODD_SPREG	((mips_isa_rev >= 1			\
    1005  				  && !TARGET_GS464)			\
    1006  				 || TARGET_FLOAT64			\
    1007  				 || TARGET_MIPS5900)
    1008  
    1009  /* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
    1010  #define ISA_HAS_MUL3		((TARGET_MIPS3900                       \
    1011  				  || TARGET_MIPS5400			\
    1012  				  || TARGET_MIPS5500			\
    1013  				  || TARGET_MIPS5900			\
    1014  				  || TARGET_MIPS7000			\
    1015  				  || TARGET_MIPS9000			\
    1016  				  || TARGET_MAD				\
    1017  				  || (mips_isa_rev >= 1			\
    1018  				      && mips_isa_rev <= 5))		\
    1019  				 && !TARGET_MIPS16)
    1020  
    1021  /* ISA has a three-operand multiplication instruction.  */
    1022  #define ISA_HAS_DMUL3		(TARGET_64BIT				\
    1023  				 && TARGET_OCTEON			\
    1024  				 && !TARGET_MIPS16)
    1025  
    1026  /* ISA has HI and LO registers.  */
    1027  #define ISA_HAS_HILO		(mips_isa_rev <= 5)
    1028  
    1029  /* ISA supports instructions DMULT and DMULTU. */
    1030  #define ISA_HAS_DMULT		(TARGET_64BIT				\
    1031  				 && !TARGET_MIPS5900			\
    1032  				 && mips_isa_rev <= 5)
    1033  
    1034  /* ISA supports instructions MULT and MULTU.  */
    1035  #define ISA_HAS_MULT		(mips_isa_rev <= 5)
    1036  
    1037  /* ISA supports instructions MUL, MULU, MUH, MUHU.  */
    1038  #define ISA_HAS_R6MUL		(mips_isa_rev >= 6)
    1039  
    1040  /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU.  */
    1041  #define ISA_HAS_R6DMUL		(TARGET_64BIT && mips_isa_rev >= 6)
    1042  
    1043  /* For Loongson, it is preferable to use the Loongson-specific division and
    1044     modulo instructions instead of the regular (D)DIV(U) instruction,
    1045     because the former are faster and can also have the effect of reducing
    1046     code size.  */
    1047  #define ISA_AVOID_DIV_HILO	((TARGET_LOONGSON_2EF			\
    1048  				  || TARGET_GS464)			\
    1049  				 && !TARGET_MIPS16)
    1050  
    1051  /* ISA supports instructions DDIV and DDIVU. */
    1052  #define ISA_HAS_DDIV		(TARGET_64BIT				\
    1053  				 && !TARGET_MIPS5900			\
    1054  				 && !ISA_AVOID_DIV_HILO			\
    1055  				 && mips_isa_rev <= 5)
    1056  
    1057  /* ISA supports instructions DIV and DIVU.
    1058     This is always true, but the macro is needed for ISA_HAS_<D>DIV
    1059     in mips.md.  */
    1060  #define ISA_HAS_DIV		(!ISA_AVOID_DIV_HILO			\
    1061  				 && mips_isa_rev <= 5)
    1062  
    1063  /* ISA supports instructions DIV, DIVU, MOD and MODU.  */
    1064  #define ISA_HAS_R6DIV		(mips_isa_rev >= 6)
    1065  
    1066  /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU.  */
    1067  #define ISA_HAS_R6DDIV		(TARGET_64BIT && mips_isa_rev >= 6)
    1068  
    1069  /* ISA has the floating-point conditional move instructions introduced
    1070     in mips4.  */
    1071  #define ISA_HAS_FP_CONDMOVE	((ISA_MIPS4				\
    1072  				  || (mips_isa_rev >= 1			\
    1073  				      && mips_isa_rev <= 5))		\
    1074  				 && !TARGET_MIPS5500			\
    1075  				 && !TARGET_MIPS16)
    1076  
    1077  /* ISA has the integer conditional move instructions introduced in mips4 and
    1078     ST Loongson 2E/2F.  */
    1079  #define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE			\
    1080  				 || TARGET_MIPS5900			\
    1081  				 || TARGET_LOONGSON_2EF)
    1082  
    1083  /* ISA has LDC1 and SDC1.  */
    1084  #define ISA_HAS_LDC1_SDC1	(!ISA_MIPS1				\
    1085  				 && !TARGET_MIPS5900			\
    1086  				 && !TARGET_MIPS16)
    1087  
    1088  /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
    1089     branch on CC, and move (both FP and non-FP) on CC.  */
    1090  #define ISA_HAS_8CC		(ISA_MIPS4				\
    1091  				 || (mips_isa_rev >= 1			\
    1092  				     && mips_isa_rev <= 5))
    1093  
    1094  /* ISA has the FP condition code instructions that store the flag in an
    1095     FP register.  */
    1096  #define ISA_HAS_CCF		(mips_isa_rev >= 6)
    1097  
    1098  #define ISA_HAS_SEL		(mips_isa_rev >= 6)
    1099  
    1100  /* This is a catch all for other mips4 instructions: indexed load, the
    1101     FP madd and msub instructions, and the FP recip and recip sqrt
    1102     instructions.  Note that this macro should only be used by other
    1103     ISA_HAS_* macros.  */
    1104  #define ISA_HAS_FP4		((ISA_MIPS4				\
    1105  				  || ISA_MIPS64				\
    1106  				  || (mips_isa_rev >= 2			\
    1107  				      && mips_isa_rev <= 5))		\
    1108  				 && !TARGET_MIPS16)
    1109  
    1110  /* ISA has floating-point indexed load and store instructions
    1111     (LWXC1, LDXC1, SWXC1 and SDXC1).  */
    1112  #define ISA_HAS_LXC1_SXC1	(ISA_HAS_FP4				\
    1113  				 && mips_lxc1_sxc1)
    1114  
    1115  /* ISA has paired-single instructions.  */
    1116  #define ISA_HAS_PAIRED_SINGLE	((ISA_MIPS64				\
    1117  				  || (mips_isa_rev >= 2			\
    1118  				      && mips_isa_rev <= 5))		\
    1119  				 && !TARGET_OCTEON)
    1120  
    1121  /* ISA has conditional trap instructions.  */
    1122  #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
    1123  				 && !TARGET_MIPS16)
    1124  
    1125  /* ISA has conditional trap with immediate instructions.  */
    1126  #define ISA_HAS_COND_TRAPI	(!ISA_MIPS1				\
    1127  				 && mips_isa_rev <= 5			\
    1128  				 && !TARGET_MIPS16)
    1129  
    1130  /* ISA has integer multiply-accumulate instructions, madd and msub.  */
    1131  #define ISA_HAS_MADD_MSUB	(mips_isa_rev >= 1			\
    1132  				 && mips_isa_rev <= 5)
    1133  
    1134  /* Integer multiply-accumulate instructions should be generated.  */
    1135  #define GENERATE_MADD_MSUB	(TARGET_IMADD && !TARGET_MIPS16)
    1136  
    1137  /* ISA has 4 operand fused madd instructions of the form
    1138     'd = [+-] (a * b [+-] c)'.  */
    1139  #define ISA_HAS_FUSED_MADD4	(mips_madd4				\
    1140  				 && (TARGET_MIPS8000			\
    1141  				     || TARGET_GS464			\
    1142  				     || TARGET_GS464E			\
    1143  				     || TARGET_GS264E))
    1144  
    1145  /* ISA has 4 operand unfused madd instructions of the form
    1146     'd = [+-] (a * b [+-] c)'.  */
    1147  #define ISA_HAS_UNFUSED_MADD4	(mips_madd4				\
    1148  				 && ISA_HAS_FP4				\
    1149  				 && !TARGET_MIPS8000			\
    1150  				 && !TARGET_GS464			\
    1151  				 && !TARGET_GS464E			\
    1152  				 && !TARGET_GS264E)
    1153  
    1154  /* ISA has 3 operand r6 fused madd instructions of the form
    1155     'c = c [+-] (a * b)'.  */
    1156  #define ISA_HAS_FUSED_MADDF	(mips_isa_rev >= 6)
    1157  
    1158  /* ISA has 3 operand loongson fused madd instructions of the form
    1159     'c = [+-] (a * b [+-] c)'.  */
    1160  #define ISA_HAS_FUSED_MADD3	TARGET_LOONGSON_2EF
    1161  
    1162  /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions.  The
    1163     MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
    1164     doubles are stored in pairs of FPRs, so for safety's sake, we apply
    1165     this restriction to the MIPS IV ISA too.  */
    1166  #define ISA_HAS_FP_RECIP_RSQRT(MODE)					\
    1167  				(((ISA_HAS_FP4				\
    1168  				   && ((MODE) == SFmode			\
    1169  				       || ((TARGET_FLOAT64		\
    1170  					    || mips_isa_rev >= 2)	\
    1171  					   && (MODE) == DFmode)))	\
    1172  				  || (((MODE) == SFmode			\
    1173  				       || (MODE) == DFmode)		\
    1174  				      && (mips_isa_rev >= 6))		\
    1175  				  || (TARGET_SB1			\
    1176  				      && (MODE) == V2SFmode))		\
    1177  				 && !TARGET_MIPS16)
    1178  
    1179  #define ISA_HAS_LWL_LWR		(mips_isa_rev <= 5 && !TARGET_MIPS16)
    1180  
    1181  #define ISA_HAS_IEEE_754_LEGACY	(mips_isa_rev <= 5)
    1182  
    1183  #define ISA_HAS_IEEE_754_2008	(mips_isa_rev >= 2)
    1184  
    1185  /* ISA has count leading zeroes/ones instruction (not implemented).  */
    1186  #define ISA_HAS_CLZ_CLO		(mips_isa_rev >= 1 && !TARGET_MIPS16)
    1187  
    1188  /* ISA has count trailing zeroes/ones instruction.  */
    1189  #define ISA_HAS_CTZ_CTO		(TARGET_LOONGSON_EXT2)
    1190  
    1191  /* ISA has three operand multiply instructions that put
    1192     the high part in an accumulator: mulhi or mulhiu.  */
    1193  #define ISA_HAS_MULHI		((TARGET_MIPS5400			 \
    1194  				  || TARGET_MIPS5500			 \
    1195  				  || TARGET_SR71K)			 \
    1196  				 && !TARGET_MIPS16)
    1197  
    1198  /* ISA has three operand multiply instructions that negate the
    1199     result and put the result in an accumulator.  */
    1200  #define ISA_HAS_MULS		((TARGET_MIPS5400			\
    1201  				  || TARGET_MIPS5500			\
    1202  				  || TARGET_SR71K)			\
    1203  				 && !TARGET_MIPS16)
    1204  
    1205  /* ISA has three operand multiply instructions that subtract the
    1206     result from a 4th operand and put the result in an accumulator.  */
    1207  #define ISA_HAS_MSAC		((TARGET_MIPS5400			\
    1208  				  || TARGET_MIPS5500			\
    1209  				  || TARGET_SR71K)			\
    1210  				 && !TARGET_MIPS16)
    1211  
    1212  /* ISA has three operand multiply instructions that add the result
    1213     to a 4th operand and put the result in an accumulator.  */
    1214  #define ISA_HAS_MACC		((TARGET_MIPS4120			\
    1215  				  || TARGET_MIPS4130			\
    1216  				  || TARGET_MIPS5400			\
    1217  				  || TARGET_MIPS5500			\
    1218  				  || TARGET_SR71K)			\
    1219  				 && !TARGET_MIPS16)
    1220  
    1221  /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
    1222  #define ISA_HAS_MACCHI		((TARGET_MIPS4120			\
    1223  				  || TARGET_MIPS4130)			\
    1224  				 && !TARGET_MIPS16)
    1225  
    1226  /* ISA has the "ror" (rotate right) instructions.  */
    1227  #define ISA_HAS_ROR		((mips_isa_rev >= 2			\
    1228  				  || TARGET_MIPS5400			\
    1229  				  || TARGET_MIPS5500			\
    1230  				  || TARGET_SR71K			\
    1231  				  || TARGET_SMARTMIPS)			\
    1232  				 && !TARGET_MIPS16)
    1233  
    1234  /* ISA has the WSBH (word swap bytes within halfwords) instruction.
    1235     64-bit targets also provide DSBH and DSHD.  */
    1236  #define ISA_HAS_WSBH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
    1237  
    1238  /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
    1239  #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
    1240  				  || TARGET_LOONGSON_2EF		\
    1241  				  || TARGET_MIPS5900			\
    1242  				  || mips_isa_rev >= 1)			\
    1243  				 && !TARGET_MIPS16)
    1244  
    1245  /* ISA has data prefetch, LL and SC with limited 9-bit displacement.  */
    1246  #define ISA_HAS_9BIT_DISPLACEMENT	(mips_isa_rev >= 6)
    1247  
    1248  /* ISA has data indexed prefetch instructions.  This controls use of
    1249     'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
    1250     (prefx is a cop1x instruction, so can only be used if FP is
    1251     enabled.)  */
    1252  #define ISA_HAS_PREFETCHX	(ISA_HAS_FP4				\
    1253  				 || TARGET_LOONGSON_EXT			\
    1254  				 || TARGET_LOONGSON_EXT2)
    1255  
    1256  /* True if trunc.w.s and trunc.w.d are real (not synthetic)
    1257     instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
    1258     also requires TARGET_DOUBLE_FLOAT.  */
    1259  #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
    1260  
    1261  /* ISA includes the MIPS32r2 seb and seh instructions.  */
    1262  #define ISA_HAS_SEB_SEH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
    1263  
    1264  /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
    1265  #define ISA_HAS_EXT_INS		(mips_isa_rev >= 2 && !TARGET_MIPS16)
    1266  
    1267  /* ISA has instructions for accessing top part of 64-bit fp regs.  */
    1268  #define ISA_HAS_MXHC1		(!TARGET_FLOAT32	\
    1269  				 && mips_isa_rev >= 2)
    1270  
    1271  /* ISA has lwxs instruction (load w/scaled index address.  */
    1272  #define ISA_HAS_LWXS		((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
    1273  				 && !TARGET_MIPS16)
    1274  
    1275  /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
    1276  #define ISA_HAS_LBX		(TARGET_OCTEON2)
    1277  #define ISA_HAS_LBUX		(ISA_HAS_DSP || TARGET_OCTEON2)
    1278  #define ISA_HAS_LHX		(ISA_HAS_DSP || TARGET_OCTEON2)
    1279  #define ISA_HAS_LHUX		(TARGET_OCTEON2)
    1280  #define ISA_HAS_LWX		(ISA_HAS_DSP || TARGET_OCTEON2)
    1281  #define ISA_HAS_LWUX		(TARGET_OCTEON2 && TARGET_64BIT)
    1282  #define ISA_HAS_LDX		((ISA_HAS_DSP || TARGET_OCTEON2) \
    1283  				 && TARGET_64BIT)
    1284  
    1285  /* The DSP ASE is available.  */
    1286  #define ISA_HAS_DSP		(TARGET_DSP && !TARGET_MIPS16)
    1287  
    1288  /* Revision 2 of the DSP ASE is available.  */
    1289  #define ISA_HAS_DSPR2		(TARGET_DSPR2 && !TARGET_MIPS16)
    1290  
    1291  /* The MSA ASE is available.  */
    1292  #define ISA_HAS_MSA		(TARGET_MSA && !TARGET_MIPS16)
    1293  
    1294  /* True if the result of a load is not available to the next instruction.
    1295     A nop will then be needed between instructions like "lw $4,..."
    1296     and "addiu $4,$4,1".  */
    1297  #define ISA_HAS_LOAD_DELAY	(ISA_MIPS1				\
    1298  				 && !TARGET_MIPS3900			\
    1299  				 && !TARGET_MIPS5900			\
    1300  				 && !TARGET_MIPS16			\
    1301  				 && !TARGET_MICROMIPS)
    1302  
    1303  /* Likewise mtc1 and mfc1.  */
    1304  #define ISA_HAS_XFER_DELAY	(mips_isa <= MIPS_ISA_MIPS3	\
    1305  				 && !TARGET_MIPS5900		\
    1306  				 && !TARGET_LOONGSON_2EF)
    1307  
    1308  /* Likewise floating-point comparisons.  */
    1309  #define ISA_HAS_FCMP_DELAY	(mips_isa <= MIPS_ISA_MIPS3	\
    1310  				 && !TARGET_MIPS5900		\
    1311  				 && !TARGET_LOONGSON_2EF)
    1312  
    1313  /* True if mflo and mfhi can be immediately followed by instructions
    1314     which write to the HI and LO registers.
    1315  
    1316     According to MIPS specifications, MIPS ISAs I, II, and III need
    1317     (at least) two instructions between the reads of HI/LO and
    1318     instructions which write them, and later ISAs do not.  Contradicting
    1319     the MIPS specifications, some MIPS IV processor user manuals (e.g.
    1320     the UM for the NEC Vr5000) document needing the instructions between
    1321     HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
    1322     MIPS64 and later ISAs to have the interlocks, plus any specific
    1323     earlier-ISA CPUs for which CPU documentation declares that the
    1324     instructions are really interlocked.  */
    1325  #define ISA_HAS_HILO_INTERLOCKS	(mips_isa_rev >= 1			\
    1326  				 || TARGET_MIPS5500			\
    1327  				 || TARGET_MIPS5900			\
    1328  				 || TARGET_LOONGSON_2EF)
    1329  
    1330  /* ISA includes synci, jr.hb and jalr.hb.  */
    1331  #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
    1332  
    1333  /* ISA includes sync.  */
    1334  #define ISA_HAS_SYNC ((mips_isa >= MIPS_ISA_MIPS2 || TARGET_MIPS3900) && !TARGET_MIPS16)
    1335  #define GENERATE_SYNC			\
    1336    (target_flags_explicit & MASK_LLSC	\
    1337     ? TARGET_LLSC && !TARGET_MIPS16	\
    1338     : ISA_HAS_SYNC)
    1339  
    1340  /* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
    1341     because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
    1342     instructions.  */
    1343  #define ISA_HAS_LL_SC (mips_isa >= MIPS_ISA_MIPS2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
    1344  #define GENERATE_LL_SC			\
    1345    (target_flags_explicit & MASK_LLSC	\
    1346     ? TARGET_LLSC && !TARGET_MIPS16	\
    1347     : ISA_HAS_LL_SC)
    1348  
    1349  #define ISA_HAS_SWAP (TARGET_XLP)
    1350  #define ISA_HAS_LDADD (TARGET_XLP)
    1351  
    1352  /* ISA includes the baddu instruction.  */
    1353  #define ISA_HAS_BADDU		(TARGET_OCTEON && !TARGET_MIPS16)
    1354  
    1355  /* ISA includes the bbit* instructions.  */
    1356  #define ISA_HAS_BBIT		(TARGET_OCTEON && !TARGET_MIPS16)
    1357  
    1358  /* ISA includes the cins instruction.  */
    1359  #define ISA_HAS_CINS		(TARGET_OCTEON && !TARGET_MIPS16)
    1360  
    1361  /* ISA includes the exts instruction.  */
    1362  #define ISA_HAS_EXTS		(TARGET_OCTEON && !TARGET_MIPS16)
    1363  
    1364  /* ISA includes the seq and sne instructions.  */
    1365  #define ISA_HAS_SEQ_SNE		(TARGET_OCTEON && !TARGET_MIPS16)
    1366  
    1367  /* ISA includes the pop instruction.  */
    1368  #define ISA_HAS_POP		(TARGET_OCTEON && !TARGET_MIPS16)
    1369  
    1370  /* The CACHE instruction is available in non-MIPS16 code.  */
    1371  #define TARGET_CACHE_BUILTIN (mips_isa >= MIPS_ISA_MIPS3)
    1372  
    1373  /* The CACHE instruction is available.  */
    1374  #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
    1375  
    1376  /* Tell collect what flags to pass to nm.  */
    1377  #ifndef NM_FLAGS
    1378  #define NM_FLAGS "-Bn"
    1379  #endif
    1380  
    1381  
    1382  /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
    1383     the assembler.  It may be overridden by subtargets.
    1384  
    1385     Beginning with gas 2.13, -mdebug must be passed to correctly handle
    1386     COFF debugging info.  */
    1387  
    1388  #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
    1389  #define SUBTARGET_ASM_DEBUGGING_SPEC "\
    1390  %{g} %{g0} %{g1} %{g2} %{g3} \
    1391  %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3}"
    1392  #endif
    1393  
    1394  /* FP_ASM_SPEC represents the floating-point options that must be passed
    1395     to the assembler when FPXX support exists.  Prior to that point the
    1396     assembler could accept the options but were not required for
    1397     correctness.  We only add the options when absolutely necessary
    1398     because passing -msoft-float to the assembler will cause it to reject
    1399     all hard-float instructions which may require some user code to be
    1400     updated.  */
    1401  
    1402  #ifdef HAVE_AS_DOT_MODULE
    1403  #define FP_ASM_SPEC "\
    1404  %{mhard-float} %{msoft-float} \
    1405  %{msingle-float} %{mdouble-float}"
    1406  #else
    1407  #define FP_ASM_SPEC
    1408  #endif
    1409  
    1410  /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
    1411     overridden by subtargets.  */
    1412  
    1413  #ifndef SUBTARGET_ASM_SPEC
    1414  #define SUBTARGET_ASM_SPEC ""
    1415  #endif
    1416  
    1417  #undef ASM_SPEC
    1418  #define ASM_SPEC "\
    1419  %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
    1420  %{mips32*} %{mips64*} \
    1421  %{mips16} %{mno-mips16:-no-mips16} \
    1422  %{mmicromips} %{mno-micromips} \
    1423  %{mips3d} %{mno-mips3d:-no-mips3d} \
    1424  %{mdmx} %{mno-mdmx:-no-mdmx} \
    1425  %{mdsp} %{mno-dsp} \
    1426  %{mdspr2} %{mno-dspr2} \
    1427  %{mmcu} %{mno-mcu} \
    1428  %{meva} %{mno-eva} \
    1429  %{mvirt} %{mno-virt} \
    1430  %{mxpa} %{mno-xpa} \
    1431  %{mcrc} %{mno-crc} \
    1432  %{mginv} %{mno-ginv} \
    1433  %{mmsa} %{mno-msa} \
    1434  %{mloongson-mmi} %{mno-loongson-mmi} \
    1435  %{mloongson-ext} %{mno-loongson-ext} \
    1436  %{mloongson-ext2} %{mno-loongson-ext2} \
    1437  %{msmartmips} %{mno-smartmips} \
    1438  %{mmt} %{mno-mt} \
    1439  %{mfix-r5900} %{mno-fix-r5900} \
    1440  %{mfix-rm7000} %{mno-fix-rm7000} \
    1441  %{mfix-vr4120} %{mfix-vr4130} \
    1442  %{mfix-24k} \
    1443  %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
    1444  %(subtarget_asm_debugging_spec) \
    1445  %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
    1446  %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
    1447  %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
    1448  %{modd-spreg} %{mno-odd-spreg} \
    1449  %{mshared} %{mno-shared} \
    1450  %{msym32} %{mno-sym32} \
    1451  %{mtune=*}" \
    1452  FP_ASM_SPEC "\
    1453  %(subtarget_asm_spec)"
    1454  
    1455  /* Extra switches sometimes passed to the linker.  */
    1456  
    1457  #ifndef LINK_SPEC
    1458  #define LINK_SPEC "\
    1459  %(endian_spec) \
    1460  %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
    1461  %{shared}"
    1462  #endif  /* LINK_SPEC defined */
    1463  
    1464  
    1465  /* Specs for the compiler proper */
    1466  
    1467  /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
    1468     overridden by subtargets.  */
    1469  #ifndef SUBTARGET_CC1_SPEC
    1470  #define SUBTARGET_CC1_SPEC ""
    1471  #endif
    1472  
    1473  /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
    1474  
    1475  #undef CC1_SPEC
    1476  #define CC1_SPEC "\
    1477  %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
    1478  %(subtarget_cc1_spec)"
    1479  
    1480  /* Preprocessor specs.  */
    1481  
    1482  /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
    1483     overridden by subtargets.  */
    1484  #ifndef SUBTARGET_CPP_SPEC
    1485  #define SUBTARGET_CPP_SPEC ""
    1486  #endif
    1487  
    1488  #define CPP_SPEC "%(subtarget_cpp_spec)"
    1489  
    1490  /* This macro defines names of additional specifications to put in the specs
    1491     that can be used in various specifications like CC1_SPEC.  Its definition
    1492     is an initializer with a subgrouping for each command option.
    1493  
    1494     Each subgrouping contains a string constant, that defines the
    1495     specification name, and a string constant that used by the GCC driver
    1496     program.
    1497  
    1498     Do not define this macro if it does not need to do anything.  */
    1499  
    1500  #define EXTRA_SPECS							\
    1501    { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
    1502    { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
    1503    { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
    1504    { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
    1505    { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
    1506    { "endian_spec", ENDIAN_SPEC },					\
    1507    SUBTARGET_EXTRA_SPECS
    1508  
    1509  #ifndef SUBTARGET_EXTRA_SPECS
    1510  #define SUBTARGET_EXTRA_SPECS
    1511  #endif
    1512  
    1513  #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
    1514  
    1515  #ifndef PREFERRED_DEBUGGING_TYPE
    1516  #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
    1517  #endif
    1518  
    1519  /* The size of DWARF addresses should be the same as the size of symbols
    1520     in the target file format.  They shouldn't depend on things like -msym32,
    1521     because many DWARF consumers do not allow the mixture of address sizes
    1522     that one would then get from linking -msym32 code with -msym64 code.
    1523  
    1524     Note that the default POINTER_SIZE test is not appropriate for MIPS.
    1525     EABI64 has 64-bit pointers but uses 32-bit ELF.  */
    1526  #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
    1527  
    1528  /* By default, turn on GDB extensions.  */
    1529  #define DEFAULT_GDB_EXTENSIONS 1
    1530  
    1531  /* Registers may have a prefix which can be ignored when matching
    1532     user asm and register definitions.  */
    1533  #ifndef REGISTER_PREFIX
    1534  #define REGISTER_PREFIX    "$"
    1535  #endif
    1536  
    1537  /* Local compiler-generated symbols must have a prefix that the assembler
    1538     understands.   By default, this is $, although some targets (e.g.,
    1539     NetBSD-ELF) need to override this.  */
    1540  
    1541  #ifndef LOCAL_LABEL_PREFIX
    1542  #define LOCAL_LABEL_PREFIX	"$"
    1543  #endif
    1544  
    1545  /* By default on the mips, external symbols do not have an underscore
    1546     prepended, but some targets (e.g., NetBSD) require this.  */
    1547  
    1548  #ifndef USER_LABEL_PREFIX
    1549  #define USER_LABEL_PREFIX	""
    1550  #endif
    1551  
    1552  /* The mapping from gcc register number to DWARF 2 CFA column number.  */
    1553  #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
    1554  
    1555  /* The DWARF 2 CFA column which tracks the return address.  */
    1556  #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
    1557  
    1558  /* Before the prologue, RA lives in r31.  */
    1559  #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
    1560  
    1561  /* Describe how we implement __builtin_eh_return.  */
    1562  #define EH_RETURN_DATA_REGNO(N) \
    1563    ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
    1564  
    1565  #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
    1566  
    1567  #define EH_USES(N) mips_eh_uses (N)
    1568  
    1569  /* Offsets recorded in opcodes are a multiple of this alignment factor.
    1570     The default for this in 64-bit mode is 8, which causes problems with
    1571     SFmode register saves.  */
    1572  #define DWARF_CIE_DATA_ALIGNMENT -4
    1573  
    1574  /* Correct the offset of automatic variables and arguments.  Note that
    1575     the MIPS debug format wants all automatic variables and arguments
    1576     to be in terms of the virtual frame pointer (stack pointer before
    1577     any adjustment in the function), while the MIPS 3.0 linker wants
    1578     the frame pointer to be the stack pointer after the initial
    1579     adjustment.  */
    1580  
    1581  #define DEBUGGER_AUTO_OFFSET(X)				\
    1582    mips_debugger_offset (X, (HOST_WIDE_INT) 0)
    1583  #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
    1584    mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
    1585  
    1586  /* Target machine storage layout */
    1587  
    1588  #define BITS_BIG_ENDIAN 0
    1589  #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
    1590  #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
    1591  
    1592  #define MAX_BITS_PER_WORD 64
    1593  
    1594  /* Width of a word, in units (bytes).  */
    1595  #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
    1596  #ifndef IN_LIBGCC2
    1597  #define MIN_UNITS_PER_WORD 4
    1598  #endif
    1599  
    1600  /* Width of a MSA vector register in bytes.  */
    1601  #define UNITS_PER_MSA_REG 16
    1602  /* Width of a MSA vector register in bits.  */
    1603  #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
    1604  
    1605  /* For MIPS, width of a floating point register.  */
    1606  #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
    1607  
    1608  /* The number of consecutive floating-point registers needed to store the
    1609     largest format supported by the FPU.  */
    1610  #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
    1611  
    1612  /* The number of consecutive floating-point registers needed to store the
    1613     smallest format supported by the FPU.  */
    1614  #define MIN_FPRS_PER_FMT \
    1615    (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
    1616  
    1617  /* The largest size of value that can be held in floating-point
    1618     registers and moved with a single instruction.  */
    1619  #define UNITS_PER_HWFPVALUE \
    1620    (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
    1621  
    1622  /* The largest size of value that can be held in floating-point
    1623     registers.  */
    1624  #define UNITS_PER_FPVALUE			\
    1625    (TARGET_SOFT_FLOAT_ABI ? 0			\
    1626     : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
    1627     : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
    1628  
    1629  /* The number of bytes in a double.  */
    1630  #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
    1631  
    1632  /* Set the sizes of the core types.  */
    1633  #define SHORT_TYPE_SIZE 16
    1634  #define INT_TYPE_SIZE 32
    1635  #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
    1636  #define LONG_LONG_TYPE_SIZE 64
    1637  
    1638  #define FLOAT_TYPE_SIZE 32
    1639  #define DOUBLE_TYPE_SIZE 64
    1640  #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
    1641  
    1642  /* Define the sizes of fixed-point types.  */
    1643  #define SHORT_FRACT_TYPE_SIZE 8
    1644  #define FRACT_TYPE_SIZE 16
    1645  #define LONG_FRACT_TYPE_SIZE 32
    1646  #define LONG_LONG_FRACT_TYPE_SIZE 64
    1647  
    1648  #define SHORT_ACCUM_TYPE_SIZE 16
    1649  #define ACCUM_TYPE_SIZE 32
    1650  #define LONG_ACCUM_TYPE_SIZE 64
    1651  /* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
    1652     doesn't support 128-bit integers for MIPS32 currently.  */
    1653  #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
    1654  
    1655  /* long double is not a fixed mode, but the idea is that, if we
    1656     support long double, we also want a 128-bit integer type.  */
    1657  #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
    1658  
    1659  /* Width in bits of a pointer.  */
    1660  #ifndef POINTER_SIZE
    1661  #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
    1662  #endif
    1663  
    1664  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
    1665  #define PARM_BOUNDARY BITS_PER_WORD
    1666  
    1667  /* Allocation boundary (in *bits*) for the code of a function.  */
    1668  #define FUNCTION_BOUNDARY 32
    1669  
    1670  /* Alignment of field after `int : 0' in a structure.  */
    1671  #define EMPTY_FIELD_BOUNDARY 32
    1672  
    1673  /* Every structure's size must be a multiple of this.  */
    1674  /* 8 is observed right on a DECstation and on riscos 4.02.  */
    1675  #define STRUCTURE_SIZE_BOUNDARY 8
    1676  
    1677  /* There is no point aligning anything to a rounder boundary than
    1678     LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
    1679     BITS_PER_MSA_REG.  */
    1680  #define BIGGEST_ALIGNMENT \
    1681    (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
    1682  
    1683  /* All accesses must be aligned.  */
    1684  #define STRICT_ALIGNMENT (!ISA_HAS_UNALIGNED_ACCESS)
    1685  
    1686  /* Define this if you wish to imitate the way many other C compilers
    1687     handle alignment of bitfields and the structures that contain
    1688     them.
    1689  
    1690     The behavior is that the type written for a bit-field (`int',
    1691     `short', or other integer type) imposes an alignment for the
    1692     entire structure, as if the structure really did contain an
    1693     ordinary field of that type.  In addition, the bit-field is placed
    1694     within the structure so that it would fit within such a field,
    1695     not crossing a boundary for it.
    1696  
    1697     Thus, on most machines, a bit-field whose type is written as `int'
    1698     would not cross a four-byte boundary, and would force four-byte
    1699     alignment for the whole structure.  (The alignment used may not
    1700     be four bytes; it is controlled by the other alignment
    1701     parameters.)
    1702  
    1703     If the macro is defined, its definition should be a C expression;
    1704     a nonzero value for the expression enables this behavior.  */
    1705  
    1706  #define PCC_BITFIELD_TYPE_MATTERS 1
    1707  
    1708  /* If defined, a C expression to compute the alignment for a static
    1709     variable.  TYPE is the data type, and ALIGN is the alignment that
    1710     the object would ordinarily have.  The value of this macro is used
    1711     instead of that alignment to align the object.
    1712  
    1713     If this macro is not defined, then ALIGN is used.
    1714  
    1715     One use of this macro is to increase alignment of medium-size
    1716     data to make it all fit in fewer cache lines.  Another is to
    1717     cause character arrays to be word-aligned so that `strcpy' calls
    1718     that copy constants to character arrays can be done inline.  */
    1719  
    1720  #undef DATA_ALIGNMENT
    1721  #define DATA_ALIGNMENT(TYPE, ALIGN)					\
    1722    ((((ALIGN) < BITS_PER_WORD)						\
    1723      && (TREE_CODE (TYPE) == ARRAY_TYPE					\
    1724  	|| TREE_CODE (TYPE) == UNION_TYPE				\
    1725  	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
    1726  
    1727  /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
    1728     character arrays to be word-aligned so that `strcpy' calls that copy
    1729     constants to character arrays can be done inline, and 'strcmp' can be
    1730     optimised to use word loads. */
    1731  #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
    1732    DATA_ALIGNMENT (TYPE, ALIGN)
    1733    
    1734  #define PAD_VARARGS_DOWN \
    1735    (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
    1736  
    1737  /* Define if operations between registers always perform the operation
    1738     on the full register even if a narrower mode is specified.  */
    1739  #define WORD_REGISTER_OPERATIONS 1
    1740  
    1741  /* When in 64-bit mode, move insns will sign extend SImode and CCmode
    1742     moves.  All other references are zero extended.  */
    1743  #define LOAD_EXTEND_OP(MODE) \
    1744    (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
    1745     ? SIGN_EXTEND : ZERO_EXTEND)
    1746  
    1747  /* Define this macro if it is advisable to hold scalars in registers
    1748     in a wider mode than that declared by the program.  In such cases,
    1749     the value is constrained to be within the bounds of the declared
    1750     type, but kept valid in the wider mode.  The signedness of the
    1751     extension may differ from that of the type.  */
    1752  
    1753  #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
    1754    if (GET_MODE_CLASS (MODE) == MODE_INT		\
    1755        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
    1756      {                                           \
    1757        if ((MODE) == SImode)                     \
    1758          (UNSIGNEDP) = 0;                        \
    1759        (MODE) = Pmode;                           \
    1760      }
    1761  
    1762  /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
    1763     Extensions of pointers to word_mode must be signed.  */
    1764  #define POINTERS_EXTEND_UNSIGNED false
    1765  
    1766  /* Define if loading short immediate values into registers sign extends.  */
    1767  #define SHORT_IMMEDIATES_SIGN_EXTEND 1
    1768  
    1769  /* The [d]clz instructions have the natural values at 0.  */
    1770  
    1771  #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
    1772    ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
    1773  
    1774  /* Standard register usage.  */
    1775  
    1776  /* Number of hardware registers.  We have:
    1777  
    1778     - 32 integer registers
    1779     - 32 floating point registers
    1780     - 8 condition code registers
    1781     - 2 accumulator registers (hi and lo)
    1782     - 32 registers each for coprocessors 0, 2 and 3
    1783     - 4 fake registers:
    1784  	- ARG_POINTER_REGNUM
    1785  	- FRAME_POINTER_REGNUM
    1786  	- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
    1787  	- CPRESTORE_SLOT_REGNUM
    1788     - 2 dummy entries that were used at various times in the past.
    1789     - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
    1790     - 6 DSP control registers  */
    1791  
    1792  #define FIRST_PSEUDO_REGISTER 188
    1793  
    1794  /* By default, fix the kernel registers ($26 and $27), the global
    1795     pointer ($28) and the stack pointer ($29).  This can change
    1796     depending on the command-line options.
    1797  
    1798     Regarding coprocessor registers: without evidence to the contrary,
    1799     it's best to assume that each coprocessor register has a unique
    1800     use.  This can be overridden, in, e.g., mips_option_override or
    1801     TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
    1802     inappropriate for a particular target.  */
    1803  
    1804  #define FIXED_REGISTERS							\
    1805  {									\
    1806    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1807    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
    1808    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1809    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1810    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
    1811    /* COP0 registers */							\
    1812    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1813    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1814    /* COP2 registers */							\
    1815    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1816    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1817    /* COP3 registers */							\
    1818    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1819    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1820    /* 6 DSP accumulator registers & 6 control registers */		\
    1821    0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
    1822  }
    1823  
    1824  
    1825  /* Set up this array for o32 by default.
    1826  
    1827     Note that we don't mark $31 as a call-clobbered register.  The idea is
    1828     that it's really the call instructions themselves which clobber $31.
    1829     We don't care what the called function does with it afterwards.
    1830  
    1831     This approach makes it easier to implement sibcalls.  Unlike normal
    1832     calls, sibcalls don't clobber $31, so the register reaches the
    1833     called function in tact.  EPILOGUE_USES says that $31 is useful
    1834     to the called function.  */
    1835  
    1836  #define CALL_REALLY_USED_REGISTERS                                      \
    1837  { /* General registers.  */                                             \
    1838    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
    1839    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
    1840    /* Floating-point registers.  */                                      \
    1841    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
    1842    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1843    /* Others.  */                                                        \
    1844    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,			\
    1845    /* COP0 registers */							\
    1846    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1847    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1848    /* COP2 registers */							\
    1849    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1850    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1851    /* COP3 registers */							\
    1852    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1853    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
    1854    /* 6 DSP accumulator registers & 6 control registers */		\
    1855    1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
    1856  }
    1857  
    1858  /* Internal macros to classify a register number as to whether it's a
    1859     general purpose register, a floating point register, a
    1860     multiply/divide register, or a status register.  */
    1861  
    1862  #define GP_REG_FIRST 0
    1863  #define GP_REG_LAST  31
    1864  #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
    1865  #define K0_REG_NUM   (GP_REG_FIRST + 26)
    1866  #define K1_REG_NUM   (GP_REG_FIRST + 27)
    1867  #define KERNEL_REG_P(REGNO)	(IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
    1868  
    1869  #define FP_REG_FIRST 32
    1870  #define FP_REG_LAST  63
    1871  #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
    1872  
    1873  #define MD_REG_FIRST 64
    1874  #define MD_REG_LAST  65
    1875  #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
    1876  
    1877  #define MSA_REG_FIRST FP_REG_FIRST
    1878  #define MSA_REG_LAST  FP_REG_LAST
    1879  #define MSA_REG_NUM   FP_REG_NUM
    1880  
    1881  /* The DWARF 2 CFA column which tracks the return address from a
    1882     signal handler context.  This means that to maintain backwards
    1883     compatibility, no hard register can be assigned this column if it
    1884     would need to be handled by the DWARF unwinder.  */
    1885  #define DWARF_ALT_FRAME_RETURN_COLUMN 66
    1886  
    1887  #define ST_REG_FIRST 67
    1888  #define ST_REG_LAST  74
    1889  #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
    1890  
    1891  
    1892  /* FIXME: renumber.  */
    1893  #define COP0_REG_FIRST 80
    1894  #define COP0_REG_LAST 111
    1895  #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
    1896  
    1897  #define COP0_STATUS_REG_NUM	(COP0_REG_FIRST + 12)
    1898  #define COP0_CAUSE_REG_NUM	(COP0_REG_FIRST + 13)
    1899  #define COP0_EPC_REG_NUM	(COP0_REG_FIRST + 14)
    1900  
    1901  #define COP2_REG_FIRST 112
    1902  #define COP2_REG_LAST 143
    1903  #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
    1904  
    1905  #define COP3_REG_FIRST 144
    1906  #define COP3_REG_LAST 175
    1907  #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
    1908  
    1909  /* These definitions assume that COP0, 2 and 3 are numbered consecutively.  */
    1910  #define ALL_COP_REG_FIRST COP0_REG_FIRST
    1911  #define ALL_COP_REG_LAST COP3_REG_LAST
    1912  #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
    1913  
    1914  #define DSP_ACC_REG_FIRST 176
    1915  #define DSP_ACC_REG_LAST 181
    1916  #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
    1917  
    1918  #define AT_REGNUM	(GP_REG_FIRST + 1)
    1919  #define HI_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
    1920  #define LO_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
    1921  
    1922  /* A few bitfield locations for the coprocessor registers.  */
    1923  /* Request Interrupt Priority Level is from bit 10 to bit 15 of
    1924     the cause register for the EIC interrupt mode.  */
    1925  #define CAUSE_IPL	10
    1926  /* COP1 Enable is at bit 29 of the status register.  */
    1927  #define SR_COP1         29
    1928  /* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
    1929  #define SR_IPL		10
    1930  /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
    1931     register.  */
    1932  #define SR_IM0		8
    1933  /* Exception Level is at bit 1 of the status register.  */
    1934  #define SR_EXL		1
    1935  /* Interrupt Enable is at bit 0 of the status register.  */
    1936  #define SR_IE		0
    1937  
    1938  /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
    1939     If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
    1940     should be used instead.  */
    1941  #define FPSW_REGNUM	ST_REG_FIRST
    1942  
    1943  #define GP_REG_P(REGNO)	\
    1944    ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
    1945  #define M16_REG_P(REGNO) \
    1946    (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
    1947  #define M16STORE_REG_P(REGNO) \
    1948    (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
    1949  #define FP_REG_P(REGNO)  \
    1950    ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
    1951  #define MD_REG_P(REGNO) \
    1952    ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
    1953  #define ST_REG_P(REGNO) \
    1954    ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
    1955  #define COP0_REG_P(REGNO) \
    1956    ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
    1957  #define COP2_REG_P(REGNO) \
    1958    ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
    1959  #define COP3_REG_P(REGNO) \
    1960    ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
    1961  #define ALL_COP_REG_P(REGNO) \
    1962    ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
    1963  /* Test if REGNO is one of the 6 new DSP accumulators.  */
    1964  #define DSP_ACC_REG_P(REGNO) \
    1965    ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
    1966  /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
    1967  #define ACC_REG_P(REGNO) \
    1968    (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
    1969  #define MSA_REG_P(REGNO) \
    1970    ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
    1971  
    1972  #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
    1973  #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
    1974  
    1975  /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
    1976     to initialize the mips16 gp pseudo register.  */
    1977  #define CONST_GP_P(X)				\
    1978    (GET_CODE (X) == CONST			\
    1979     && GET_CODE (XEXP (X, 0)) == UNSPEC		\
    1980     && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
    1981  
    1982  /* Return coprocessor number from register number.  */
    1983  
    1984  #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
    1985    (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
    1986     : COP3_REG_P (REGNO) ? '3' : '?')
    1987  
    1988  
    1989  #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG)				\
    1990    mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
    1991  
    1992  /* Select a register mode required for caller save of hard regno REGNO.  */
    1993  #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
    1994    mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
    1995  
    1996  /* Register to use for pushing function arguments.  */
    1997  #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
    1998  
    1999  /* These two registers don't really exist: they get eliminated to either
    2000     the stack or hard frame pointer.  */
    2001  #define ARG_POINTER_REGNUM 77
    2002  #define FRAME_POINTER_REGNUM 78
    2003  
    2004  /* $30 is not available on the mips16, so we use $17 as the frame
    2005     pointer.  */
    2006  #define HARD_FRAME_POINTER_REGNUM \
    2007    (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
    2008  
    2009  #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
    2010  #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
    2011  
    2012  /* Register in which static-chain is passed to a function.  */
    2013  #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
    2014  
    2015  /* Registers used as temporaries in prologue/epilogue code:
    2016  
    2017     - If a MIPS16 PIC function needs access to _gp, it first loads
    2018       the value into MIPS16_PIC_TEMP and then copies it to $gp.
    2019  
    2020     - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
    2021       register.  The register must not conflict with MIPS16_PIC_TEMP.
    2022  
    2023     - If we aren't generating MIPS16 code, the prologue can also use
    2024       MIPS_PROLOGUE_TEMP2 as a general temporary register.
    2025  
    2026     - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
    2027       register.
    2028  
    2029     If we're generating MIPS16 code, these registers must come from the
    2030     core set of 8.  The prologue registers mustn't conflict with any
    2031     incoming arguments, the static chain pointer, or the frame pointer.
    2032     The epilogue temporary mustn't conflict with the return registers,
    2033     the PIC call register ($25), the frame pointer, the EH stack adjustment,
    2034     or the EH data registers.
    2035  
    2036     If we're generating interrupt handlers, we use K0 as a temporary register
    2037     in prologue/epilogue code.  */
    2038  
    2039  #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
    2040  #define MIPS_PROLOGUE_TEMP_REGNUM \
    2041    (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
    2042  #define MIPS_PROLOGUE_TEMP2_REGNUM \
    2043    (TARGET_MIPS16 \
    2044     ? (gcc_unreachable (), INVALID_REGNUM) \
    2045     : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
    2046  #define MIPS_EPILOGUE_TEMP_REGNUM		\
    2047    (cfun->machine->interrupt_handler_p		\
    2048     ? K0_REG_NUM					\
    2049     : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
    2050  
    2051  #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
    2052  #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
    2053  #define MIPS_PROLOGUE_TEMP2(MODE) \
    2054    gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
    2055  #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
    2056  
    2057  /* Define this macro if it is as good or better to call a constant
    2058     function address than to call an address kept in a register.  */
    2059  #define NO_FUNCTION_CSE 1
    2060  
    2061  /* The ABI-defined global pointer.  Sometimes we use a different
    2062     register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
    2063  #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
    2064  
    2065  /* We normally use $28 as the global pointer.  However, when generating
    2066     n32/64 PIC, it is better for leaf functions to use a call-clobbered
    2067     register instead.  They can then avoid saving and restoring $28
    2068     and perhaps avoid using a frame at all.
    2069  
    2070     When a leaf function uses something other than $28, mips_expand_prologue
    2071     will modify pic_offset_table_rtx in place.  Take the register number
    2072     from there after reload.  */
    2073  #define PIC_OFFSET_TABLE_REGNUM \
    2074    (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
    2075  
    2076  /* Define the classes of registers for register constraints in the
    2077     machine description.  Also define ranges of constants.
    2078  
    2079     One of the classes must always be named ALL_REGS and include all hard regs.
    2080     If there is more than one class, another class must be named NO_REGS
    2081     and contain no registers.
    2082  
    2083     The name GENERAL_REGS must be the name of a class (or an alias for
    2084     another name such as ALL_REGS).  This is the class of registers
    2085     that is allowed by "g" or "r" in a register constraint.
    2086     Also, registers outside this class are allocated only when
    2087     instructions express preferences for them.
    2088  
    2089     The classes must be numbered in nondecreasing order; that is,
    2090     a larger-numbered class must never be contained completely
    2091     in a smaller-numbered class.
    2092  
    2093     For any two classes, it is very desirable that there be another
    2094     class that represents their union.  */
    2095  
    2096  enum reg_class
    2097  {
    2098    NO_REGS,			/* no registers in set */
    2099    M16_STORE_REGS,		/* microMIPS store registers  */
    2100    M16_REGS,			/* mips16 directly accessible registers */
    2101    M16_SP_REGS,			/* mips16 + $sp */
    2102    T_REG,			/* mips16 T register ($24) */
    2103    M16_T_REGS,			/* mips16 registers plus T register */
    2104    PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
    2105    V1_REG,			/* Register $v1 ($3) used for TLS access.  */
    2106    SPILL_REGS,			/* All but $sp and call preserved regs are in here */
    2107    LEA_REGS,			/* Every GPR except $25 */
    2108    GR_REGS,			/* integer registers */
    2109    FP_REGS,			/* floating point registers */
    2110    MD0_REG,			/* first multiply/divide register */
    2111    MD1_REG,			/* second multiply/divide register */
    2112    MD_REGS,			/* multiply/divide registers (hi/lo) */
    2113    COP0_REGS,			/* generic coprocessor classes */
    2114    COP2_REGS,
    2115    COP3_REGS,
    2116    ST_REGS,			/* status registers (fp status) */
    2117    DSP_ACC_REGS,			/* DSP accumulator registers */
    2118    ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
    2119    FRAME_REGS,			/* $arg and $frame */
    2120    GR_AND_MD0_REGS,		/* union classes */
    2121    GR_AND_MD1_REGS,
    2122    GR_AND_MD_REGS,
    2123    GR_AND_ACC_REGS,
    2124    ALL_REGS,			/* all registers */
    2125    LIM_REG_CLASSES		/* max value + 1 */
    2126  };
    2127  
    2128  #define N_REG_CLASSES (int) LIM_REG_CLASSES
    2129  
    2130  #define GENERAL_REGS GR_REGS
    2131  
    2132  /* An initializer containing the names of the register classes as C
    2133     string constants.  These names are used in writing some of the
    2134     debugging dumps.  */
    2135  
    2136  #define REG_CLASS_NAMES							\
    2137  {									\
    2138    "NO_REGS",								\
    2139    "M16_STORE_REGS",							\
    2140    "M16_REGS",								\
    2141    "M16_SP_REGS",								\
    2142    "T_REG",								\
    2143    "M16_T_REGS",								\
    2144    "PIC_FN_ADDR_REG",							\
    2145    "V1_REG",								\
    2146    "SPILL_REGS",								\
    2147    "LEA_REGS",								\
    2148    "GR_REGS",								\
    2149    "FP_REGS",								\
    2150    "MD0_REG",								\
    2151    "MD1_REG",								\
    2152    "MD_REGS",								\
    2153    /* coprocessor registers */						\
    2154    "COP0_REGS",								\
    2155    "COP2_REGS",								\
    2156    "COP3_REGS",								\
    2157    "ST_REGS",								\
    2158    "DSP_ACC_REGS",							\
    2159    "ACC_REGS",								\
    2160    "FRAME_REGS",								\
    2161    "GR_AND_MD0_REGS",							\
    2162    "GR_AND_MD1_REGS",							\
    2163    "GR_AND_MD_REGS",							\
    2164    "GR_AND_ACC_REGS",							\
    2165    "ALL_REGS"								\
    2166  }
    2167  
    2168  /* An initializer containing the contents of the register classes,
    2169     as integers which are bit masks.  The Nth integer specifies the
    2170     contents of class N.  The way the integer MASK is interpreted is
    2171     that register R is in the class if `MASK & (1 << R)' is 1.
    2172  
    2173     When the machine has more than 32 registers, an integer does not
    2174     suffice.  Then the integers are replaced by sub-initializers,
    2175     braced groupings containing several integers.  Each
    2176     sub-initializer must be suitable as an initializer for the type
    2177     `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
    2178  
    2179  #define REG_CLASS_CONTENTS						                                \
    2180  {									                                \
    2181    { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
    2182    { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_STORE_REGS */	\
    2183    { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_REGS */		\
    2184    { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_SP_REGS */		\
    2185    { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* T_REG */		\
    2186    { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_T_REGS */	\
    2187    { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* PIC_FN_ADDR_REG */	\
    2188    { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* V1_REG */		\
    2189    { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SPILL_REGS */      	\
    2190    { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* LEA_REGS */		\
    2191    { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
    2192    { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* FP_REGS */		\
    2193    { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* MD0_REG */		\
    2194    { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* MD1_REG */		\
    2195    { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* MD_REGS */		\
    2196    { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */		\
    2197    { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */		\
    2198    { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */		\
    2199    { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* ST_REGS */		\
    2200    { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* DSP_ACC_REGS */	\
    2201    { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* ACC_REGS */		\
    2202    { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },	/* FRAME_REGS */	\
    2203    { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD0_REGS */	\
    2204    { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD1_REGS */	\
    2205    { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD_REGS */	\
    2206    { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* GR_AND_ACC_REGS */	\
    2207    { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* ALL_REGS */		\
    2208  }
    2209  
    2210  
    2211  /* A C expression whose value is a register class containing hard
    2212     register REGNO.  In general there is more that one such class;
    2213     choose a class which is "minimal", meaning that no smaller class
    2214     also contains the register.  */
    2215  
    2216  #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
    2217  
    2218  /* A macro whose definition is the name of the class to which a
    2219     valid base register must belong.  A base register is one used in
    2220     an address which is the register value plus a displacement.  */
    2221  
    2222  #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
    2223  
    2224  /* A macro whose definition is the name of the class to which a
    2225     valid index register must belong.  An index register is one used
    2226     in an address where its value is either multiplied by a scale
    2227     factor or added to another register (as well as added to a
    2228     displacement).  */
    2229  
    2230  #define INDEX_REG_CLASS NO_REGS
    2231  
    2232  /* We generally want to put call-clobbered registers ahead of
    2233     call-saved ones.  (IRA expects this.)  */
    2234  
    2235  #define REG_ALLOC_ORDER							\
    2236  { /* Accumulator registers.  When GPRs and accumulators have equal	\
    2237       cost, we generally prefer to use accumulators.  For example,	\
    2238       a division of multiplication result is better allocated to LO,	\
    2239       so that we put the MFLO at the point of use instead of at the	\
    2240       point of definition.  It's also needed if we're to take advantage	\
    2241       of the extra accumulators available with -mdspr2.  In some cases,	\
    2242       it can also help to reduce register pressure.  */			\
    2243    64, 65,176,177,178,179,180,181,					\
    2244    /* Call-clobbered GPRs.  */						\
    2245    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,		\
    2246    24, 25, 31,								\
    2247    /* The global pointer.  This is call-clobbered for o32 and o64	\
    2248       abicalls, call-saved for n32 and n64 abicalls, and a program	\
    2249       invariant otherwise.  Putting it between the call-clobbered	\
    2250       and call-saved registers should cope with all eventualities.  */	\
    2251    28,									\
    2252    /* Call-saved GPRs.  */						\
    2253    16, 17, 18, 19, 20, 21, 22, 23, 30,					\
    2254    /* GPRs that can never be exposed to the register allocator.  */	\
    2255    0,  26, 27, 29,							\
    2256    /* Call-clobbered FPRs.  */						\
    2257    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
    2258    48, 49, 50, 51,							\
    2259    /* FPRs that are usually call-saved.  The odd ones are actually	\
    2260       call-clobbered for n32, but listing them ahead of the even		\
    2261       registers might encourage the register allocator to fragment	\
    2262       the available FPR pairs.  We need paired FPRs to store long	\
    2263       doubles, so it isn't clear that using a different order		\
    2264       for n32 would be a win.  */					\
    2265    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,			\
    2266    /* None of the remaining classes have defined call-saved		\
    2267       registers.  */							\
    2268    66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,		\
    2269    80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
    2270    96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
    2271    112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
    2272    128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
    2273    144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
    2274    160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
    2275    182,183,184,185,186,187						\
    2276  }
    2277  
    2278  /* True if VALUE is an unsigned 6-bit number.  */
    2279  
    2280  #define UIMM6_OPERAND(VALUE) \
    2281    (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
    2282  
    2283  /* True if VALUE is a signed 10-bit number.  */
    2284  
    2285  #define IMM10_OPERAND(VALUE) \
    2286    ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
    2287  
    2288  /* True if VALUE is a signed 16-bit number.  */
    2289  
    2290  #define SMALL_OPERAND(VALUE) \
    2291    ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
    2292  
    2293  /* True if VALUE is an unsigned 16-bit number.  */
    2294  
    2295  #define SMALL_OPERAND_UNSIGNED(VALUE) \
    2296    (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
    2297  
    2298  /* True if VALUE can be loaded into a register using LUI.  */
    2299  
    2300  #define LUI_OPERAND(VALUE)					\
    2301    (((VALUE) | 0x7fff0000) == 0x7fff0000				\
    2302     || ((unsigned HOST_WIDE_INT) (VALUE) | 0x7fff0000) + 0x10000 == 0)
    2303  
    2304  /* Return a value X with the low 16 bits clear, and such that
    2305     VALUE - X is a signed 16-bit value.  */
    2306  
    2307  #define CONST_HIGH_PART(VALUE) \
    2308    (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
    2309  
    2310  #define CONST_LOW_PART(VALUE) \
    2311    ((VALUE) - CONST_HIGH_PART (VALUE))
    2312  
    2313  #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
    2314  #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
    2315  #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
    2316  #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
    2317  #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
    2318  
    2319  /* The HI and LO registers can only be reloaded via the general
    2320     registers.  Condition code registers can only be loaded to the
    2321     general registers, and from the floating point registers.  */
    2322  
    2323  #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
    2324    mips_secondary_reload_class (CLASS, MODE, X, true)
    2325  #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
    2326    mips_secondary_reload_class (CLASS, MODE, X, false)
    2327  
    2328  /* Return the maximum number of consecutive registers
    2329     needed to represent mode MODE in a register of class CLASS.  */
    2330  
    2331  #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
    2332  
    2333  /* Stack layout; function entry, exit and calling.  */
    2334  
    2335  #define STACK_GROWS_DOWNWARD 1
    2336  
    2337  #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
    2338  			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
    2339  
    2340  /* Size of the area allocated in the frame to save the GP.  */
    2341  
    2342  #define MIPS_GP_SAVE_AREA_SIZE \
    2343    (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
    2344  
    2345  #define RETURN_ADDR_RTX mips_return_addr
    2346  
    2347  /* Mask off the MIPS16 ISA bit in unwind addresses.
    2348  
    2349     The reason for this is a little subtle.  When unwinding a call,
    2350     we are given the call's return address, which on most targets
    2351     is the address of the following instruction.  However, what we
    2352     actually want to find is the EH region for the call itself.
    2353     The target-independent unwind code therefore searches for "RA - 1".
    2354  
    2355     In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
    2356     RA - 1 is therefore the real (even-valued) start of the return
    2357     instruction.  EH region labels are usually odd-valued MIPS16 symbols
    2358     too, so a search for an even address within a MIPS16 region would
    2359     usually work.
    2360  
    2361     However, there is an exception.  If the end of an EH region is also
    2362     the end of a function, the end label is allowed to be even.  This is
    2363     necessary because a following non-MIPS16 function may also need EH
    2364     information for its first instruction.
    2365  
    2366     Thus a MIPS16 region may be terminated by an ISA-encoded or a
    2367     non-ISA-encoded address.  This probably isn't ideal, but it is
    2368     the traditional (legacy) behavior.  It is therefore only safe
    2369     to search MIPS EH regions for an _odd-valued_ address.
    2370  
    2371     Masking off the ISA bit means that the target-independent code
    2372     will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
    2373  #define MASK_RETURN_ADDR GEN_INT (-2)
    2374  
    2375  
    2376  /* Similarly, don't use the least-significant bit to tell pointers to
    2377     code from vtable index.  */
    2378  
    2379  #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
    2380  
    2381  /* The eliminations to $17 are only used for mips16 code.  See the
    2382     definition of HARD_FRAME_POINTER_REGNUM.  */
    2383  
    2384  #define ELIMINABLE_REGS							\
    2385  {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
    2386   { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
    2387   { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
    2388   { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
    2389   { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
    2390   { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
    2391  
    2392  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
    2393    (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
    2394  
    2395  /* Allocate stack space for arguments at the beginning of each function.  */
    2396  #define ACCUMULATE_OUTGOING_ARGS 1
    2397  
    2398  /* The argument pointer always points to the first argument.  */
    2399  #define FIRST_PARM_OFFSET(FNDECL) 0
    2400  
    2401  /* o32 and o64 reserve stack space for all argument registers.  */
    2402  #define REG_PARM_STACK_SPACE(FNDECL) 			\
    2403    (TARGET_OLDABI					\
    2404     ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
    2405     : 0)
    2406  
    2407  /* Define this if it is the responsibility of the caller to
    2408     allocate the area reserved for arguments passed in registers.
    2409     If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
    2410     of this macro is to determine whether the space is included in
    2411     `crtl->outgoing_args_size'.  */
    2412  #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
    2413  
    2414  #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
    2415  
    2416  /* Symbolic macros for the registers used to return integer and floating
    2417     point values.  */
    2418  
    2419  #define GP_RETURN (GP_REG_FIRST + 2)
    2420  #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
    2421  
    2422  #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
    2423  
    2424  /* Symbolic macros for the first/last argument registers.  */
    2425  
    2426  #define GP_ARG_FIRST (GP_REG_FIRST + 4)
    2427  #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
    2428  #define FP_ARG_FIRST (FP_REG_FIRST + 12)
    2429  #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
    2430  
    2431  /* True if MODE is vector and supported in a MSA vector register.  */
    2432  #define MSA_SUPPORTED_MODE_P(MODE)			\
    2433    (ISA_HAS_MSA						\
    2434     && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG		\
    2435     && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT		\
    2436         || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
    2437  
    2438  /* Temporary register that is used when restoring $gp after a call.  $4 and $5
    2439     are used for returning complex double values in soft-float code, so $6 is the
    2440     first suitable candidate for TARGET_MIPS16.  For !TARGET_MIPS16 we can use
    2441     $gp itself as the temporary.  */
    2442  #define POST_CALL_TMP_REG \
    2443    (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
    2444  
    2445  /* 1 if N is a possible register number for function argument passing.
    2446     We have no FP argument registers when soft-float.  Special handling
    2447     is required for O32 where only even numbered registers are used for
    2448     O32-FPXX and O32-FP64.  */
    2449  
    2450  #define FUNCTION_ARG_REGNO_P(N)					\
    2451    ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
    2452      || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) 		\
    2453          && (mips_abi != ABI_32 					\
    2454              || TARGET_FLOAT32 					\
    2455              || ((N) % 2 == 0))))				\
    2456     && !fixed_regs[N])
    2457  
    2458  /* This structure has to cope with two different argument allocation
    2459     schemes.  Most MIPS ABIs view the arguments as a structure, of which
    2460     the first N words go in registers and the rest go on the stack.  If I
    2461     < N, the Ith word might go in Ith integer argument register or in a
    2462     floating-point register.  For these ABIs, we only need to remember
    2463     the offset of the current argument into the structure.
    2464  
    2465     The EABI instead allocates the integer and floating-point arguments
    2466     separately.  The first N words of FP arguments go in FP registers,
    2467     the rest go on the stack.  Likewise, the first N words of the other
    2468     arguments go in integer registers, and the rest go on the stack.  We
    2469     need to maintain three counts: the number of integer registers used,
    2470     the number of floating-point registers used, and the number of words
    2471     passed on the stack.
    2472  
    2473     We could keep separate information for the two ABIs (a word count for
    2474     the standard ABIs, and three separate counts for the EABI).  But it
    2475     seems simpler to view the standard ABIs as forms of EABI that do not
    2476     allocate floating-point registers.
    2477  
    2478     So for the standard ABIs, the first N words are allocated to integer
    2479     registers, and mips_function_arg decides on an argument-by-argument
    2480     basis whether that argument should really go in an integer register,
    2481     or in a floating-point one.  */
    2482  
    2483  typedef struct mips_args {
    2484    /* Always true for varargs functions.  Otherwise true if at least
    2485       one argument has been passed in an integer register.  */
    2486    int gp_reg_found;
    2487  
    2488    /* The number of arguments seen so far.  */
    2489    unsigned int arg_number;
    2490  
    2491    /* The number of integer registers used so far.  For all ABIs except
    2492       EABI, this is the number of words that have been added to the
    2493       argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
    2494    unsigned int num_gprs;
    2495  
    2496    /* For EABI, the number of floating-point registers used so far.  */
    2497    unsigned int num_fprs;
    2498  
    2499    /* The number of words passed on the stack.  */
    2500    unsigned int stack_words;
    2501  
    2502    /* On the mips16, we need to keep track of which floating point
    2503       arguments were passed in general registers, but would have been
    2504       passed in the FP regs if this were a 32-bit function, so that we
    2505       can move them to the FP regs if we wind up calling a 32-bit
    2506       function.  We record this information in fp_code, encoded in base
    2507       four.  A zero digit means no floating point argument, a one digit
    2508       means an SFmode argument, and a two digit means a DFmode argument,
    2509       and a three digit is not used.  The low order digit is the first
    2510       argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
    2511       an SFmode argument.  ??? A more sophisticated approach will be
    2512       needed if MIPS_ABI != ABI_32.  */
    2513    int fp_code;
    2514  
    2515    /* True if the function has a prototype.  */
    2516    int prototype;
    2517  } CUMULATIVE_ARGS;
    2518  
    2519  /* Initialize a variable CUM of type CUMULATIVE_ARGS
    2520     for a call to a function whose data type is FNTYPE.
    2521     For a library call, FNTYPE is 0.  */
    2522  
    2523  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
    2524    mips_init_cumulative_args (&CUM, FNTYPE)
    2525  
    2526  #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
    2527    (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
    2528  
    2529  /* True if using EABI and varargs can be passed in floating-point
    2530     registers.  Under these conditions, we need a more complex form
    2531     of va_list, which tracks GPR, FPR and stack arguments separately.  */
    2532  #define EABI_FLOAT_VARARGS_P \
    2533  	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
    2534  
    2535  
    2536  #define EPILOGUE_USES(REGNO)	mips_epilogue_uses (REGNO)
    2537  
    2538  /* Treat LOC as a byte offset from the stack pointer and round it up
    2539     to the next fully-aligned offset.  */
    2540  #define MIPS_STACK_ALIGN(LOC) \
    2541    (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
    2542  
    2543  
    2544  /* Output assembler code to FILE to increment profiler label # LABELNO
    2545     for profiling a function entry.  */
    2546  
    2547  #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
    2548  
    2549  /* The profiler preserves all interesting registers, including $31.  */
    2550  #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
    2551  
    2552  /* No mips port has ever used the profiler counter word, so don't emit it
    2553     or the label for it.  */
    2554  
    2555  #define NO_PROFILE_COUNTERS 1
    2556  
    2557  /* Define this macro if the code for function profiling should come
    2558     before the function prologue.  Normally, the profiling code comes
    2559     after.  */
    2560  
    2561  /* #define PROFILE_BEFORE_PROLOGUE */
    2562  
    2563  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
    2564     the stack pointer does not matter.  The value is tested only in
    2565     functions that have frame pointers.
    2566     No definition is equivalent to always zero.  */
    2567  
    2568  #define EXIT_IGNORE_STACK 1
    2569  
    2570  
    2571  /* Trampolines are a block of code followed by two pointers.  */
    2572  
    2573  #define TRAMPOLINE_SIZE \
    2574    (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
    2575  
    2576  /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
    2577     pointers from a single LUI base.  */
    2578  
    2579  #define TRAMPOLINE_ALIGNMENT 64
    2580  
    2581  /* mips_trampoline_init calls this library function to flush
    2582     program and data caches.  */
    2583  
    2584  #ifndef CACHE_FLUSH_FUNC
    2585  #define CACHE_FLUSH_FUNC "_flush_cache"
    2586  #endif
    2587  
    2588  #define MIPS_ICACHE_SYNC(ADDR, SIZE)					\
    2589    /* Flush both caches.  We need to flush the data cache in case	\
    2590       the system has a write-back cache.  */				\
    2591    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),	\
    2592  		     LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode,	\
    2593  		     GEN_INT (3), TYPE_MODE (integer_type_node))
    2594  
    2595  
    2596  /* Addressing modes, and classification of registers for them.  */
    2597  
    2598  #define REGNO_OK_FOR_INDEX_P(REGNO) 0
    2599  #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
    2600    mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
    2601  
    2602  /* Maximum number of registers that can appear in a valid memory address.  */
    2603  
    2604  #define MAX_REGS_PER_ADDRESS 1
    2605  
    2606  /* Check for constness inline but use mips_legitimate_address_p
    2607     to check whether a constant really is an address.  */
    2608  
    2609  #define CONSTANT_ADDRESS_P(X) \
    2610    (CONSTANT_P (X) && memory_address_p (SImode, X))
    2611  
    2612  /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
    2613     'the start of the function that this code is output in'.  */
    2614  
    2615  #define ASM_OUTPUT_LABELREF(FILE,NAME)					\
    2616    do {									\
    2617      if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)			\
    2618        asm_fprintf ((FILE), "%U%s",					\
    2619  		   XSTR (XEXP (DECL_RTL (current_function_decl),	\
    2620  			       0), 0));					\
    2621      else								\
    2622        asm_fprintf ((FILE), "%U%s", (NAME));				\
    2623    } while (0)
    2624  
    2625  /* Flag to mark a function decl symbol that requires a long call.  */
    2626  #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
    2627  #define SYMBOL_REF_LONG_CALL_P(X)					\
    2628    ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
    2629  
    2630  /* This flag marks functions that cannot be lazily bound.  */
    2631  #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
    2632  #define SYMBOL_REF_BIND_NOW_P(RTX) \
    2633    ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
    2634  
    2635  /* True if we're generating a form of MIPS16 code in which jump tables
    2636     are stored in the text section and encoded as 16-bit PC-relative
    2637     offsets.  This is only possible when general text loads are allowed,
    2638     since the table access itself will be an "lh" instruction.  If the
    2639     PC-relative offsets grow too large, 32-bit offsets are used instead.  */
    2640  #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
    2641  
    2642  #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
    2643  
    2644  #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
    2645  
    2646  /* Only use short offsets if their range will not overflow.  */
    2647  #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
    2648    (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
    2649     : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
    2650     : SImode)
    2651  
    2652  #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
    2653  
    2654  /* Define this as 1 if `char' should by default be signed; else as 0.  */
    2655  #ifndef DEFAULT_SIGNED_CHAR
    2656  #define DEFAULT_SIGNED_CHAR 1
    2657  #endif
    2658  
    2659  /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
    2660     we generally don't want to use them for copying arbitrary data.
    2661     A single N-word move is usually the same cost as N single-word moves.  */
    2662  #define MOVE_MAX UNITS_PER_WORD
    2663  /* We don't modify it for MSA as it is only used by the classic reload.  */
    2664  #define MAX_MOVE_MAX 8
    2665  
    2666  /* Define this macro as a C expression which is nonzero if
    2667     accessing less than a word of memory (i.e. a `char' or a
    2668     `short') is no faster than accessing a word of memory, i.e., if
    2669     such access require more than one instruction or if there is no
    2670     difference in cost between byte and (aligned) word loads.
    2671  
    2672     On RISC machines, it tends to generate better code to define
    2673     this as 1, since it avoids making a QI or HI mode register.
    2674  
    2675     But, generating word accesses for -mips16 is generally bad as shifts
    2676     (often extended) would be needed for byte accesses.  */
    2677  #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
    2678  
    2679  /* Standard MIPS integer shifts truncate the shift amount to the
    2680     width of the shifted operand.  However, Loongson MMI shifts
    2681     do not truncate the shift amount at all.  */
    2682  #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI)
    2683  
    2684  
    2685  /* Specify the machine mode that pointers have.
    2686     After generation of rtl, the compiler makes no further distinction
    2687     between pointers and any other objects of this machine mode.  */
    2688  
    2689  #ifndef Pmode
    2690  #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
    2691  #endif
    2692  
    2693  /* Give call MEMs SImode since it is the "most permissive" mode
    2694     for both 32-bit and 64-bit targets.  */
    2695  
    2696  #define FUNCTION_MODE SImode
    2697  
    2698  
    2699  /* We allocate $fcc registers by hand and can't cope with moves of
    2700     CCmode registers to and from pseudos (or memory).  */
    2701  #define AVOID_CCMODE_COPIES
    2702  
    2703  /* A C expression for the cost of a branch instruction.  A value of
    2704     1 is the default; other values are interpreted relative to that.  */
    2705  
    2706  #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
    2707  #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
    2708  
    2709  /* The MIPS port has several functions that return an instruction count.
    2710     Multiplying the count by this value gives the number of bytes that
    2711     the instructions occupy.  */
    2712  #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
    2713  
    2714  /* The length of a NOP in bytes.  */
    2715  #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
    2716  
    2717  /* If defined, modifies the length assigned to instruction INSN as a
    2718     function of the context in which it is used.  LENGTH is an lvalue
    2719     that contains the initially computed length of the insn and should
    2720     be updated with the correct length of the insn.  */
    2721  #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
    2722    ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
    2723  
    2724  /* Return the asm template for a non-MIPS16 conditional branch instruction.
    2725     OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
    2726     its operands.  */
    2727  #define MIPS_BRANCH(OPCODE, OPERANDS) \
    2728    "%*" OPCODE "%?\t" OPERANDS "%/"
    2729  
    2730  #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
    2731    "%*" OPCODE "%:\t" OPERANDS
    2732  
    2733  /* Return an asm string that forces INSN to be treated as an absolute
    2734     J or JAL instruction instead of an assembler macro.  */
    2735  #define MIPS_ABSOLUTE_JUMP(INSN) \
    2736    (TARGET_ABICALLS_PIC2						\
    2737     ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"		\
    2738     : INSN)
    2739  
    2740  
    2741  /* Control the assembler format that we output.  */
    2742  
    2743  /* Output to assembler file text saying following lines
    2744     may contain character constants, extra white space, comments, etc.  */
    2745  
    2746  #ifndef ASM_APP_ON
    2747  #define ASM_APP_ON " #APP\n"
    2748  #endif
    2749  
    2750  /* Output to assembler file text saying following lines
    2751     no longer contain unusual constructs.  */
    2752  
    2753  #ifndef ASM_APP_OFF
    2754  #define ASM_APP_OFF " #NO_APP\n"
    2755  #endif
    2756  
    2757  #define REGISTER_NAMES							   \
    2758  { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
    2759    "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
    2760    "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
    2761    "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
    2762    "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
    2763    "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
    2764    "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
    2765    "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
    2766    "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
    2767    "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",	   \
    2768    "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
    2769    "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
    2770    "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
    2771    "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
    2772    "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
    2773    "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
    2774    "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
    2775    "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
    2776    "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
    2777    "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
    2778    "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
    2779    "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
    2780    "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
    2781    "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
    2782  
    2783  /* List the "software" names for each register.  Also list the numerical
    2784     names for $fp and $sp.  */
    2785  
    2786  #define ADDITIONAL_REGISTER_NAMES					\
    2787  {									\
    2788    { "$29",	29 + GP_REG_FIRST },					\
    2789    { "$30",	30 + GP_REG_FIRST },					\
    2790    { "at",	 1 + GP_REG_FIRST },					\
    2791    { "v0",	 2 + GP_REG_FIRST },					\
    2792    { "v1",	 3 + GP_REG_FIRST },					\
    2793    { "a0",	 4 + GP_REG_FIRST },					\
    2794    { "a1",	 5 + GP_REG_FIRST },					\
    2795    { "a2",	 6 + GP_REG_FIRST },					\
    2796    { "a3",	 7 + GP_REG_FIRST },					\
    2797    { "t0",	 8 + GP_REG_FIRST },					\
    2798    { "t1",	 9 + GP_REG_FIRST },					\
    2799    { "t2",	10 + GP_REG_FIRST },					\
    2800    { "t3",	11 + GP_REG_FIRST },					\
    2801    { "t4",	12 + GP_REG_FIRST },					\
    2802    { "t5",	13 + GP_REG_FIRST },					\
    2803    { "t6",	14 + GP_REG_FIRST },					\
    2804    { "t7",	15 + GP_REG_FIRST },					\
    2805    { "s0",	16 + GP_REG_FIRST },					\
    2806    { "s1",	17 + GP_REG_FIRST },					\
    2807    { "s2",	18 + GP_REG_FIRST },					\
    2808    { "s3",	19 + GP_REG_FIRST },					\
    2809    { "s4",	20 + GP_REG_FIRST },					\
    2810    { "s5",	21 + GP_REG_FIRST },					\
    2811    { "s6",	22 + GP_REG_FIRST },					\
    2812    { "s7",	23 + GP_REG_FIRST },					\
    2813    { "t8",	24 + GP_REG_FIRST },					\
    2814    { "t9",	25 + GP_REG_FIRST },					\
    2815    { "k0",	26 + GP_REG_FIRST },					\
    2816    { "k1",	27 + GP_REG_FIRST },					\
    2817    { "gp",	28 + GP_REG_FIRST },					\
    2818    { "sp",	29 + GP_REG_FIRST },					\
    2819    { "fp",	30 + GP_REG_FIRST },					\
    2820    { "ra",	31 + GP_REG_FIRST },					\
    2821    { "$w0",	 0 + FP_REG_FIRST },					\
    2822    { "$w1",	 1 + FP_REG_FIRST },					\
    2823    { "$w2",	 2 + FP_REG_FIRST },					\
    2824    { "$w3",	 3 + FP_REG_FIRST },					\
    2825    { "$w4",	 4 + FP_REG_FIRST },					\
    2826    { "$w5",	 5 + FP_REG_FIRST },					\
    2827    { "$w6",	 6 + FP_REG_FIRST },					\
    2828    { "$w7",	 7 + FP_REG_FIRST },					\
    2829    { "$w8",	 8 + FP_REG_FIRST },					\
    2830    { "$w9",	 9 + FP_REG_FIRST },					\
    2831    { "$w10",	10 + FP_REG_FIRST },					\
    2832    { "$w11",	11 + FP_REG_FIRST },					\
    2833    { "$w12",	12 + FP_REG_FIRST },					\
    2834    { "$w13",	13 + FP_REG_FIRST },					\
    2835    { "$w14",	14 + FP_REG_FIRST },					\
    2836    { "$w15",	15 + FP_REG_FIRST },					\
    2837    { "$w16",	16 + FP_REG_FIRST },					\
    2838    { "$w17",	17 + FP_REG_FIRST },					\
    2839    { "$w18",	18 + FP_REG_FIRST },					\
    2840    { "$w19",	19 + FP_REG_FIRST },					\
    2841    { "$w20",	20 + FP_REG_FIRST },					\
    2842    { "$w21",	21 + FP_REG_FIRST },					\
    2843    { "$w22",	22 + FP_REG_FIRST },					\
    2844    { "$w23",	23 + FP_REG_FIRST },					\
    2845    { "$w24",	24 + FP_REG_FIRST },					\
    2846    { "$w25",	25 + FP_REG_FIRST },					\
    2847    { "$w26",	26 + FP_REG_FIRST },					\
    2848    { "$w27",	27 + FP_REG_FIRST },					\
    2849    { "$w28",	28 + FP_REG_FIRST },					\
    2850    { "$w29",	29 + FP_REG_FIRST },					\
    2851    { "$w30",	30 + FP_REG_FIRST },					\
    2852    { "$w31",	31 + FP_REG_FIRST }					\
    2853  }
    2854  
    2855  #define DBR_OUTPUT_SEQEND(STREAM)					\
    2856  do									\
    2857    {									\
    2858      /* Undo the effect of '%*'.  */					\
    2859      mips_pop_asm_switch (&mips_nomacro);				\
    2860      mips_pop_asm_switch (&mips_noreorder);				\
    2861      /* Emit a blank line after the delay slot for emphasis.  */		\
    2862      fputs ("\n", STREAM);						\
    2863    }									\
    2864  while (0)
    2865  
    2866  /* The MIPS implementation uses some labels for its own purpose.  The
    2867     following lists what labels are created, and are all formed by the
    2868     pattern $L[a-z].*.  The machine independent portion of GCC creates
    2869     labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
    2870  
    2871  	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
    2872  	$Lb[0-9]+	Begin blocks for MIPS debug support
    2873  	$Lc[0-9]+	Label for use in s<xx> operation.
    2874  	$Le[0-9]+	End blocks for MIPS debug support  */
    2875  
    2876  #undef ASM_DECLARE_OBJECT_NAME
    2877  #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
    2878    mips_declare_object (STREAM, NAME, "", ":\n")
    2879  
    2880  /* Globalizing directive for a label.  */
    2881  #define GLOBAL_ASM_OP "\t.globl\t"
    2882  
    2883  /* This says how to define a global common symbol.  */
    2884  
    2885  #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
    2886  
    2887  /* This says how to define a local common symbol (i.e., not visible to
    2888     linker).  */
    2889  
    2890  #ifndef ASM_OUTPUT_ALIGNED_LOCAL
    2891  #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
    2892    mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
    2893  #endif
    2894  
    2895  /* This says how to output an external.  It would be possible not to
    2896     output anything and let undefined symbol become external. However
    2897     the assembler uses length information on externals to allocate in
    2898     data/sdata bss/sbss, thereby saving exec time.  */
    2899  
    2900  #undef ASM_OUTPUT_EXTERNAL
    2901  #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
    2902    mips_output_external(STREAM,DECL,NAME)
    2903  
    2904  /* This is how to declare a function name.  The actual work of
    2905     emitting the label is moved to function_prologue, so that we can
    2906     get the line number correctly emitted before the .ent directive,
    2907     and after any .file directives.  Define as empty so that the function
    2908     is not declared before the .ent directive elsewhere.  */
    2909  
    2910  #undef ASM_DECLARE_FUNCTION_NAME
    2911  #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
    2912  
    2913  /* This is how to store into the string LABEL
    2914     the symbol_ref name of an internal numbered label where
    2915     PREFIX is the class of label and NUM is the number within the class.
    2916     This is suitable for output with `assemble_name'.  */
    2917  
    2918  #undef ASM_GENERATE_INTERNAL_LABEL
    2919  #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
    2920    sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
    2921  
    2922  /* Print debug labels as "foo = ." rather than "foo:" because they should
    2923     represent a byte pointer rather than an ISA-encoded address.  This is
    2924     particularly important for code like:
    2925  
    2926  	$LFBxxx = .
    2927  		.cfi_startproc
    2928  		...
    2929  		.section .gcc_except_table,...
    2930  		...
    2931  		.uleb128 foo-$LFBxxx
    2932  
    2933     The .uleb128 requies $LFBxxx to match the FDE start address, which is
    2934     likewise a byte pointer rather than an ISA-encoded address.
    2935  
    2936     At the time of writing, this hook is not used for the function end
    2937     label:
    2938  
    2939     	$LFExxx:
    2940  		.end foo
    2941  
    2942     But this doesn't matter, because GAS doesn't treat a pre-.end label
    2943     as a MIPS16 one anyway.  */
    2944  
    2945  #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)			\
    2946    fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
    2947  
    2948  /* This is how to output an element of a case-vector that is absolute.  */
    2949  
    2950  #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
    2951    fprintf (STREAM, "\t%s\t%sL%d\n",					\
    2952  	   ptr_mode == DImode ? ".dword" : ".word",			\
    2953  	   LOCAL_LABEL_PREFIX,						\
    2954  	   VALUE)
    2955  
    2956  /* This is how to output an element of a case-vector.  We can make the
    2957     entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
    2958     is supported.  */
    2959  
    2960  #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
    2961  do {									\
    2962    if (TARGET_MIPS16_SHORT_JUMP_TABLES)					\
    2963      {									\
    2964        if (GET_MODE (BODY) == HImode)					\
    2965  	fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",			\
    2966  		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
    2967        else								\
    2968  	fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",			\
    2969  		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
    2970      }									\
    2971    else if (TARGET_GPWORD)						\
    2972      fprintf (STREAM, "\t%s\t%sL%d\n",					\
    2973  	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
    2974  	     LOCAL_LABEL_PREFIX, VALUE);				\
    2975    else if (TARGET_RTP_PIC)						\
    2976      {									\
    2977        /* Make the entry relative to the start of the function.  */	\
    2978        rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);		\
    2979        fprintf (STREAM, "\t%s\t%sL%d-",					\
    2980  	       Pmode == DImode ? ".dword" : ".word",			\
    2981  	       LOCAL_LABEL_PREFIX, VALUE);				\
    2982        assemble_name (STREAM, XSTR (fnsym, 0));				\
    2983        fprintf (STREAM, "\n");						\
    2984      }									\
    2985    else									\
    2986      fprintf (STREAM, "\t%s\t%sL%d\n",					\
    2987  	     ptr_mode == DImode ? ".dword" : ".word",			\
    2988  	     LOCAL_LABEL_PREFIX, VALUE);				\
    2989  } while (0)
    2990  
    2991  /* Mark inline jump tables as data for the purpose of disassembly.  For
    2992     simplicity embed the jump table's label number in the local symbol
    2993     produced so that multiple jump tables within a single function end
    2994     up marked with unique symbols.  Retain the alignment setting from
    2995     `elfos.h' as we are replacing the definition from there.  */
    2996  
    2997  #undef ASM_OUTPUT_BEFORE_CASE_LABEL
    2998  #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE)	\
    2999    do									\
    3000      {									\
    3001        ASM_OUTPUT_ALIGN ((STREAM), 2);					\
    3002        if (JUMP_TABLES_IN_TEXT_SECTION)					\
    3003  	mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE);	\
    3004      }									\
    3005    while (0)
    3006  
    3007  /* Reset text marking to code after an inline jump table.  Like with
    3008     the beginning of a jump table use the label number to keep symbols
    3009     unique.  */
    3010  
    3011  #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE)				\
    3012    do									\
    3013      if (JUMP_TABLES_IN_TEXT_SECTION)					\
    3014        mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE);	\
    3015    while (0)
    3016  
    3017  /* This is how to output an assembler line
    3018     that says to advance the location counter
    3019     to a multiple of 2**LOG bytes.  */
    3020  
    3021  #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
    3022    fprintf (STREAM, "\t.align\t%d\n", (LOG))
    3023  
    3024  /* This is how to output an assembler line to advance the location
    3025     counter by SIZE bytes.  */
    3026  
    3027  #undef ASM_OUTPUT_SKIP
    3028  #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
    3029    fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
    3030  
    3031  /* This is how to output a string.  */
    3032  #undef ASM_OUTPUT_ASCII
    3033  #define ASM_OUTPUT_ASCII mips_output_ascii
    3034  
    3035  
    3036  /* Default to -G 8 */
    3037  #ifndef MIPS_DEFAULT_GVALUE
    3038  #define MIPS_DEFAULT_GVALUE 8
    3039  #endif
    3040  
    3041  /* Define the strings to put out for each section in the object file.  */
    3042  #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
    3043  #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
    3044  
    3045  #undef READONLY_DATA_SECTION_ASM_OP
    3046  #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
    3047  
    3048  #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
    3049  do									\
    3050    {									\
    3051      fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
    3052  	     TARGET_64BIT ? "daddiu" : "addiu",				\
    3053  	     reg_names[STACK_POINTER_REGNUM],				\
    3054  	     reg_names[STACK_POINTER_REGNUM],				\
    3055  	     TARGET_64BIT ? "sd" : "sw",				\
    3056  	     reg_names[REGNO],						\
    3057  	     reg_names[STACK_POINTER_REGNUM]);				\
    3058    }									\
    3059  while (0)
    3060  
    3061  #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
    3062  do									\
    3063    {									\
    3064      mips_push_asm_switch (&mips_noreorder);				\
    3065      fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
    3066  	     TARGET_64BIT ? "ld" : "lw",				\
    3067  	     reg_names[REGNO],						\
    3068  	     reg_names[STACK_POINTER_REGNUM],				\
    3069  	     TARGET_64BIT ? "daddu" : "addu",				\
    3070  	     reg_names[STACK_POINTER_REGNUM],				\
    3071  	     reg_names[STACK_POINTER_REGNUM]);				\
    3072      mips_pop_asm_switch (&mips_noreorder);				\
    3073    }									\
    3074  while (0)
    3075  
    3076  /* How to start an assembler comment.
    3077     The leading space is important (the mips native assembler requires it).  */
    3078  #ifndef ASM_COMMENT_START
    3079  #define ASM_COMMENT_START " #"
    3080  #endif
    3081  
    3082  #undef SIZE_TYPE
    3083  #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
    3084  
    3085  #undef PTRDIFF_TYPE
    3086  #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
    3087  
    3088  /* The minimum alignment of any expanded block move.  */
    3089  #define MIPS_MIN_MOVE_MEM_ALIGN 16
    3090  
    3091  /* The maximum number of bytes that can be copied by one iteration of
    3092     a cpymemsi loop; see mips_block_move_loop.  */
    3093  #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
    3094    (UNITS_PER_WORD * 4)
    3095  
    3096  /* The maximum number of bytes that can be copied by a straight-line
    3097     implementation of cpymemsi; see mips_block_move_straight.  We want
    3098     to make sure that any loop-based implementation will iterate at
    3099     least twice.  */
    3100  #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
    3101    (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
    3102  
    3103  /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
    3104     values were determined experimentally by benchmarking with CSiBE.
    3105     In theory, the call overhead is higher for TARGET_ABICALLS (especially
    3106     for o32 where we have to restore $gp afterwards as well as make an
    3107     indirect call), but in practice, bumping this up higher for
    3108     TARGET_ABICALLS doesn't make much difference to code size.  */
    3109  
    3110  #define MIPS_CALL_RATIO 8
    3111  
    3112  /* Any loop-based implementation of cpymemsi will have at least
    3113     MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
    3114     moves, so allow individual copies of fewer elements.
    3115  
    3116     When cpymemsi is not available, use a value approximating
    3117     the length of a memcpy call sequence, so that move_by_pieces
    3118     will generate inline code if it is shorter than a function call.
    3119     Since move_by_pieces_ninsns counts memory-to-memory moves, but
    3120     we'll have to generate a load/store pair for each, halve the
    3121     value of MIPS_CALL_RATIO to take that into account.  */
    3122  
    3123  #define MOVE_RATIO(speed)				\
    3124    (HAVE_cpymemsi					\
    3125     ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX		\
    3126     : MIPS_CALL_RATIO / 2)
    3127  
    3128  /* For CLEAR_RATIO, when optimizing for size, give a better estimate
    3129     of the length of a memset call, but use the default otherwise.  */
    3130  
    3131  #define CLEAR_RATIO(speed)\
    3132    ((speed) ? 15 : MIPS_CALL_RATIO)
    3133  
    3134  /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
    3135     optimizing for size adjust the ratio to account for the overhead of
    3136     loading the constant and replicating it across the word.  */
    3137  
    3138  #define SET_RATIO(speed) \
    3139    ((speed) ? 15 : MIPS_CALL_RATIO - 2)
    3140  
    3141  /* Since the bits of the _init and _fini function is spread across
    3142     many object files, each potentially with its own GP, we must assume
    3143     we need to load our GP.  We don't preserve $gp or $ra, since each
    3144     init/fini chunk is supposed to initialize $gp, and crti/crtn
    3145     already take care of preserving $ra and, when appropriate, $gp.  */
    3146  #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
    3147  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
    3148     asm (SECTION_OP "\n\
    3149  	.set push\n\
    3150  	.set nomips16\n\
    3151  	.set noreorder\n\
    3152  	bal 1f\n\
    3153  	nop\n\
    3154  1:	.cpload $31\n\
    3155  	.set reorder\n\
    3156  	la $25, " USER_LABEL_PREFIX #FUNC "\n\
    3157  	jalr $25\n\
    3158  	.set pop\n\
    3159  	" TEXT_SECTION_ASM_OP);
    3160  #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
    3161  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
    3162     asm (SECTION_OP "\n\
    3163  	.set push\n\
    3164  	.set nomips16\n\
    3165  	.set noreorder\n\
    3166  	bal 1f\n\
    3167  	nop\n\
    3168  1:	.set reorder\n\
    3169  	.cpsetup $31, $2, 1b\n\
    3170  	la $25, " USER_LABEL_PREFIX #FUNC "\n\
    3171  	jalr $25\n\
    3172  	.set pop\n\
    3173  	" TEXT_SECTION_ASM_OP);
    3174  #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
    3175  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
    3176     asm (SECTION_OP "\n\
    3177  	.set push\n\
    3178  	.set nomips16\n\
    3179  	.set noreorder\n\
    3180  	bal 1f\n\
    3181  	nop\n\
    3182  1:	.set reorder\n\
    3183  	.cpsetup $31, $2, 1b\n\
    3184  	dla $25, " USER_LABEL_PREFIX #FUNC "\n\
    3185  	jalr $25\n\
    3186  	.set pop\n\
    3187  	" TEXT_SECTION_ASM_OP);
    3188  #endif
    3189  
    3190  #ifndef HAVE_AS_TLS
    3191  #define HAVE_AS_TLS 0
    3192  #endif
    3193  
    3194  #ifndef HAVE_AS_NAN
    3195  #define HAVE_AS_NAN 0
    3196  #endif
    3197  
    3198  #ifndef USED_FOR_TARGET
    3199  /* Information about ".set noFOO; ...; .set FOO" blocks.  */
    3200  struct mips_asm_switch {
    3201    /* The FOO in the description above.  */
    3202    const char *name;
    3203  
    3204    /* The current block nesting level, or 0 if we aren't in a block.  */
    3205    int nesting_level;
    3206  };
    3207  
    3208  extern const enum reg_class mips_regno_to_class[];
    3209  extern const char *current_function_file; /* filename current function is in */
    3210  extern int num_source_filenames;	/* current .file # */
    3211  extern struct mips_asm_switch mips_noreorder;
    3212  extern struct mips_asm_switch mips_nomacro;
    3213  extern struct mips_asm_switch mips_noat;
    3214  extern int mips_dwarf_regno[];
    3215  extern bool mips_split_p[];
    3216  extern bool mips_split_hi_p[];
    3217  extern bool mips_use_pcrel_pool_p[];
    3218  extern const char *mips_lo_relocs[];
    3219  extern const char *mips_hi_relocs[];
    3220  extern enum processor mips_arch;        /* which cpu to codegen for */
    3221  extern enum processor mips_tune;        /* which cpu to schedule for */
    3222  extern int mips_isa;			/* architectural level */
    3223  extern int mips_isa_rev;
    3224  extern const struct mips_cpu_info *mips_arch_info;
    3225  extern const struct mips_cpu_info *mips_tune_info;
    3226  extern unsigned int mips_base_compression_flags;
    3227  extern GTY(()) struct target_globals *mips16_globals;
    3228  extern GTY(()) struct target_globals *micromips_globals;
    3229  
    3230  /* Information about a function's frame layout.  */
    3231  struct GTY(())  mips_frame_info {
    3232    /* The size of the frame in bytes.  */
    3233    HOST_WIDE_INT total_size;
    3234  
    3235    /* The number of bytes allocated to variables.  */
    3236    HOST_WIDE_INT var_size;
    3237  
    3238    /* The number of bytes allocated to outgoing function arguments.  */
    3239    HOST_WIDE_INT args_size;
    3240  
    3241    /* The number of bytes allocated to the .cprestore slot, or 0 if there
    3242       is no such slot.  */
    3243    HOST_WIDE_INT cprestore_size;
    3244  
    3245    /* Bit X is set if the function saves or restores GPR X.  */
    3246    unsigned int mask;
    3247  
    3248    /* Likewise FPR X.  */
    3249    unsigned int fmask;
    3250  
    3251    /* Likewise doubleword accumulator X ($acX).  */
    3252    unsigned int acc_mask;
    3253  
    3254    /* The number of GPRs, FPRs, doubleword accumulators and COP0
    3255       registers saved.  */
    3256    unsigned int num_gp;
    3257    unsigned int num_fp;
    3258    unsigned int num_acc;
    3259    unsigned int num_cop0_regs;
    3260  
    3261    /* The offset of the topmost GPR, FPR, accumulator and COP0-register
    3262       save slots from the top of the frame, or zero if no such slots are
    3263       needed.  */
    3264    HOST_WIDE_INT gp_save_offset;
    3265    HOST_WIDE_INT fp_save_offset;
    3266    HOST_WIDE_INT acc_save_offset;
    3267    HOST_WIDE_INT cop0_save_offset;
    3268  
    3269    /* Likewise, but giving offsets from the bottom of the frame.  */
    3270    HOST_WIDE_INT gp_sp_offset;
    3271    HOST_WIDE_INT fp_sp_offset;
    3272    HOST_WIDE_INT acc_sp_offset;
    3273    HOST_WIDE_INT cop0_sp_offset;
    3274  
    3275    /* Similar, but the value passed to _mcount.  */
    3276    HOST_WIDE_INT ra_fp_offset;
    3277  
    3278    /* The offset of arg_pointer_rtx from the bottom of the frame.  */
    3279    HOST_WIDE_INT arg_pointer_offset;
    3280  
    3281    /* The offset of hard_frame_pointer_rtx from the bottom of the frame.  */
    3282    HOST_WIDE_INT hard_frame_pointer_offset;
    3283  };
    3284  
    3285  /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts.  */
    3286  enum mips_int_mask
    3287  {
    3288    INT_MASK_EIC = -1,
    3289    INT_MASK_SW0 = 0,
    3290    INT_MASK_SW1 = 1,
    3291    INT_MASK_HW0 = 2,
    3292    INT_MASK_HW1 = 3,
    3293    INT_MASK_HW2 = 4,
    3294    INT_MASK_HW3 = 5,
    3295    INT_MASK_HW4 = 6,
    3296    INT_MASK_HW5 = 7
    3297  };
    3298  
    3299  /* Enumeration to mark the existence of the shadow register set.
    3300     SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
    3301     pointer.  */
    3302  enum mips_shadow_set
    3303  {
    3304    SHADOW_SET_NO,
    3305    SHADOW_SET_YES,
    3306    SHADOW_SET_INTSTACK
    3307  };
    3308  
    3309  struct GTY(())  machine_function {
    3310    /* The next floating-point condition-code register to allocate
    3311       for ISA_HAS_8CC targets, relative to ST_REG_FIRST.  */
    3312    unsigned int next_fcc;
    3313  
    3314    /* The register returned by mips16_gp_pseudo_reg; see there for details.  */
    3315    rtx mips16_gp_pseudo_rtx;
    3316  
    3317    /* The number of extra stack bytes taken up by register varargs.
    3318       This area is allocated by the callee at the very top of the frame.  */
    3319    int varargs_size;
    3320  
    3321    /* The current frame information, calculated by mips_compute_frame_info.  */
    3322    struct mips_frame_info frame;
    3323  
    3324    /* The register to use as the function's global pointer, or INVALID_REGNUM
    3325       if the function doesn't need one.  */
    3326    unsigned int global_pointer;
    3327  
    3328    /* How many instructions it takes to load a label into $AT, or 0 if
    3329       this property hasn't yet been calculated.  */
    3330    unsigned int load_label_num_insns;
    3331  
    3332    /* True if mips_adjust_insn_length should ignore an instruction's
    3333       hazard attribute.  */
    3334    bool ignore_hazard_length_p;
    3335  
    3336    /* True if the whole function is suitable for .set noreorder and
    3337       .set nomacro.  */
    3338    bool all_noreorder_p;
    3339  
    3340    /* True if the function has "inflexible" and "flexible" references
    3341       to the global pointer.  See mips_cfun_has_inflexible_gp_ref_p
    3342       and mips_cfun_has_flexible_gp_ref_p for details.  */
    3343    bool has_inflexible_gp_insn_p;
    3344    bool has_flexible_gp_insn_p;
    3345  
    3346    /* True if the function's prologue must load the global pointer
    3347       value into pic_offset_table_rtx and store the same value in
    3348       the function's cprestore slot (if any).  Even if this value
    3349       is currently false, we may decide to set it to true later;
    3350       see mips_must_initialize_gp_p () for details.  */
    3351    bool must_initialize_gp_p;
    3352  
    3353    /* True if the current function must restore $gp after any potential
    3354       clobber.  This value is only meaningful during the first post-epilogue
    3355       split_insns pass; see mips_must_initialize_gp_p () for details.  */
    3356    bool must_restore_gp_when_clobbered_p;
    3357  
    3358    /* True if this is an interrupt handler.  */
    3359    bool interrupt_handler_p;
    3360  
    3361    /* Records the way in which interrupts should be masked.  Only used if
    3362       interrupts are not kept masked.  */
    3363    enum mips_int_mask int_mask;
    3364  
    3365    /* Records if this is an interrupt handler that uses shadow registers.  */
    3366    enum mips_shadow_set use_shadow_register_set;
    3367  
    3368    /* True if this is an interrupt handler that should keep interrupts
    3369       masked.  */
    3370    bool keep_interrupts_masked_p;
    3371  
    3372    /* True if this is an interrupt handler that should use DERET
    3373       instead of ERET.  */
    3374    bool use_debug_exception_return_p;
    3375  
    3376    /* True if at least one of the formal parameters to a function must be
    3377       written to the frame header (probably so its address can be taken).  */
    3378    bool does_not_use_frame_header;
    3379  
    3380    /* True if none of the functions that are called by this function need
    3381       stack space allocated for their arguments.  */
    3382    bool optimize_call_stack;
    3383  
    3384    /* True if one of the functions calling this function may not allocate
    3385       a frame header.  */
    3386    bool callers_may_not_allocate_frame;
    3387  
    3388    /* True if GCC stored callee saved registers in the frame header.  */
    3389    bool use_frame_header_for_callee_saved_regs;
    3390  
    3391    /* True if the function should generate hazard barrier return.  */
    3392    bool use_hazard_barrier_return_p;
    3393  };
    3394  #endif
    3395  
    3396  /* Enable querying of DFA units.  */
    3397  #define CPU_UNITS_QUERY 1
    3398  
    3399  #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
    3400    mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
    3401  
    3402  /* As on most targets, we want the .eh_frame section to be read-only where
    3403     possible.  And as on most targets, this means two things:
    3404  
    3405       (a) Non-locally-binding pointers must have an indirect encoding,
    3406  	 so that the addresses in the .eh_frame section itself become
    3407  	 locally-binding.
    3408  
    3409       (b) A shared library's .eh_frame section must encode locally-binding
    3410  	 pointers in a relative (relocation-free) form.
    3411  
    3412     However, MIPS has traditionally not allowed directives like:
    3413  
    3414  	.long	x-.
    3415  
    3416     in cases where "x" is in a different section, or is not defined in the
    3417     same assembly file.  We are therefore unable to emit the PC-relative
    3418     form required by (b) at assembly time.
    3419  
    3420     Fortunately, the linker is able to convert absolute addresses into
    3421     PC-relative addresses on our behalf.  Unfortunately, only certain
    3422     versions of the linker know how to do this for indirect pointers,
    3423     and for personality data.  We must fall back on using writable
    3424     .eh_frame sections for shared libraries if the linker does not
    3425     support this feature.  */
    3426  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
    3427    (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
    3428  
    3429  /* For switching between MIPS16 and non-MIPS16 modes.  */
    3430  #define SWITCHABLE_TARGET 1
    3431  
    3432  /* Several named MIPS patterns depend on Pmode.  These patterns have the
    3433     form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
    3434     Add the appropriate suffix to generator function NAME and invoke it
    3435     with arguments ARGS.  */
    3436  #define PMODE_INSN(NAME, ARGS) \
    3437    (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
    3438  
    3439  /* If we are *not* using multilibs and the default ABI is not ABI_32 we
    3440     need to change these from /lib and /usr/lib.  */
    3441  #ifndef ENABLE_MULTIARCH
    3442  #if MIPS_ABI_DEFAULT == ABI_N32
    3443  #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
    3444  #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
    3445  #elif MIPS_ABI_DEFAULT == ABI_64
    3446  #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
    3447  #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
    3448  #endif
    3449  #endif
    3450  
    3451  /* Load store bonding is not supported by micromips and fix_24k.  The
    3452     performance can be degraded for those targets.  Hence, do not bond for
    3453     micromips or fix_24k.  */
    3454  #define ENABLE_LD_ST_PAIRS \
    3455    (TARGET_LOAD_STORE_PAIRS \
    3456     && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
    3457     && !TARGET_MICROMIPS && !TARGET_FIX_24K)
    3458  
    3459  #define NEED_INDICATE_EXEC_STACK 0