(root)/
gcc-13.2.0/
gcc/
config/
loongarch/
loongarch.h
       1  /* Definitions of target machine for GNU compiler.  LoongArch version.
       2     Copyright (C) 2021-2023 Free Software Foundation, Inc.
       3     Contributed by Loongson Ltd.
       4     Based on MIPS and RISC-V target for GNU compiler.
       5  
       6  This file is part of GCC.
       7  
       8  GCC is free software; you can redistribute it and/or modify
       9  it under the terms of the GNU General Public License as published by
      10  the Free Software Foundation; either version 3, or (at your option)
      11  any later version.
      12  
      13  GCC is distributed in the hope that it will be useful,
      14  but WITHOUT ANY WARRANTY; without even the implied warranty of
      15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16  GNU General Public License for more details.
      17  
      18  You should have received a copy of the GNU General Public License
      19  along with GCC; see the file COPYING3.  If not see
      20  <http://www.gnu.org/licenses/>.  */
      21  
      22  /* LoongArch external variables defined in loongarch.cc.  */
      23  
      24  #include "config/loongarch/loongarch-opts.h"
      25  
      26  /* Macros to silence warnings about numbers being signed in traditional
      27     C and unsigned in ISO C when compiled on 32-bit hosts.  */
      28  
      29  #define BITMASK_HIGH (((unsigned long) 1) << 31) /* 0x80000000  */
      30  
      31  /* Run-time compilation parameters selecting different hardware subsets.  */
      32  
      33  /* Target CPU builtins.  */
      34  #define TARGET_CPU_CPP_BUILTINS() loongarch_cpu_cpp_builtins (pfile)
      35  
      36  /* Default target_flags if no switches are specified.  */
      37  
      38  #ifdef IN_LIBGCC2
      39  #undef TARGET_64BIT
      40  /* Make this compile time constant for libgcc2.  */
      41  #ifdef __loongarch64
      42  #define TARGET_64BIT 1
      43  #else
      44  #define TARGET_64BIT 0
      45  #endif
      46  #endif /* IN_LIBGCC2  */
      47  
      48  #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
      49  
      50  /* Driver native functions for SPEC processing in the GCC driver.  */
      51  #include "loongarch-driver.h"
      52  
      53  /* This definition replaces the formerly used 'm' constraint with a
      54     different constraint letter in order to avoid changing semantics of
      55     the 'm' constraint when accepting new address formats in
      56     TARGET_LEGITIMATE_ADDRESS_P.  The constraint letter defined here
      57     must not be used in insn definitions or inline assemblies.  */
      58  #define TARGET_MEM_CONSTRAINT 'w'
      59  
      60  /* Tell collect what flags to pass to nm.  */
      61  #ifndef NM_FLAGS
      62  #define NM_FLAGS "-Bn"
      63  #endif
      64  
      65  /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
      66     overridden by subtargets.  */
      67  
      68  #ifndef SUBTARGET_ASM_SPEC
      69  #define SUBTARGET_ASM_SPEC ""
      70  #endif
      71  
      72  #undef ASM_SPEC
      73  #define ASM_SPEC "%{mabi=*} %{subtarget_asm_spec}"
      74  
      75  /* Extra switches sometimes passed to the linker.  */
      76  
      77  #ifndef LINK_SPEC
      78  #define LINK_SPEC ""
      79  #endif /* LINK_SPEC defined  */
      80  
      81  /* Specs for the compiler proper.  */
      82  
      83  /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
      84  
      85  #undef CC1_SPEC
      86  #define CC1_SPEC "\
      87  %{G*} \
      88  %(subtarget_cc1_spec)"
      89  
      90  /* Preprocessor specs.  */
      91  
      92  /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
      93     overridden by subtargets.  */
      94  #ifndef SUBTARGET_CPP_SPEC
      95  #define SUBTARGET_CPP_SPEC ""
      96  #endif
      97  
      98  #define CPP_SPEC "%(subtarget_cpp_spec)"
      99  
     100  /* This macro defines names of additional specifications to put in the specs
     101     that can be used in various specifications like CC1_SPEC.  Its definition
     102     is an initializer with a subgrouping for each command option.
     103  
     104     Each subgrouping contains a string constant, that defines the
     105     specification name, and a string constant that used by the GCC driver
     106     program.
     107  
     108     Do not define this macro if it does not need to do anything.  */
     109  
     110  #define EXTRA_SPECS \
     111    {"subtarget_cc1_spec", SUBTARGET_CC1_SPEC}, \
     112    {"subtarget_cpp_spec", SUBTARGET_CPP_SPEC}, \
     113    {"subtarget_asm_spec", SUBTARGET_ASM_SPEC},
     114  
     115  /* Registers may have a prefix which can be ignored when matching
     116     user asm and register definitions.  */
     117  #ifndef REGISTER_PREFIX
     118  #define REGISTER_PREFIX "$"
     119  #endif
     120  
     121  /* Local compiler-generated symbols must have a prefix that the assembler
     122     understands.  */
     123  
     124  #define LOCAL_LABEL_PREFIX "."
     125  
     126  /* By default on the loongarch, external symbols do not have an underscore
     127     prepended.  */
     128  
     129  #define USER_LABEL_PREFIX ""
     130  
     131  #ifndef PREFERRED_DEBUGGING_TYPE
     132  #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
     133  #endif
     134  
     135  /* The size of DWARF addresses should be the same as the size of symbols
     136     in the target file format.  */
     137  #define DWARF2_ADDR_SIZE (TARGET_64BIT ? 8 : 4)
     138  
     139  /* By default, turn on GDB extensions.  */
     140  #define DEFAULT_GDB_EXTENSIONS 1
     141  
     142  /* By default, produce dwarf version 2 format debugging output in response
     143     to the ā€˜-g’ option.  */
     144  #define DWARF2_DEBUGGING_INFO 1
     145  
     146  /* The mapping from gcc register number to DWARF 2 CFA column number.  */
     147  #define DWARF_FRAME_REGNUM(REGNO) loongarch_dwarf_regno[REGNO]
     148  
     149  /* The DWARF 2 CFA column which tracks the return address.  */
     150  #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
     151  
     152  /* Before the prologue, RA lives in r1.  */
     153  #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
     154  
     155  /* Describe how we implement __builtin_eh_return.  */
     156  #define EH_RETURN_DATA_REGNO(N) \
     157    ((N) < (4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
     158  
     159  #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
     160  
     161  #define EH_USES(N) loongarch_eh_uses (N)
     162  
     163  /* Offsets recorded in opcodes are a multiple of this alignment factor.
     164     The default for this in 64-bit mode is 8, which causes problems with
     165     SFmode register saves.  */
     166  #define DWARF_CIE_DATA_ALIGNMENT -4
     167  
     168  /* Target machine storage layout.  */
     169  
     170  #define BITS_BIG_ENDIAN 0
     171  #define BYTES_BIG_ENDIAN 0
     172  #define WORDS_BIG_ENDIAN 0
     173  
     174  #define MAX_BITS_PER_WORD 64
     175  
     176  /* Width of a word, in units (bytes).  */
     177  #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
     178  #ifndef IN_LIBGCC2
     179  #define MIN_UNITS_PER_WORD 4
     180  #endif
     181  
     182  /* For LARCH, width of a floating point register.  */
     183  #define UNITS_PER_FPREG (TARGET_DOUBLE_FLOAT ? 8 : 4)
     184  
     185  /* The largest size of value that can be held in floating-point
     186     registers and moved with a single instruction.  */
     187  #define UNITS_PER_HWFPVALUE \
     188    (TARGET_SOFT_FLOAT ? 0 : UNITS_PER_FPREG)
     189  
     190  /* The largest size of value that can be held in floating-point
     191     registers.  */
     192  #define UNITS_PER_FPVALUE \
     193    (TARGET_SOFT_FLOAT ? 0 \
     194     : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
     195  			 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
     196  
     197  /* The number of bytes in a double.  */
     198  #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
     199  
     200  /* Set the sizes of the core types.  */
     201  #define SHORT_TYPE_SIZE 16
     202  #define INT_TYPE_SIZE 32
     203  #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
     204  #define LONG_LONG_TYPE_SIZE 64
     205  
     206  #define FLOAT_TYPE_SIZE 32
     207  #define DOUBLE_TYPE_SIZE 64
     208  #define LONG_DOUBLE_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
     209  
     210  /* Define the sizes of fixed-point types.  */
     211  #define SHORT_FRACT_TYPE_SIZE 8
     212  #define FRACT_TYPE_SIZE 16
     213  #define LONG_FRACT_TYPE_SIZE 32
     214  #define LONG_LONG_FRACT_TYPE_SIZE 64
     215  
     216  #define SHORT_ACCUM_TYPE_SIZE 16
     217  #define ACCUM_TYPE_SIZE 32
     218  #define LONG_ACCUM_TYPE_SIZE 64
     219  #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
     220  
     221  /* long double is not a fixed mode, but the idea is that, if we
     222     support long double, we also want a 128-bit integer type.  */
     223  #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
     224  
     225  /* Width in bits of a pointer.  */
     226  #ifndef POINTER_SIZE
     227  #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
     228  #endif
     229  
     230  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     231  #define PARM_BOUNDARY BITS_PER_WORD
     232  
     233  /* Allocation boundary (in *bits*) for the code of a function.  */
     234  #define FUNCTION_BOUNDARY 32
     235  
     236  /* Alignment of field after `int : 0' in a structure.  */
     237  #define EMPTY_FIELD_BOUNDARY 32
     238  
     239  /* Number of bits which any structure or union's size must be a multiple of.
     240     Each structure or union's size is rounded up to a multiple of this.  */
     241  #define STRUCTURE_SIZE_BOUNDARY 8
     242  
     243  /* There is no point aligning anything to a rounder boundary than
     244     LONG_DOUBLE_TYPE_SIZE.  */
     245  #define BIGGEST_ALIGNMENT (LONG_DOUBLE_TYPE_SIZE)
     246  
     247  /* All accesses must be aligned.  */
     248  #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGN)
     249  
     250  /* Define this if you wish to imitate the way many other C compilers
     251     handle alignment of bitfields and the structures that contain
     252     them.
     253  
     254     The behavior is that the type written for a bit-field (`int',
     255     `short', or other integer type) imposes an alignment for the
     256     entire structure, as if the structure really did contain an
     257     ordinary field of that type.  In addition, the bit-field is placed
     258     within the structure so that it would fit within such a field,
     259     not crossing a boundary for it.
     260  
     261     Thus, on most machines, a bit-field whose type is written as `int'
     262     would not cross a four-byte boundary, and would force four-byte
     263     alignment for the whole structure.  (The alignment used may not
     264     be four bytes; it is controlled by the other alignment
     265     parameters.)
     266  
     267     If the macro is defined, its definition should be a C expression;
     268     a nonzero value for the expression enables this behavior.  */
     269  
     270  #define PCC_BITFIELD_TYPE_MATTERS 1
     271  
     272  /* If defined, a C expression to compute the alignment for a static
     273     variable.  TYPE is the data type, and ALIGN is the alignment that
     274     the object would ordinarily have.  The value of this macro is used
     275     instead of that alignment to align the object.
     276  
     277     If this macro is not defined, then ALIGN is used.
     278  
     279     One use of this macro is to increase alignment of medium-size
     280     data to make it all fit in fewer cache lines.  Another is to
     281     cause character arrays to be word-aligned so that `strcpy' calls
     282     that copy constants to character arrays can be done inline.  */
     283  
     284  #undef DATA_ALIGNMENT
     285  #define DATA_ALIGNMENT(TYPE, ALIGN)					\
     286    ((((ALIGN) < BITS_PER_WORD)						\
     287      && (TREE_CODE (TYPE) == ARRAY_TYPE					\
     288  	|| TREE_CODE (TYPE) == UNION_TYPE				\
     289  	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
     290  
     291  /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
     292     character arrays to be word-aligned so that `strcpy' calls that copy
     293     constants to character arrays can be done inline, and 'strcmp' can be
     294     optimised to use word loads.  */
     295  #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
     296  
     297  /* Define if operations between registers always perform the operation
     298     on the full register even if a narrower mode is specified.  */
     299  #define WORD_REGISTER_OPERATIONS 1
     300  
     301  /* When in 64-bit mode, move insns will sign extend SImode and FCCmode
     302     moves.  All other references are zero extended.  */
     303  #define LOAD_EXTEND_OP(MODE) \
     304    (TARGET_64BIT && ((MODE) == SImode || (MODE) == FCCmode) ? SIGN_EXTEND \
     305  							   : ZERO_EXTEND)
     306  
     307  /* Define this macro if it is advisable to hold scalars in registers
     308     in a wider mode than that declared by the program.  In such cases,
     309     the value is constrained to be within the bounds of the declared
     310     type, but kept valid in the wider mode.  The signedness of the
     311     extension may differ from that of the type.  */
     312  
     313  #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
     314    if (GET_MODE_CLASS (MODE) == MODE_INT \
     315        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
     316      { \
     317        if ((MODE) == SImode) \
     318  	(UNSIGNEDP) = 0; \
     319        (MODE) = Pmode; \
     320      }
     321  
     322  /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
     323     Extensions of pointers to word_mode must be signed.  */
     324  #define POINTERS_EXTEND_UNSIGNED false
     325  
     326  /* Define if loading short immediate values into registers sign extends.  */
     327  #define SHORT_IMMEDIATES_SIGN_EXTEND 1
     328  
     329  /* The clz.{w/d} instructions have the natural values at 0.  */
     330  
     331  #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
     332    ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
     333  
     334  /* Standard register usage.  */
     335  
     336  /* Number of hardware registers.  We have:
     337  
     338     - 32 integer registers
     339     - 32 floating point registers
     340     - 8 condition code registers
     341     - 2 fake registers:
     342  	- ARG_POINTER_REGNUM
     343  	- FRAME_POINTER_REGNUM
     344  */
     345  
     346  #define FIRST_PSEUDO_REGISTER 74
     347  
     348  /* zero, tp, sp and x are fixed.  */
     349  #define FIXED_REGISTERS							\
     350  { /* General registers.  */						\
     351    1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     352    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     353    /* Floating-point registers.  */					\
     354    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     355    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     356    /* Others.  */							\
     357    0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
     358  
     359  /* The call RTLs themselves clobber ra.  */
     360  #define CALL_USED_REGISTERS						\
     361  { /* General registers.  */						\
     362    1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
     363    1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
     364    /* Floating-point registers.  */					\
     365    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
     366    1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,			\
     367    /* Others.  */							\
     368    1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
     369  
     370  /* Internal macros to classify a register number as to whether it's a
     371     general purpose register, a floating point register, or a status
     372     register.  */
     373  
     374  #define GP_REG_FIRST 0
     375  #define GP_REG_LAST 31
     376  #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
     377  
     378  #define FP_REG_FIRST 32
     379  #define FP_REG_LAST 63
     380  #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
     381  
     382  /* The DWARF 2 CFA column which tracks the return address from a
     383     signal handler context.  This means that to maintain backwards
     384     compatibility, no hard register can be assigned this column if it
     385     would need to be handled by the DWARF unwinder.  */
     386  #define DWARF_ALT_FRAME_RETURN_COLUMN 72
     387  
     388  #define FCC_REG_FIRST 64
     389  #define FCC_REG_LAST 71
     390  #define FCC_REG_NUM (FCC_REG_LAST - FCC_REG_FIRST + 1)
     391  
     392  #define GP_REG_P(REGNO) \
     393    ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
     394  #define FP_REG_P(REGNO) \
     395    ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
     396  #define FCC_REG_P(REGNO) \
     397    ((unsigned int) ((int) (REGNO) - FCC_REG_FIRST) < FCC_REG_NUM)
     398  
     399  #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
     400  
     401  /* Select a register mode required for caller save of hard regno REGNO.  */
     402  #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
     403    loongarch_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
     404  
     405  /* Register to use for pushing function arguments.  */
     406  #define STACK_POINTER_REGNUM (GP_REG_FIRST + 3)
     407  
     408  /* These two registers don't really exist: they get eliminated to either
     409     the stack or hard frame pointer.  */
     410  #define ARG_POINTER_REGNUM 72
     411  #define FRAME_POINTER_REGNUM 73
     412  
     413  #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 22)
     414  
     415  #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
     416  #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
     417  
     418  /* Register in which static-chain is passed to a function.  */
     419  #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 20) /* $t8  */
     420  
     421  #define GP_TEMP_FIRST (GP_REG_FIRST + 12)
     422  #define LARCH_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
     423  #define LARCH_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST)
     424  #define LARCH_PROLOGUE_TEMP3_REGNUM (GP_TEMP_FIRST + 2)
     425  #define LARCH_EPILOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
     426  
     427  #define CALLEE_SAVED_REG_NUMBER(REGNO) \
     428    ((REGNO) >= 22 && (REGNO) <= 31 ? (REGNO) - 22 : -1)
     429  
     430  #define LARCH_PROLOGUE_TEMP(MODE) \
     431    gen_rtx_REG (MODE, LARCH_PROLOGUE_TEMP_REGNUM)
     432  #define LARCH_PROLOGUE_TEMP2(MODE) \
     433    gen_rtx_REG (MODE, LARCH_PROLOGUE_TEMP2_REGNUM)
     434  #define LARCH_PROLOGUE_TEMP3(MODE) \
     435    gen_rtx_REG (MODE, LARCH_PROLOGUE_TEMP3_REGNUM)
     436  #define LARCH_EPILOGUE_TEMP(MODE) \
     437    gen_rtx_REG (MODE, LARCH_EPILOGUE_TEMP_REGNUM)
     438  
     439  /* Define this macro if it is as good or better to call a constant
     440     function address than to call an address kept in a register.  */
     441  #define NO_FUNCTION_CSE 1
     442  
     443  #define THREAD_POINTER_REGNUM (GP_REG_FIRST + 2)
     444  
     445  /* Define the classes of registers for register constraints in the
     446     machine description.  Also define ranges of constants.
     447  
     448     One of the classes must always be named ALL_REGS and include all hard regs.
     449     If there is more than one class, another class must be named NO_REGS
     450     and contain no registers.
     451  
     452     The name GENERAL_REGS must be the name of a class (or an alias for
     453     another name such as ALL_REGS).  This is the class of registers
     454     that is allowed by "r" in a register constraint.
     455     Also, registers outside this class are allocated only when
     456     instructions express preferences for them.
     457  
     458     The classes must be numbered in nondecreasing order; that is,
     459     a larger-numbered class must never be contained completely
     460     in a smaller-numbered class.
     461  
     462     For any two classes, it is very desirable that there be another
     463     class that represents their union.  */
     464  
     465  enum reg_class
     466  {
     467    NO_REGS,	  /* no registers in set  */
     468    SIBCALL_REGS,	  /* registers used by indirect sibcalls  */
     469    JIRL_REGS,	  /* registers used by indirect calls  */
     470    CSR_REGS,	  /* integer registers except for $r0 and $r1 for lcsr.  */
     471    GR_REGS,	  /* integer registers  */
     472    FP_REGS,	  /* floating point registers  */
     473    FCC_REGS,	  /* status registers (fp status)  */
     474    FRAME_REGS,	  /* arg pointer and frame pointer  */
     475    ALL_REGS,	  /* all registers  */
     476    LIM_REG_CLASSES /* max value + 1  */
     477  };
     478  
     479  #define N_REG_CLASSES (int) LIM_REG_CLASSES
     480  
     481  #define GENERAL_REGS GR_REGS
     482  
     483  /* An initializer containing the names of the register classes as C
     484     string constants.  These names are used in writing some of the
     485     debugging dumps.  */
     486  
     487  #define REG_CLASS_NAMES							\
     488  {									\
     489    "NO_REGS",								\
     490    "SIBCALL_REGS",							\
     491    "JIRL_REGS",								\
     492    "CSR_REGS",								\
     493    "GR_REGS",								\
     494    "FP_REGS",								\
     495    "FCC_REGS",								\
     496    "FRAME_REGS",								\
     497    "ALL_REGS"								\
     498  }
     499  
     500  /* An initializer containing the contents of the register classes,
     501     as integers which are bit masks.  The Nth integer specifies the
     502     contents of class N.  The way the integer MASK is interpreted is
     503     that register R is in the class if `MASK & (1 << R)' is 1.
     504  
     505     When the machine has more than 32 registers, an integer does not
     506     suffice.  Then the integers are replaced by sub-initializers,
     507     braced groupings containing several integers.  Each
     508     sub-initializer must be suitable as an initializer for the type
     509     `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
     510  
     511  #define REG_CLASS_CONTENTS						\
     512  {									\
     513    { 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS  */		\
     514    { 0x001fd000, 0x00000000, 0x00000000 },	/* SIBCALL_REGS  */	\
     515    { 0xff9ffff0, 0x00000000, 0x00000000 },	/* JIRL_REGS  */	\
     516    { 0xfffffffc, 0x00000000, 0x00000000 },	/* CSR_REGS  */		\
     517    { 0xffffffff, 0x00000000, 0x00000000 },	/* GR_REGS  */		\
     518    { 0x00000000, 0xffffffff, 0x00000000 },	/* FP_REGS  */		\
     519    { 0x00000000, 0x00000000, 0x000000ff },	/* FCC_REGS  */		\
     520    { 0x00000000, 0x00000000, 0x00000300 },	/* FRAME_REGS  */	\
     521    { 0xffffffff, 0xffffffff, 0x000003ff }	/* ALL_REGS  */		\
     522  }
     523  
     524  /* A C expression whose value is a register class containing hard
     525     register REGNO.  In general there is more that one such class;
     526     choose a class which is "minimal", meaning that no smaller class
     527     also contains the register.  */
     528  
     529  #define REGNO_REG_CLASS(REGNO) loongarch_regno_to_class[(REGNO)]
     530  
     531  /* A macro whose definition is the name of the class to which a
     532     valid base register must belong.  A base register is one used in
     533     an address which is the register value plus a displacement.  */
     534  
     535  #define BASE_REG_CLASS (GR_REGS)
     536  
     537  /* A macro whose definition is the name of the class to which a
     538     valid index register must belong.  An index register is one used
     539     in an address where its value is either multiplied by a scale
     540     factor or added to another register (as well as added to a
     541     displacement).  */
     542  
     543  #define INDEX_REG_CLASS GR_REGS
     544  
     545  /* We generally want to put call-clobbered registers ahead of
     546     call-saved ones.  (IRA expects this.)  */
     547  
     548  #define REG_ALLOC_ORDER							\
     549  { /* Call-clobbered GPRs.  */						\
     550    12, 13, 14, 15, 16, 17, 18, 19, 20, 4, 5, 6, 7, 8, 9, 10, 11, 1,	\
     551    /* Call-saved GPRs.  */						\
     552    23, 24, 25, 26, 27, 28, 29, 30, 31,					\
     553    /* GPRs that can never be exposed to the register allocator.  */	\
     554    0, 2, 3, 21, 22, 							\
     555    /* Call-clobbered FPRs.  */						\
     556    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
     557    48, 49, 50, 51,52, 53, 54, 55, 					\
     558    56, 57, 58, 59, 60, 61, 62, 63,					\
     559    /* None of the remaining classes have defined call-saved		\
     560       registers.  */							\
     561    64, 65, 66, 67, 68, 69, 70, 71, 72, 73}
     562  
     563  #define IMM_BITS 12
     564  #define IMM_REACH (HOST_WIDE_INT_1 << IMM_BITS)
     565  #define HWIT_1U HOST_WIDE_INT_1U
     566  
     567  /* True if VALUE is an unsigned 6-bit number.  */
     568  
     569  #define UIMM6_OPERAND(VALUE) (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
     570  
     571  /* True if VALUE is a signed 10-bit number.  */
     572  
     573  #define IMM10_OPERAND(VALUE) ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
     574  
     575  /* True if VALUE is a signed 12-bit number.  */
     576  
     577  #define IMM12_OPERAND(VALUE) \
     578    ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH / 2 < IMM_REACH)
     579  
     580  /* True if VALUE is a signed 16-bit number.  */
     581  
     582  #define IMM16_OPERAND(VALUE) \
     583    ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
     584  
     585  /* True if VALUE is an unsigned 12-bit number.  */
     586  
     587  #define IMM12_OPERAND_UNSIGNED(VALUE) \
     588    (((VALUE) & ~(unsigned HOST_WIDE_INT) (IMM_REACH - 1)) == 0)
     589  
     590  /* True if VALUE can be loaded into a register using LU12I.  */
     591  
     592  #define LU12I_OPERAND(VALUE) \
     593    (((VALUE) | ((HWIT_1U << 31) - IMM_REACH)) == ((HWIT_1U << 31) - IMM_REACH) \
     594     || ((VALUE) | ((HWIT_1U << 31) - IMM_REACH)) + IMM_REACH == 0)
     595  
     596  /* True if VALUE can be loaded into a register using LU32I.  */
     597  
     598  #define LU32I_OPERAND(VALUE) \
     599    (((VALUE) | (((HWIT_1U << 19) - 1) << 32)) == (((HWIT_1U << 19) - 1) << 32) \
     600     || ((VALUE) | (((HWIT_1U << 19) - 1) << 32)) + (HWIT_1U << 32) == 0)
     601  
     602  /* True if VALUE can be loaded into a register using LU52I.  */
     603  
     604  #define HWIT_UC_0xFFF HOST_WIDE_INT_UC(0xfff)
     605  #define LU52I_OPERAND(VALUE) \
     606    (((VALUE) | (HWIT_UC_0xFFF << 52)) == (HWIT_UC_0xFFF << 52))
     607  
     608  /* Return a value X with the low 12 bits clear, and such that
     609     VALUE - X is a signed 12-bit value.  */
     610  
     611  #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH / 2)) & ~(IMM_REACH - 1))
     612  
     613  #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
     614  
     615  #define IMM12_INT(X) IMM12_OPERAND (INTVAL (X))
     616  #define IMM12_INT_UNSIGNED(X) IMM12_OPERAND_UNSIGNED (INTVAL (X))
     617  #define LU12I_INT(X) LU12I_OPERAND (INTVAL (X))
     618  #define LU32I_INT(X) LU32I_OPERAND (INTVAL (X))
     619  #define LU52I_INT(X) LU52I_OPERAND (INTVAL (X))
     620  #define LARCH_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
     621  #define LARCH_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
     622  #define LARCH_16BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -32768, 32767))
     623  #define LARCH_SHIFT_2_OFFSET_P(OFFSET) (((OFFSET) & 0x3) == 0)
     624  
     625  /* Return the maximum number of consecutive registers
     626     needed to represent mode MODE in a register of class CLASS.  */
     627  
     628  #define CLASS_MAX_NREGS(CLASS, MODE) loongarch_class_max_nregs (CLASS, MODE)
     629  
     630  /* Stack layout; function entry, exit and calling.  */
     631  
     632  #define STACK_GROWS_DOWNWARD 1
     633  
     634  #define FRAME_GROWS_DOWNWARD 1
     635  
     636  #define RETURN_ADDR_RTX loongarch_return_addr
     637  
     638  /* Similarly, don't use the least-significant bit to tell pointers to
     639     code from vtable index.  */
     640  
     641  #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
     642  
     643  #define ELIMINABLE_REGS \
     644    { \
     645      {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
     646      {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
     647      {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
     648      {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
     649    }
     650  
     651  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
     652    (OFFSET) = loongarch_initial_elimination_offset ((FROM), (TO))
     653  
     654  /* Allocate stack space for arguments at the beginning of each function.  */
     655  #define ACCUMULATE_OUTGOING_ARGS 1
     656  
     657  /* The argument pointer always points to the first argument.  */
     658  #define FIRST_PARM_OFFSET(FNDECL) 0
     659  
     660  #define REG_PARM_STACK_SPACE(FNDECL) 0
     661  
     662  /* Define this if it is the responsibility of the caller to
     663     allocate the area reserved for arguments passed in registers.
     664     If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
     665     of this macro is to determine whether the space is included in
     666     `crtl->outgoing_args_size'.  */
     667  #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
     668  
     669  #define STACK_BOUNDARY (TARGET_ABI_LP64 ? 128 : 64)
     670  
     671  /* This value controls how many pages we manually unroll the loop for when
     672     generating stack clash probes.  */
     673  #define STACK_CLASH_MAX_UNROLL_PAGES 4
     674  
     675  /* Symbolic macros for the registers used to return integer and floating
     676     point values.  */
     677  
     678  #define GP_RETURN (GP_REG_FIRST + 4)
     679  #define FP_RETURN ((TARGET_SOFT_FLOAT_ABI) ? GP_RETURN : (FP_REG_FIRST + 0))
     680  
     681  #define MAX_ARGS_IN_REGISTERS 8
     682  
     683  /* Symbolic macros for the first/last argument registers.  */
     684  
     685  #define GP_ARG_FIRST (GP_REG_FIRST + 4)
     686  #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
     687  #define FP_ARG_FIRST (FP_REG_FIRST + 0)
     688  #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
     689  
     690  /* 1 if N is a possible register number for function argument passing.
     691     We have no FP argument registers when soft-float.  */
     692  
     693  /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI.  */
     694  #define FUNCTION_ARG_REGNO_P(N) \
     695    (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
     696     || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
     697  
     698  typedef struct {
     699    /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS.  */
     700    unsigned int num_gprs;
     701  
     702    /* Number of floating-point registers used so far, likewise.  */
     703    unsigned int num_fprs;
     704  
     705  } CUMULATIVE_ARGS;
     706  
     707  /* Initialize a variable CUM of type CUMULATIVE_ARGS
     708     for a call to a function whose data type is FNTYPE.
     709     For a library call, FNTYPE is 0.  */
     710  
     711  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
     712    memset (&(CUM), 0, sizeof (CUM))
     713  
     714  #define EPILOGUE_USES(REGNO) loongarch_epilogue_uses (REGNO)
     715  
     716  /* Treat LOC as a byte offset from the stack pointer and round it up
     717     to the next fully-aligned offset.  */
     718  #define LARCH_STACK_ALIGN(LOC) \
     719    (TARGET_ABI_LP64 ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
     720  
     721  #define MCOUNT_NAME "_mcount"
     722  
     723  /* Emit rtl for profiling.  Output assembler code to FILE
     724     to call "_mcount" for profiling a function entry.  */
     725  #define PROFILE_HOOK(LABEL) \
     726    { \
     727      rtx fun, ra; \
     728      ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
     729      fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
     730      emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
     731    }
     732  
     733  /* All the work done in PROFILE_HOOK, but still required.  */
     734  #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
     735  
     736  #define NO_PROFILE_COUNTERS 1
     737  
     738  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
     739     the stack pointer does not matter.  The value is tested only in
     740     functions that have frame pointers.
     741     No definition is equivalent to always zero.  */
     742  
     743  #define EXIT_IGNORE_STACK 1
     744  
     745  /* Trampolines are a block of code followed by two pointers.  */
     746  
     747  #define TRAMPOLINE_CODE_SIZE 16
     748  #define TRAMPOLINE_SIZE \
     749    ((Pmode == SImode) ? TRAMPOLINE_CODE_SIZE \
     750  		     : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
     751  #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
     752  
     753  /* loongarch_trampoline_init calls this library function to flush
     754     program and data caches.  */
     755  
     756  #ifndef CACHE_FLUSH_FUNC
     757  #define CACHE_FLUSH_FUNC "_flush_cache"
     758  #endif
     759  
     760  /* Addressing modes, and classification of registers for them.  */
     761  
     762  #define REGNO_OK_FOR_INDEX_P(REGNO) \
     763    loongarch_regno_mode_ok_for_base_p (REGNO, VOIDmode, 1)
     764  
     765  #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
     766    loongarch_regno_mode_ok_for_base_p (REGNO, MODE, 1)
     767  
     768  /* Maximum number of registers that can appear in a valid memory address.  */
     769  
     770  #define MAX_REGS_PER_ADDRESS 2
     771  
     772  /* Check for constness inline but use loongarch_legitimate_address_p
     773     to check whether a constant really is an address.  */
     774  
     775  #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X) && memory_address_p (SImode, X))
     776  
     777  /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
     778     'the start of the function that this code is output in'.  */
     779  
     780  #define ASM_OUTPUT_LABELREF(FILE, NAME) \
     781    do \
     782      { \
     783        if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
     784  	asm_fprintf ((FILE), "%U%s", \
     785  		     XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
     786        else \
     787  	asm_fprintf ((FILE), "%U%s", (NAME)); \
     788      } \
     789    while (0)
     790  
     791  #define CASE_VECTOR_MODE Pmode
     792  
     793  #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) Pmode
     794  
     795  /* Define this as 1 if `char' should by default be signed; else as 0.  */
     796  #ifndef DEFAULT_SIGNED_CHAR
     797  #define DEFAULT_SIGNED_CHAR 1
     798  #endif
     799  
     800  /* The SPARC port says:
     801     The maximum number of bytes that a single instruction
     802     can move quickly between memory and registers or between
     803     two memory locations.  */
     804  #define MOVE_MAX UNITS_PER_WORD
     805  #define MAX_MOVE_MAX 8
     806  
     807  /* The SPARC port says:
     808     Nonzero if access to memory by bytes is slow and undesirable.
     809     For RISC chips, it means that access to memory by bytes is no
     810     better than access by words when possible, so grab a whole word
     811     and maybe make use of that.  */
     812  #define SLOW_BYTE_ACCESS 1
     813  
     814  /* Standard LoongArch integer shifts truncate the shift amount to the
     815     width of the shifted operand.  */
     816  #define SHIFT_COUNT_TRUNCATED 1
     817  
     818  /* Specify the machine mode that pointers have.
     819     After generation of rtl, the compiler makes no further distinction
     820     between pointers and any other objects of this machine mode.  */
     821  
     822  #ifndef Pmode
     823  #define Pmode (TARGET_64BIT ? DImode : SImode)
     824  #endif
     825  
     826  /* Give call MEMs SImode since it is the "most permissive" mode
     827     for both 32-bit and 64-bit targets.  */
     828  
     829  #define FUNCTION_MODE SImode
     830  
     831  /* We allocate $fcc registers by hand and can't cope with moves of
     832     CCmode registers to and from pseudos (or memory).  */
     833  #define AVOID_CCMODE_COPIES
     834  
     835  /* A C expression for the cost of a branch instruction.  A value of
     836     1 is the default; other values are interpreted relative to that.  */
     837  
     838  #define BRANCH_COST(speed_p, predictable_p) loongarch_branch_cost
     839  #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
     840  
     841  /* Return the asm template for a conditional branch instruction.
     842     OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
     843     its operands.  */
     844  #define LARCH_BRANCH(OPCODE, OPERANDS) OPCODE "\t" OPERANDS
     845  
     846  /* Control the assembler format that we output.  */
     847  
     848  /* Output to assembler file text saying following lines
     849     may contain character constants, extra white space, comments, etc.  */
     850  
     851  #ifndef ASM_APP_ON
     852  #define ASM_APP_ON " #APP\n"
     853  #endif
     854  
     855  /* Output to assembler file text saying following lines
     856     no longer contain unusual constructs.  */
     857  
     858  #ifndef ASM_APP_OFF
     859  #define ASM_APP_OFF " #NO_APP\n"
     860  #endif
     861  
     862  #define REGISTER_NAMES							  \
     863  { "$r0",   "$r1",   "$r2",   "$r3",   "$r4",   "$r5",   "$r6",   "$r7",   \
     864    "$r8",   "$r9",   "$r10",  "$r11",  "$r12",  "$r13",  "$r14",  "$r15",  \
     865    "$r16",  "$r17",  "$r18",  "$r19",  "$r20",  "$r21",  "$r22",  "$r23",  \
     866    "$r24",  "$r25",  "$r26",  "$r27",  "$r28",  "$r29",  "$r30",  "$r31",  \
     867    "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	  \
     868    "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	  \
     869    "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	  \
     870    "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	  \
     871    "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4","$fcc5","$fcc6","$fcc7",	  \
     872    "$arg", "$frame"}
     873  
     874  /* This macro defines additional names for hard registers.  */
     875  
     876  #define ADDITIONAL_REGISTER_NAMES					\
     877  {									\
     878    { "zero",	 0 + GP_REG_FIRST },					\
     879    { "ra",	 1 + GP_REG_FIRST },					\
     880    { "tp",	 2 + GP_REG_FIRST },					\
     881    { "sp",	 3 + GP_REG_FIRST },					\
     882    { "a0",	 4 + GP_REG_FIRST },					\
     883    { "a1",	 5 + GP_REG_FIRST },					\
     884    { "a2",	 6 + GP_REG_FIRST },					\
     885    { "a3",	 7 + GP_REG_FIRST },					\
     886    { "a4",	 8 + GP_REG_FIRST },					\
     887    { "a5",	 9 + GP_REG_FIRST },					\
     888    { "a6",	10 + GP_REG_FIRST },					\
     889    { "a7",	11 + GP_REG_FIRST },					\
     890    { "t0",	12 + GP_REG_FIRST },					\
     891    { "t1",	13 + GP_REG_FIRST },					\
     892    { "t2",	14 + GP_REG_FIRST },					\
     893    { "t3",	15 + GP_REG_FIRST },					\
     894    { "t4",	16 + GP_REG_FIRST },					\
     895    { "t5",	17 + GP_REG_FIRST },					\
     896    { "t6",	18 + GP_REG_FIRST },					\
     897    { "t7",	19 + GP_REG_FIRST },					\
     898    { "t8",	20 + GP_REG_FIRST },					\
     899    { "x",	21 + GP_REG_FIRST },					\
     900    { "fp",	22 + GP_REG_FIRST },					\
     901    { "s0",	23 + GP_REG_FIRST },					\
     902    { "s1",	24 + GP_REG_FIRST },					\
     903    { "s2",	25 + GP_REG_FIRST },					\
     904    { "s3",	26 + GP_REG_FIRST },					\
     905    { "s4",	27 + GP_REG_FIRST },					\
     906    { "s5",	28 + GP_REG_FIRST },					\
     907    { "s6",	29 + GP_REG_FIRST },					\
     908    { "s7",	30 + GP_REG_FIRST },					\
     909    { "s8",	31 + GP_REG_FIRST },					\
     910    { "v0",	 4 + GP_REG_FIRST },					\
     911    { "v1",	 5 + GP_REG_FIRST }					\
     912  }
     913  
     914  /* Globalizing directive for a label.  */
     915  #define GLOBAL_ASM_OP "\t.globl\t"
     916  
     917  /* This says how to output an external.  It would be possible not to
     918     output anything and let undefined symbol become external.  However
     919     the assembler uses length information on externals to allocate in
     920     data/sdata bss/sbss, thereby saving exec time.  */
     921  
     922  #undef ASM_OUTPUT_EXTERNAL
     923  #define ASM_OUTPUT_EXTERNAL(STREAM, DECL, NAME) \
     924    loongarch_output_external (STREAM, DECL, NAME)
     925  
     926  /* This is how to store into the string LABEL
     927     the symbol_ref name of an internal numbered label where
     928     PREFIX is the class of label and NUM is the number within the class.
     929     This is suitable for output with `assemble_name'.  */
     930  
     931  #undef ASM_GENERATE_INTERNAL_LABEL
     932  #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
     933    sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
     934  
     935  /* Print debug labels as "foo = ." rather than "foo:" because they should
     936     represent a byte pointer rather than an ISA-encoded address.  This is
     937     particularly important for code like:
     938  
     939  	$LFBxxx = .
     940  		.cfi_startproc
     941  		...
     942  		.section .gcc_except_table,...
     943  		...
     944  		.uleb128 foo-$LFBxxx
     945  
     946     The .uleb128 requies $LFBxxx to match the FDE start address, which is
     947     likewise a byte pointer rather than an ISA-encoded address.
     948  
     949     At the time of writing, this hook is not used for the function end
     950     label:
     951  
     952  	$LFExxx:
     953  		.end foo
     954  
     955     */
     956  
     957  #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
     958    fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
     959  
     960  /* This is how to output an element of a case-vector that is absolute.  */
     961  
     962  #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
     963    fprintf (STREAM, "\t%s\t%sL%d\n", ptr_mode == DImode ? ".dword" : ".word", \
     964  	   LOCAL_LABEL_PREFIX, VALUE)
     965  
     966  /* This is how to output an element of a case-vector.  */
     967  
     968  #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
     969    do \
     970      { \
     971        fprintf (STREAM, "\t%s\t%sL%d-%sL%d\n", \
     972  	       ptr_mode == DImode ? ".dword" : ".word", LOCAL_LABEL_PREFIX, \
     973  	       VALUE, LOCAL_LABEL_PREFIX, REL); \
     974      } \
     975    while (0)
     976  
     977  #define JUMP_TABLES_IN_TEXT_SECTION 0
     978  
     979  /* This is how to output an assembler line
     980     that says to advance the location counter
     981     to a multiple of 2**LOG bytes.  */
     982  
     983  #define ASM_OUTPUT_ALIGN(STREAM, LOG) fprintf (STREAM, "\t.align\t%d\n", (LOG))
     984  
     985  /* "nop" instruction 54525952 (andi $r0,$r0,0) is
     986     used for padding.  */
     987  #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, LOG) \
     988    fprintf (STREAM, "\t.align\t%d,54525952,4\n", (LOG))
     989  
     990  /* This is how to output an assembler line to advance the location
     991     counter by SIZE bytes.  */
     992  
     993  #undef ASM_OUTPUT_SKIP
     994  #define ASM_OUTPUT_SKIP(STREAM, SIZE) \
     995    fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", (SIZE))
     996  
     997  /* This is how to output a string.  */
     998  #undef ASM_OUTPUT_ASCII
     999  #define ASM_OUTPUT_ASCII loongarch_output_ascii
    1000  
    1001  /* Define the strings to put out for each section in the object file.  */
    1002  #define TEXT_SECTION_ASM_OP "\t.text" /* instructions  */
    1003  #define DATA_SECTION_ASM_OP "\t.data" /* large data  */
    1004  
    1005  #undef READONLY_DATA_SECTION_ASM_OP
    1006  #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata" /* read-only data */
    1007  
    1008  #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)	\
    1009    do \
    1010      { \
    1011        fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,%s,0\n", \
    1012  	       TARGET_64BIT ? "addi.d" : "addi.w", \
    1013  	       reg_names[STACK_POINTER_REGNUM], \
    1014  	       reg_names[STACK_POINTER_REGNUM], \
    1015  	       TARGET_64BIT ? "st.d" : "st.w", reg_names[REGNO], \
    1016  	       reg_names[STACK_POINTER_REGNUM]); \
    1017      } \
    1018    while (0)
    1019  
    1020  #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
    1021    do \
    1022      { \
    1023        fprintf (STREAM, "\t%s\t%s,%s,0\n\t%s\t%s,%s,8\n", \
    1024  	       TARGET_64BIT ? "ld.d" : "ld.w", reg_names[REGNO], \
    1025  	       reg_names[STACK_POINTER_REGNUM], \
    1026  	       TARGET_64BIT ? "addi.d" : "addi.w", \
    1027  	       reg_names[STACK_POINTER_REGNUM], \
    1028  	       reg_names[STACK_POINTER_REGNUM]); \
    1029      } \
    1030    while (0)
    1031  
    1032  /* How to start an assembler comment.
    1033     The leading space is important (the loongarch native assembler requires it).
    1034   */
    1035  #ifndef ASM_COMMENT_START
    1036  #define ASM_COMMENT_START " #"
    1037  #endif
    1038  
    1039  #undef SIZE_TYPE
    1040  #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
    1041  
    1042  #undef PTRDIFF_TYPE
    1043  #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
    1044  
    1045  /* The maximum number of bytes that can be copied by one iteration of
    1046     a cpymemsi loop; see loongarch_block_move_loop.  */
    1047  #define LARCH_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
    1048  
    1049  /* The maximum number of bytes that can be copied by a straight-line
    1050     implementation of cpymemsi; see loongarch_block_move_straight.  We want
    1051     to make sure that any loop-based implementation will iterate at
    1052     least twice.  */
    1053  #define LARCH_MAX_MOVE_BYTES_STRAIGHT (LARCH_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
    1054  
    1055  /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
    1056     values were determined experimentally by benchmarking with CSiBE.
    1057  */
    1058  #define LARCH_CALL_RATIO 8
    1059  
    1060  /* Any loop-based implementation of cpymemsi will have at least
    1061     LARCH_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
    1062     moves, so allow individual copies of fewer elements.
    1063  
    1064     When cpymemsi is not available, use a value approximating
    1065     the length of a memcpy call sequence, so that move_by_pieces
    1066     will generate inline code if it is shorter than a function call.
    1067     Since move_by_pieces_ninsns counts memory-to-memory moves, but
    1068     we'll have to generate a load/store pair for each, halve the
    1069     value of LARCH_CALL_RATIO to take that into account.  */
    1070  
    1071  #define MOVE_RATIO(speed) \
    1072    (HAVE_cpymemsi \
    1073     ? LARCH_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD \
    1074     : CLEAR_RATIO (speed) / 2)
    1075  
    1076  /* For CLEAR_RATIO, when optimizing for size, give a better estimate
    1077     of the length of a memset call, but use the default otherwise.  */
    1078  
    1079  #define CLEAR_RATIO(speed) ((speed) ? 15 : LARCH_CALL_RATIO)
    1080  
    1081  /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
    1082     optimizing for size adjust the ratio to account for the overhead of
    1083     loading the constant and replicating it across the word.  */
    1084  
    1085  #define SET_RATIO(speed) ((speed) ? 15 : LARCH_CALL_RATIO - 2)
    1086  
    1087  #ifndef USED_FOR_TARGET
    1088  extern const enum reg_class loongarch_regno_to_class[];
    1089  extern int loongarch_dwarf_regno[];
    1090  
    1091  /* Information about a function's frame layout.  */
    1092  struct GTY (()) loongarch_frame_info
    1093  {
    1094    /* The size of the frame in bytes.  */
    1095    HOST_WIDE_INT total_size;
    1096  
    1097    /* Bit X is set if the function saves or restores GPR X.  */
    1098    unsigned int mask;
    1099  
    1100    /* Likewise FPR X.  */
    1101    unsigned int fmask;
    1102  
    1103    /* How much the GPR save/restore routines adjust sp (or 0 if unused).  */
    1104    unsigned save_libcall_adjustment;
    1105  
    1106    /* Offsets of fixed-point and floating-point save areas from frame
    1107       bottom.  */
    1108    HOST_WIDE_INT gp_sp_offset;
    1109    HOST_WIDE_INT fp_sp_offset;
    1110  
    1111    /* Offset of virtual frame pointer from stack pointer/frame bottom.  */
    1112    HOST_WIDE_INT frame_pointer_offset;
    1113  
    1114    /* Offset of hard frame pointer from stack pointer/frame bottom.  */
    1115    HOST_WIDE_INT hard_frame_pointer_offset;
    1116  
    1117    /* The offset of arg_pointer_rtx from the bottom of the frame.  */
    1118    HOST_WIDE_INT arg_pointer_offset;
    1119  };
    1120  
    1121  struct GTY (()) machine_function
    1122  {
    1123    /* The next floating-point condition-code register to allocate
    1124       for 8CC targets, relative to FCC_REG_FIRST.  */
    1125    unsigned int next_fcc;
    1126  
    1127    /* The number of extra stack bytes taken up by register varargs.
    1128       This area is allocated by the callee at the very top of the frame.  */
    1129    int varargs_size;
    1130  
    1131    /* The current frame information, calculated by loongarch_compute_frame_info.
    1132     */
    1133    struct loongarch_frame_info frame;
    1134  };
    1135  #endif
    1136  
    1137  #ifdef HAVE_AS_EH_FRAME_PCREL_ENCODING_SUPPORT
    1138  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
    1139    (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
    1140  #else
    1141  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
    1142    (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
    1143  #endif
    1144  
    1145  /* Do emit .note.GNU-stack by default.  */
    1146  #ifndef NEED_INDICATE_EXEC_STACK
    1147  #define NEED_INDICATE_EXEC_STACK 1
    1148  #endif
    1149  
    1150  /* The `Q' extension is not yet supported.  */
    1151  /* TODO: according to march.  */
    1152  #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
    1153  
    1154  /* The largest type that can be passed in floating-point registers.  */
    1155  /* TODO: according to mabi.  */
    1156  #define UNITS_PER_FP_ARG  \
    1157    (TARGET_HARD_FLOAT_ABI ? (TARGET_DOUBLE_FLOAT_ABI ? 8 : 4) : 0)
    1158  
    1159  #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)