(root)/
gcc-13.2.0/
gcc/
config/
i386/
i386.h
       1  /* Definitions of target machine for GCC for IA-32.
       2     Copyright (C) 1988-2023 Free Software Foundation, Inc.
       3  
       4  This file is part of GCC.
       5  
       6  GCC is free software; you can redistribute it and/or modify
       7  it under the terms of the GNU General Public License as published by
       8  the Free Software Foundation; either version 3, or (at your option)
       9  any later version.
      10  
      11  GCC is distributed in the hope that it will be useful,
      12  but WITHOUT ANY WARRANTY; without even the implied warranty of
      13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14  GNU General Public License for more details.
      15  
      16  Under Section 7 of GPL version 3, you are granted additional
      17  permissions described in the GCC Runtime Library Exception, version
      18  3.1, as published by the Free Software Foundation.
      19  
      20  You should have received a copy of the GNU General Public License and
      21  a copy of the GCC Runtime Library Exception along with this program;
      22  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
      23  <http://www.gnu.org/licenses/>.  */
      24  
      25  /* The purpose of this file is to define the characteristics of the i386,
      26     independent of assembler syntax or operating system.
      27  
      28     Three other files build on this one to describe a specific assembler syntax:
      29     bsd386.h, att386.h, and sun386.h.
      30  
      31     The actual tm.h file for a particular system should include
      32     this file, and then the file for the appropriate assembler syntax.
      33  
      34     Many macros that specify assembler syntax are omitted entirely from
      35     this file because they really belong in the files for particular
      36     assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
      37     ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
      38     that start with ASM_ or end in ASM_OP.  */
      39  
      40  /* Redefines for option macros.  */
      41  
      42  #define TARGET_CMPXCHG16B	TARGET_CX16
      43  #define TARGET_CMPXCHG16B_P(x)	TARGET_CX16_P(x)
      44  
      45  #define TARGET_LP64		TARGET_ABI_64
      46  #define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
      47  #define TARGET_X32		TARGET_ABI_X32
      48  #define TARGET_X32_P(x)		TARGET_ABI_X32_P(x)
      49  #define TARGET_16BIT		TARGET_CODE16
      50  #define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
      51  
      52  #define TARGET_MMX_WITH_SSE	(TARGET_64BIT && TARGET_SSE2)
      53  
      54  #include "config/vxworks-dummy.h"
      55  
      56  #include "config/i386/i386-opts.h"
      57  
      58  #define MAX_STRINGOP_ALGS 4
      59  
      60  /* Specify what algorithm to use for stringops on known size.
      61     When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
      62     known at compile time or estimated via feedback, the SIZE array
      63     is walked in order until MAX is greater then the estimate (or -1
      64     means infinity).  Corresponding ALG is used then.
      65     When NOALIGN is true the code guaranting the alignment of the memory
      66     block is skipped.
      67  
      68     For example initializer:
      69      {{256, loop}, {-1, rep_prefix_4_byte}}
      70     will use loop for blocks smaller or equal to 256 bytes, rep prefix will
      71     be used otherwise.  */
      72  struct stringop_algs
      73  {
      74    const enum stringop_alg unknown_size;
      75    const struct stringop_strategy {
      76      /* Several older compilers delete the default constructor because of the
      77         const entries (see PR100246).  Manually specifying a CTOR works around
      78         this issue.  Since this header is used by code compiled with the C
      79         compiler we must guard the addition.  */
      80  #ifdef __cplusplus
      81      constexpr
      82      stringop_strategy (int _max = -1, enum stringop_alg _alg = libcall,
      83  		       int _noalign = false)
      84        : max (_max), alg (_alg), noalign (_noalign) {}
      85  #endif
      86      const int max;
      87      const enum stringop_alg alg;
      88      int noalign;
      89    } size [MAX_STRINGOP_ALGS];
      90  };
      91  
      92  /* Analog of COSTS_N_INSNS when optimizing for size.  */
      93  #ifndef COSTS_N_BYTES
      94  #define COSTS_N_BYTES(N) ((N) * 2)
      95  #endif
      96  
      97  /* Define the specific costs for a given cpu.  NB: hard_register is used
      98     by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
      99     hard register move costs by register allocator.  Relative costs of
     100     pseudo register load and store versus pseudo register moves in RTL
     101     expressions for TARGET_RTX_COSTS can be different from relative
     102     costs of hard registers to get the most efficient operations with
     103     pseudo registers.  */
     104  
     105  struct processor_costs {
     106    /* Costs used by register allocator.  integer->integer register move
     107       cost is 2.  */
     108    struct
     109      {
     110        const int movzbl_load;	/* cost of loading using movzbl */
     111        const int int_load[3];	/* cost of loading integer registers
     112  				   in QImode, HImode and SImode relative
     113  				   to reg-reg move (2).  */
     114        const int int_store[3];	/* cost of storing integer register
     115  				   in QImode, HImode and SImode */
     116        const int fp_move;	/* cost of reg,reg fld/fst */
     117        const int fp_load[3];	/* cost of loading FP register
     118  				   in SFmode, DFmode and XFmode */
     119        const int fp_store[3];	/* cost of storing FP register
     120  				   in SFmode, DFmode and XFmode */
     121        const int mmx_move;	/* cost of moving MMX register.  */
     122        const int mmx_load[2];	/* cost of loading MMX register
     123  				   in SImode and DImode */
     124        const int mmx_store[2];	/* cost of storing MMX register
     125  				   in SImode and DImode */
     126        const int xmm_move;	/* cost of moving XMM register.  */
     127        const int ymm_move;	/* cost of moving XMM register.  */
     128        const int zmm_move;	/* cost of moving XMM register.  */
     129        const int sse_load[5];	/* cost of loading SSE register
     130  				   in 32bit, 64bit, 128bit, 256bit and 512bit */
     131        const int sse_store[5];	/* cost of storing SSE register
     132  				   in SImode, DImode and TImode.  */
     133        const int sse_to_integer;	/* cost of moving SSE register to integer.  */
     134        const int integer_to_sse;	/* cost of moving integer register to SSE. */
     135        const int mask_to_integer; /* cost of moving mask register to integer.  */
     136        const int integer_to_mask; /* cost of moving integer register to mask.  */
     137        const int mask_load[3]; /* cost of loading mask registers
     138  				 in QImode, HImode and SImode.  */
     139        const int mask_store[3]; /* cost of storing mask register
     140  				  in QImode, HImode and SImode.  */
     141        const int mask_move; /* cost of moving mask register.  */
     142      } hard_register;
     143  
     144    const int add;		/* cost of an add instruction */
     145    const int lea;		/* cost of a lea instruction */
     146    const int shift_var;		/* variable shift costs */
     147    const int shift_const;	/* constant shift costs */
     148    const int mult_init[5];	/* cost of starting a multiply
     149  				   in QImode, HImode, SImode, DImode, TImode*/
     150    const int mult_bit;		/* cost of multiply per each bit set */
     151    const int divide[5];		/* cost of a divide/mod
     152  				   in QImode, HImode, SImode, DImode, TImode*/
     153    int movsx;			/* The cost of movsx operation.  */
     154    int movzx;			/* The cost of movzx operation.  */
     155    const int large_insn;		/* insns larger than this cost more */
     156    const int move_ratio;		/* The threshold of number of scalar
     157  				   memory-to-memory move insns.  */
     158    const int clear_ratio;	/* The threshold of number of scalar
     159  				   memory clearing insns.  */
     160    const int int_load[3];	/* cost of loading integer registers
     161  				   in QImode, HImode and SImode relative
     162  				   to reg-reg move (2).  */
     163    const int int_store[3];	/* cost of storing integer register
     164  				   in QImode, HImode and SImode */
     165    const int sse_load[5];	/* cost of loading SSE register
     166  				   in 32bit, 64bit, 128bit, 256bit and 512bit */
     167    const int sse_store[5];	/* cost of storing SSE register
     168  				   in 32bit, 64bit, 128bit, 256bit and 512bit */
     169    const int sse_unaligned_load[5];/* cost of unaligned load.  */
     170    const int sse_unaligned_store[5];/* cost of unaligned store.  */
     171    const int xmm_move, ymm_move, /* cost of moving XMM and YMM register.  */
     172  	    zmm_move;
     173    const int sse_to_integer;	/* cost of moving SSE register to integer.  */
     174    const int gather_static, gather_per_elt; /* Cost of gather load is computed
     175  				   as static + per_item * nelts. */
     176    const int scatter_static, scatter_per_elt; /* Cost of gather store is
     177  				   computed as static + per_item * nelts.  */
     178    const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
     179    const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
     180    const int prefetch_block;	/* bytes moved to cache for prefetch.  */
     181    const int simultaneous_prefetches; /* number of parallel prefetch
     182  				   operations.  */
     183    const int branch_cost;	/* Default value for BRANCH_COST.  */
     184    const int fadd;		/* cost of FADD and FSUB instructions.  */
     185    const int fmul;		/* cost of FMUL instruction.  */
     186    const int fdiv;		/* cost of FDIV instruction.  */
     187    const int fabs;		/* cost of FABS instruction.  */
     188    const int fchs;		/* cost of FCHS instruction.  */
     189    const int fsqrt;		/* cost of FSQRT instruction.  */
     190  				/* Specify what algorithm
     191  				   to use for stringops on unknown size.  */
     192    const int sse_op;		/* cost of cheap SSE instruction.  */
     193    const int addss;		/* cost of ADDSS/SD SUBSS/SD instructions.  */
     194    const int mulss;		/* cost of MULSS instructions.  */
     195    const int mulsd;		/* cost of MULSD instructions.  */
     196    const int fmass;		/* cost of FMASS instructions.  */
     197    const int fmasd;		/* cost of FMASD instructions.  */
     198    const int divss;		/* cost of DIVSS instructions.  */
     199    const int divsd;		/* cost of DIVSD instructions.  */
     200    const int sqrtss;		/* cost of SQRTSS instructions.  */
     201    const int sqrtsd;		/* cost of SQRTSD instructions.  */
     202    const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
     203  				/* Specify reassociation width for integer,
     204  				   fp, vector integer and vector fp
     205  				   operations.  Generally should correspond
     206  				   to number of instructions executed in
     207  				   parallel.  See also
     208  				   ix86_reassociation_width.  */
     209    struct stringop_algs *memcpy, *memset;
     210    const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
     211  					  cost model.  */
     212    const int cond_not_taken_branch_cost;/* Cost of not taken branch for
     213  					  vectorizer cost model.  */
     214  
     215    /* The "0:0:8" label alignment specified for some processors generates
     216       secondary 8-byte alignment only for those label/jump/loop targets
     217       which have primary alignment.  */
     218    const char *const align_loop;		/* Loop alignment.  */
     219    const char *const align_jump;		/* Jump alignment.  */
     220    const char *const align_label;	/* Label alignment.  */
     221    const char *const align_func;		/* Function alignment.  */
     222  
     223    const unsigned small_unroll_ninsns;	/* Insn count limit for small loop
     224  					   to be unrolled.  */
     225    const unsigned small_unroll_factor;   /* Unroll factor for small loop to
     226  					   be unrolled.  */
     227  };
     228  
     229  extern const struct processor_costs *ix86_cost;
     230  extern const struct processor_costs ix86_size_cost;
     231  
     232  #define ix86_cur_cost() \
     233    (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
     234  
     235  /* Macros used in the machine description to test the flags.  */
     236  
     237  /* configure can arrange to change it.  */
     238  
     239  #ifndef TARGET_CPU_DEFAULT
     240  #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
     241  #endif
     242  
     243  #ifndef TARGET_FPMATH_DEFAULT
     244  #define TARGET_FPMATH_DEFAULT \
     245    (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
     246  #endif
     247  
     248  #ifndef TARGET_FPMATH_DEFAULT_P
     249  #define TARGET_FPMATH_DEFAULT_P(x) \
     250    (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
     251  #endif
     252  
     253  /* If the i387 is disabled or -miamcu is used , then do not return
     254     values in it. */
     255  #define TARGET_FLOAT_RETURNS_IN_80387 \
     256    (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
     257  #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
     258    (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
     259  
     260  /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
     261     compile-time constant.  */
     262  #ifdef IN_LIBGCC2
     263  #undef TARGET_64BIT
     264  #ifdef __x86_64__
     265  #define TARGET_64BIT 1
     266  #else
     267  #define TARGET_64BIT 0
     268  #endif
     269  #else
     270  #ifndef TARGET_BI_ARCH
     271  #undef TARGET_64BIT
     272  #undef TARGET_64BIT_P
     273  #if TARGET_64BIT_DEFAULT
     274  #define TARGET_64BIT 1
     275  #define TARGET_64BIT_P(x) 1
     276  #else
     277  #define TARGET_64BIT 0
     278  #define TARGET_64BIT_P(x) 0
     279  #endif
     280  #endif
     281  #endif
     282  
     283  #define HAS_LONG_COND_BRANCH 1
     284  #define HAS_LONG_UNCOND_BRANCH 1
     285  
     286  #define TARGET_CPU_P(CPU) (ix86_tune == PROCESSOR_ ## CPU)
     287  
     288  /* Feature tests against the various tunings.  */
     289  enum ix86_tune_indices {
     290  #undef DEF_TUNE
     291  #define DEF_TUNE(tune, name, selector) tune,
     292  #include "x86-tune.def"
     293  #undef DEF_TUNE
     294  X86_TUNE_LAST
     295  };
     296  
     297  extern unsigned char ix86_tune_features[X86_TUNE_LAST];
     298  
     299  #define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
     300  #define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
     301  #define TARGET_ZERO_EXTEND_WITH_AND \
     302  	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
     303  #define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
     304  #define TARGET_BRANCH_PREDICTION_HINTS \
     305  	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
     306  #define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
     307  #define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
     308  #define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
     309  #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
     310  #define TARGET_PARTIAL_FLAG_REG_STALL \
     311  	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
     312  #define TARGET_LCP_STALL \
     313  	ix86_tune_features[X86_TUNE_LCP_STALL]
     314  #define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
     315  #define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
     316  #define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
     317  #define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
     318  #define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
     319  #define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
     320  #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
     321  #define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
     322  #define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
     323  #define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
     324  #define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
     325  #define TARGET_PREFER_KNOWN_REP_MOVSB_STOSB \
     326    ix86_tune_features[X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB]
     327  #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
     328  	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
     329  #define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
     330  #define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
     331  #define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
     332  #define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
     333  #define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
     334  #define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
     335  #define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
     336  #define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
     337  #define TARGET_INTEGER_DFMODE_MOVES \
     338  	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
     339  #define TARGET_PARTIAL_REG_DEPENDENCY \
     340  	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
     341  #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
     342  	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
     343  #define TARGET_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY \
     344  	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY]
     345  #define TARGET_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY \
     346  	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY]
     347  #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
     348  	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
     349  #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
     350  	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
     351  #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
     352  	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
     353  #define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
     354  #define TARGET_SSE_TYPELESS_STORES \
     355  	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
     356  #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
     357  #define TARGET_MEMORY_MISMATCH_STALL \
     358  	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
     359  #define TARGET_PROLOGUE_USING_MOVE \
     360  	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
     361  #define TARGET_EPILOGUE_USING_MOVE \
     362  	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
     363  #define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
     364  #define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
     365  #define TARGET_INTER_UNIT_MOVES_TO_VEC \
     366  	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
     367  #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
     368  	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
     369  #define TARGET_INTER_UNIT_CONVERSIONS \
     370  	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
     371  #define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
     372  #define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
     373  #define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
     374  #define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
     375  #define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
     376  #define TARGET_PAD_SHORT_FUNCTION \
     377  	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
     378  #define TARGET_EXT_80387_CONSTANTS \
     379  	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
     380  #define TARGET_AVOID_VECTOR_DECODE \
     381  	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
     382  #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
     383  	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
     384  #define TARGET_SLOW_IMUL_IMM32_MEM \
     385  	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
     386  #define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
     387  #define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
     388  #define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
     389  #define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
     390  #define TARGET_USE_VECTOR_FP_CONVERTS \
     391  	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
     392  #define TARGET_USE_VECTOR_CONVERTS \
     393  	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
     394  #define TARGET_SLOW_PSHUFB \
     395  	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
     396  #define TARGET_AVOID_4BYTE_PREFIXES \
     397  	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
     398  #define TARGET_USE_GATHER_2PARTS \
     399  	ix86_tune_features[X86_TUNE_USE_GATHER_2PARTS]
     400  #define TARGET_USE_SCATTER_2PARTS \
     401  	ix86_tune_features[X86_TUNE_USE_SCATTER_2PARTS]
     402  #define TARGET_USE_GATHER_4PARTS \
     403  	ix86_tune_features[X86_TUNE_USE_GATHER_4PARTS]
     404  #define TARGET_USE_SCATTER_4PARTS \
     405  	ix86_tune_features[X86_TUNE_USE_SCATTER_4PARTS]
     406  #define TARGET_USE_GATHER \
     407  	ix86_tune_features[X86_TUNE_USE_GATHER]
     408  #define TARGET_USE_SCATTER \
     409  	ix86_tune_features[X86_TUNE_USE_SCATTER]
     410  #define TARGET_FUSE_CMP_AND_BRANCH_32 \
     411  	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
     412  #define TARGET_FUSE_CMP_AND_BRANCH_64 \
     413  	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
     414  #define TARGET_FUSE_CMP_AND_BRANCH \
     415  	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
     416  	 : TARGET_FUSE_CMP_AND_BRANCH_32)
     417  #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
     418  	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
     419  #define TARGET_FUSE_ALU_AND_BRANCH \
     420  	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
     421  #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
     422  #define TARGET_AVOID_LEA_FOR_ADDR \
     423  	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
     424  #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
     425  	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
     426  #define TARGET_AVX256_SPLIT_REGS \
     427  	ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
     428  #define TARGET_AVX512_SPLIT_REGS \
     429  	ix86_tune_features[X86_TUNE_AVX512_SPLIT_REGS]
     430  #define TARGET_GENERAL_REGS_SSE_SPILL \
     431  	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
     432  #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
     433  	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
     434  #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
     435  	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
     436  #define TARGET_ADJUST_UNROLL \
     437      ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
     438  #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
     439  	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
     440  #define TARGET_ONE_IF_CONV_INSN \
     441  	ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
     442  #define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
     443  #define TARGET_EMIT_VZEROUPPER \
     444  	ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
     445  #define TARGET_EXPAND_ABS \
     446  	ix86_tune_features[X86_TUNE_EXPAND_ABS]
     447  #define TARGET_V2DF_REDUCTION_PREFER_HADDPD \
     448  	ix86_tune_features[X86_TUNE_V2DF_REDUCTION_PREFER_HADDPD]
     449  #define TARGET_DEST_FALSE_DEP_FOR_GLC \
     450  	ix86_tune_features[X86_TUNE_DEST_FALSE_DEP_FOR_GLC]
     451  
     452  /* Feature tests against the various architecture variations.  */
     453  enum ix86_arch_indices {
     454    X86_ARCH_CMOV,
     455    X86_ARCH_CMPXCHG,
     456    X86_ARCH_CMPXCHG8B,
     457    X86_ARCH_XADD,
     458    X86_ARCH_BSWAP,
     459  
     460    X86_ARCH_LAST
     461  };
     462  
     463  extern unsigned char ix86_arch_features[X86_ARCH_LAST];
     464  
     465  #define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
     466  #define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
     467  #define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
     468  #define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
     469  #define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
     470  
     471  /* For sane SSE instruction set generation we need fcomi instruction.
     472     It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
     473     expands to a sequence that includes conditional move. */
     474  #define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
     475  
     476  #define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
     477  
     478  extern unsigned char ix86_prefetch_sse;
     479  #define TARGET_PREFETCH_SSE	ix86_prefetch_sse
     480  
     481  #define ASSEMBLER_DIALECT	(ix86_asm_dialect)
     482  
     483  #define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
     484  #define TARGET_MIX_SSE_I387 \
     485   ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
     486  
     487  #define TARGET_HARD_SF_REGS	(TARGET_80387 || TARGET_MMX || TARGET_SSE)
     488  #define TARGET_HARD_DF_REGS	(TARGET_80387 || TARGET_SSE)
     489  #define TARGET_HARD_XF_REGS	(TARGET_80387)
     490  
     491  #define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
     492  #define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
     493  #define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
     494  #define TARGET_SUN_TLS		0
     495  
     496  #ifndef TARGET_64BIT_DEFAULT
     497  #define TARGET_64BIT_DEFAULT 0
     498  #endif
     499  #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
     500  #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
     501  #endif
     502  
     503  #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
     504  #define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
     505  
     506  /* Fence to use after loop using storent.  */
     507  
     508  extern GTY(()) tree x86_mfence;
     509  #define FENCE_FOLLOWING_MOVNT x86_mfence
     510  
     511  /* Once GDB has been enhanced to deal with functions without frame
     512     pointers, we can change this to allow for elimination of
     513     the frame pointer in leaf functions.  */
     514  #define TARGET_DEFAULT 0
     515  
     516  /* Extra bits to force.  */
     517  #define TARGET_SUBTARGET_DEFAULT 0
     518  #define TARGET_SUBTARGET_ISA_DEFAULT 0
     519  
     520  /* Extra bits to force on w/ 32-bit mode.  */
     521  #define TARGET_SUBTARGET32_DEFAULT 0
     522  #define TARGET_SUBTARGET32_ISA_DEFAULT 0
     523  
     524  /* Extra bits to force on w/ 64-bit mode.  */
     525  #define TARGET_SUBTARGET64_DEFAULT 0
     526  /* Enable MMX, SSE and SSE2 by default.  */
     527  #define TARGET_SUBTARGET64_ISA_DEFAULT \
     528    (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
     529  
     530  /* Replace MACH-O, ifdefs by in-line tests, where possible. 
     531     (a) Macros defined in config/i386/darwin.h  */
     532  #define TARGET_MACHO 0
     533  #define TARGET_MACHO_SYMBOL_STUBS 0
     534  #define MACHOPIC_ATT_STUB 0
     535  /* (b) Macros defined in config/darwin.h  */
     536  #define MACHO_DYNAMIC_NO_PIC_P 0
     537  #define MACHOPIC_INDIRECT 0
     538  #define MACHOPIC_PURE 0
     539  
     540  /* For the RDOS  */
     541  #define TARGET_RDOS 0
     542  
     543  /* For the Windows 64-bit ABI.  */
     544  #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
     545  
     546  /* For the Windows 32-bit ABI.  */
     547  #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
     548  
     549  /* This is re-defined by cygming.h.  */
     550  #define TARGET_SEH 0
     551  
     552  /* The default abi used by target.  */
     553  #define DEFAULT_ABI SYSV_ABI
     554  
     555  /* The default TLS segment register used by target.  */
     556  #define DEFAULT_TLS_SEG_REG \
     557    (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
     558  
     559  /* Subtargets may reset this to 1 in order to enable 96-bit long double
     560     with the rounding mode forced to 53 bits.  */
     561  #define TARGET_96_ROUND_53_LONG_DOUBLE 0
     562  
     563  #ifndef SUBTARGET_DRIVER_SELF_SPECS
     564  # define SUBTARGET_DRIVER_SELF_SPECS ""
     565  #endif
     566  
     567  #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
     568  
     569  /* -march=native handling only makes sense with compiler running on
     570     an x86 or x86_64 chip.  If changing this condition, also change
     571     the condition in driver-i386.cc.  */
     572  #if defined(__i386__) || defined(__x86_64__)
     573  /* In driver-i386.cc.  */
     574  extern const char *host_detect_local_cpu (int argc, const char **argv);
     575  #define EXTRA_SPEC_FUNCTIONS \
     576    { "local_cpu_detect", host_detect_local_cpu },
     577  #define HAVE_LOCAL_CPU_DETECT
     578  #endif
     579  
     580  #if TARGET_64BIT_DEFAULT
     581  #define OPT_ARCH64 "!m32"
     582  #define OPT_ARCH32 "m32"
     583  #else
     584  #define OPT_ARCH64 "m64|mx32"
     585  #define OPT_ARCH32 "m64|mx32:;"
     586  #endif
     587  
     588  /* Support for configure-time defaults of some command line options.
     589     The order here is important so that -march doesn't squash the
     590     tune or cpu values.  */
     591  #define OPTION_DEFAULT_SPECS					   \
     592    {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
     593    {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
     594    {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
     595    {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
     596    {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
     597    {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
     598    {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
     599    {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
     600    {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
     601  
     602  /* Specs for the compiler proper */
     603  
     604  #ifndef CC1_CPU_SPEC
     605  #define CC1_CPU_SPEC_1 ""
     606  
     607  #ifndef HAVE_LOCAL_CPU_DETECT
     608  #define CC1_CPU_SPEC CC1_CPU_SPEC_1
     609  #else
     610  #define ARCH_ARG "%{" OPT_ARCH64 ":64;:32}"
     611  #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
     612  "%{march=native:%>march=native %:local_cpu_detect(arch " ARCH_ARG ") \
     613    %{!mtune=*:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}} \
     614  %{mtune=native:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}"
     615  #endif
     616  #endif
     617  
     618  /* Target CPU builtins.  */
     619  #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
     620  
     621  /* Target Pragmas.  */
     622  #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
     623  
     624  #ifndef CC1_SPEC
     625  #define CC1_SPEC "%(cc1_cpu) "
     626  #endif
     627  
     628  /* This macro defines names of additional specifications to put in the
     629     specs that can be used in various specifications like CC1_SPEC.  Its
     630     definition is an initializer with a subgrouping for each command option.
     631  
     632     Each subgrouping contains a string constant, that defines the
     633     specification name, and a string constant that used by the GCC driver
     634     program.
     635  
     636     Do not define this macro if it does not need to do anything.  */
     637  
     638  #ifndef SUBTARGET_EXTRA_SPECS
     639  #define SUBTARGET_EXTRA_SPECS
     640  #endif
     641  
     642  #define EXTRA_SPECS							\
     643    { "cc1_cpu",  CC1_CPU_SPEC },						\
     644    SUBTARGET_EXTRA_SPECS
     645  
     646  
     647  /* Whether to allow x87 floating-point arithmetic on MODE (one of
     648     SFmode, DFmode and XFmode) in the current excess precision
     649     configuration.  */
     650  #define X87_ENABLE_ARITH(MODE)				\
     651    (ix86_unsafe_math_optimizations			\
     652     || ix86_excess_precision == EXCESS_PRECISION_FAST	\
     653     || (MODE) == XFmode)
     654  
     655  /* Likewise, whether to allow direct conversions from integer mode
     656     IMODE (HImode, SImode or DImode) to MODE.  */
     657  #define X87_ENABLE_FLOAT(MODE, IMODE)			\
     658    (ix86_unsafe_math_optimizations			\
     659     || ix86_excess_precision == EXCESS_PRECISION_FAST	\
     660     || (MODE) == XFmode					\
     661     || ((MODE) == DFmode && (IMODE) == SImode)		\
     662     || (IMODE) == HImode)
     663  
     664  /* target machine storage layout */
     665  
     666  #define SHORT_TYPE_SIZE 16
     667  #define INT_TYPE_SIZE 32
     668  #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
     669  #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
     670  #define LONG_LONG_TYPE_SIZE 64
     671  #define FLOAT_TYPE_SIZE 32
     672  #define DOUBLE_TYPE_SIZE 64
     673  #define LONG_DOUBLE_TYPE_SIZE \
     674    (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
     675  
     676  #define WIDEST_HARDWARE_FP_SIZE 80
     677  
     678  #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
     679  #define MAX_BITS_PER_WORD 64
     680  #else
     681  #define MAX_BITS_PER_WORD 32
     682  #endif
     683  
     684  /* Define this if most significant byte of a word is the lowest numbered.  */
     685  /* That is true on the 80386.  */
     686  
     687  #define BITS_BIG_ENDIAN 0
     688  
     689  /* Define this if most significant byte of a word is the lowest numbered.  */
     690  /* That is not true on the 80386.  */
     691  #define BYTES_BIG_ENDIAN 0
     692  
     693  /* Define this if most significant word of a multiword number is the lowest
     694     numbered.  */
     695  /* Not true for 80386 */
     696  #define WORDS_BIG_ENDIAN 0
     697  
     698  /* Width of a word, in units (bytes).  */
     699  #define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
     700  
     701  #ifndef IN_LIBGCC2
     702  #define MIN_UNITS_PER_WORD	4
     703  #endif
     704  
     705  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     706  #define PARM_BOUNDARY BITS_PER_WORD
     707  
     708  /* Boundary (in *bits*) on which stack pointer should be aligned.  */
     709  #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
     710  
     711  /* Stack boundary of the main function guaranteed by OS.  */
     712  #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
     713  
     714  /* Minimum stack boundary.  */
     715  #define MIN_STACK_BOUNDARY BITS_PER_WORD
     716  
     717  /* Boundary (in *bits*) on which the stack pointer prefers to be
     718     aligned; the compiler cannot rely on having this alignment.  */
     719  #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
     720  
     721  /* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
     722     both 32bit and 64bit, to support codes that need 128 bit stack
     723     alignment for SSE instructions, but can't realign the stack.  */
     724  #define PREFERRED_STACK_BOUNDARY_DEFAULT \
     725    (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
     726  
     727  /* 1 if -mstackrealign should be turned on by default.  It will
     728     generate an alternate prologue and epilogue that realigns the
     729     runtime stack if nessary.  This supports mixing codes that keep a
     730     4-byte aligned stack, as specified by i386 psABI, with codes that
     731     need a 16-byte aligned stack, as required by SSE instructions.  */
     732  #define STACK_REALIGN_DEFAULT 0
     733  
     734  /* Boundary (in *bits*) on which the incoming stack is aligned.  */
     735  #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
     736  
     737  /* According to Windows x64 software convention, the maximum stack allocatable
     738     in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
     739     instructions allowed to adjust the stack pointer in the epilog, forcing the
     740     use of frame pointer for frames larger than 2 GB.  This theorical limit
     741     is reduced by 256, an over-estimated upper bound for the stack use by the
     742     prologue.
     743     We define only one threshold for both the prolog and the epilog.  When the
     744     frame size is larger than this threshold, we allocate the area to save SSE
     745     regs, then save them, and then allocate the remaining.  There is no SEH
     746     unwind info for this later allocation.  */
     747  #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
     748  
     749  /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
     750     mandatory for the 64-bit ABI, and may or may not be true for other
     751     operating systems.  */
     752  #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
     753  
     754  /* Minimum allocation boundary for the code of a function.  */
     755  #define FUNCTION_BOUNDARY 8
     756  
     757  /* C++ stores the virtual bit in the lowest bit of function pointers.  */
     758  #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
     759  
     760  /* Minimum size in bits of the largest boundary to which any
     761     and all fundamental data types supported by the hardware
     762     might need to be aligned. No data type wants to be aligned
     763     rounder than this.
     764  
     765     Pentium+ prefers DFmode values to be aligned to 64 bit boundary
     766     and Pentium Pro XFmode values at 128 bit boundaries.
     767  
     768     When increasing the maximum, also update
     769     TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
     770  
     771  #define BIGGEST_ALIGNMENT \
     772    (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
     773  
     774  /* Maximum stack alignment.  */
     775  #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
     776  
     777  /* Alignment value for attribute ((aligned)).  It is a constant since
     778     it is the part of the ABI.  We shouldn't change it with -mavx.  */
     779  #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
     780  
     781  /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
     782  #define ALIGN_MODE_128(MODE) \
     783   ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
     784  
     785  /* The published ABIs say that doubles should be aligned on word
     786     boundaries, so lower the alignment for structure fields unless
     787     -malign-double is set.  */
     788  
     789  /* ??? Blah -- this macro is used directly by libobjc.  Since it
     790     supports no vector modes, cut out the complexity and fall back
     791     on BIGGEST_FIELD_ALIGNMENT.  */
     792  #ifdef IN_TARGET_LIBS
     793  #ifdef __x86_64__
     794  #define BIGGEST_FIELD_ALIGNMENT 128
     795  #else
     796  #define BIGGEST_FIELD_ALIGNMENT 32
     797  #endif
     798  #else
     799  #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
     800    x86_field_alignment ((TYPE), (COMPUTED))
     801  #endif
     802  
     803  /* If defined, a C expression to compute the alignment for a static
     804     variable.  TYPE is the data type, and ALIGN is the alignment that
     805     the object would ordinarily have.  The value of this macro is used
     806     instead of that alignment to align the object.
     807  
     808     If this macro is not defined, then ALIGN is used.
     809  
     810     One use of this macro is to increase alignment of medium-size
     811     data to make it all fit in fewer cache lines.  Another is to
     812     cause character arrays to be word-aligned so that `strcpy' calls
     813     that copy constants to character arrays can be done inline.  */
     814  
     815  #define DATA_ALIGNMENT(TYPE, ALIGN) \
     816    ix86_data_alignment ((TYPE), (ALIGN), true)
     817  
     818  /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
     819     some alignment increase, instead of optimization only purposes.  E.g.
     820     AMD x86-64 psABI says that variables with array type larger than 15 bytes
     821     must be aligned to 16 byte boundaries.
     822  
     823     If this macro is not defined, then ALIGN is used.  */
     824  
     825  #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
     826    ix86_data_alignment ((TYPE), (ALIGN), false)
     827  
     828  /* If defined, a C expression to compute the alignment for a local
     829     variable.  TYPE is the data type, and ALIGN is the alignment that
     830     the object would ordinarily have.  The value of this macro is used
     831     instead of that alignment to align the object.
     832  
     833     If this macro is not defined, then ALIGN is used.
     834  
     835     One use of this macro is to increase alignment of medium-size
     836     data to make it all fit in fewer cache lines.  */
     837  
     838  #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
     839    ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
     840  
     841  /* If defined, a C expression to compute the alignment for stack slot.
     842     TYPE is the data type, MODE is the widest mode available, and ALIGN
     843     is the alignment that the slot would ordinarily have.  The value of
     844     this macro is used instead of that alignment to align the slot.
     845  
     846     If this macro is not defined, then ALIGN is used when TYPE is NULL,
     847     Otherwise, LOCAL_ALIGNMENT will be used.
     848  
     849     One use of this macro is to set alignment of stack slot to the
     850     maximum alignment of all possible modes which the slot may have.  */
     851  
     852  #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
     853    ix86_local_alignment ((TYPE), (MODE), (ALIGN))
     854  
     855  /* If defined, a C expression to compute the alignment for a local
     856     variable DECL.
     857  
     858     If this macro is not defined, then
     859     LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
     860  
     861     One use of this macro is to increase alignment of medium-size
     862     data to make it all fit in fewer cache lines.  */
     863  
     864  #define LOCAL_DECL_ALIGNMENT(DECL) \
     865    ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
     866  
     867  /* If defined, a C expression to compute the minimum required alignment
     868     for dynamic stack realignment purposes for EXP (a TYPE or DECL),
     869     MODE, assuming normal alignment ALIGN.
     870  
     871     If this macro is not defined, then (ALIGN) will be used.  */
     872  
     873  #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
     874    ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
     875  
     876  
     877  /* Set this nonzero if move instructions will actually fail to work
     878     when given unaligned data.  */
     879  #define STRICT_ALIGNMENT 0
     880  
     881  /* If bit field type is int, don't let it cross an int,
     882     and give entire struct the alignment of an int.  */
     883  /* Required on the 386 since it doesn't have bit-field insns.  */
     884  #define PCC_BITFIELD_TYPE_MATTERS 1
     885  
     886  /* Standard register usage.  */
     887  
     888  /* This processor has special stack-like registers.  See reg-stack.cc
     889     for details.  */
     890  
     891  #define STACK_REGS
     892  
     893  #define IS_STACK_MODE(MODE)				\
     894    (X87_FLOAT_MODE_P (MODE)				\
     895     && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)	\
     896         || TARGET_MIX_SSE_I387))
     897  
     898  /* Number of actual hardware registers.
     899     The hardware registers are assigned numbers for the compiler
     900     from 0 to just below FIRST_PSEUDO_REGISTER.
     901     All registers that the compiler knows about must be given numbers,
     902     even those that are not normally considered general registers.
     903  
     904     In the 80386 we give the 8 general purpose registers the numbers 0-7.
     905     We number the floating point registers 8-15.
     906     Note that registers 0-7 can be accessed as a  short or int,
     907     while only 0-3 may be used with byte `mov' instructions.
     908  
     909     Reg 16 does not correspond to any hardware register, but instead
     910     appears in the RTL as an argument pointer prior to reload, and is
     911     eliminated during reloading in favor of either the stack or frame
     912     pointer.  */
     913  
     914  #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
     915  
     916  /* Number of hardware registers that go into the DWARF-2 unwind info.
     917     If not defined, equals FIRST_PSEUDO_REGISTER.  */
     918  
     919  #define DWARF_FRAME_REGISTERS 17
     920  
     921  /* 1 for registers that have pervasive standard uses
     922     and are not available for the register allocator.
     923     On the 80386, the stack pointer is such, as is the arg pointer.
     924  
     925     REX registers are disabled for 32bit targets in
     926     TARGET_CONDITIONAL_REGISTER_USAGE.  */
     927  
     928  #define FIXED_REGISTERS						\
     929  /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
     930  {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
     931  /*arg,flags,fpsr,frame*/					\
     932      1,    1,   1,    1,						\
     933  /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
     934       0,   0,   0,   0,   0,   0,   0,   0,			\
     935  /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
     936       0,   0,   0,   0,   0,   0,   0,   0,			\
     937  /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
     938       0,   0,   0,   0,   0,   0,   0,   0,			\
     939  /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
     940       0,   0,    0,    0,    0,    0,    0,    0,		\
     941  /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
     942       0,   0,    0,    0,    0,    0,    0,    0,		\
     943  /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
     944       0,   0,    0,    0,    0,    0,    0,    0,		\
     945  /*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
     946       0,  0,   0,  0,  0,  0,  0,  0 }
     947  
     948  /* 1 for registers not available across function calls.
     949     These must include the FIXED_REGISTERS and also any
     950     registers that can be used without being saved.
     951     The latter must include the registers where values are returned
     952     and the register where structure-value addresses are passed.
     953     Aside from that, you can include as many other registers as you like.
     954  
     955     Value is set to 1 if the register is call used unconditionally.
     956     Bit one is set if the register is call used on TARGET_32BIT ABI.
     957     Bit two is set if the register is call used on TARGET_64BIT ABI.
     958     Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
     959  
     960     Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
     961  
     962  #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
     963    ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
     964  
     965  #define CALL_USED_REGISTERS					\
     966  /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
     967  {  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
     968  /*arg,flags,fpsr,frame*/					\
     969      1,   1,    1,    1,						\
     970  /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
     971       1,   1,   1,   1,   1,   1,   6,   6,			\
     972  /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
     973       1,   1,   1,   1,   1,   1,   1,   1,			\
     974  /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
     975       1,   1,   1,   1,   2,   2,   2,   2,			\
     976  /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
     977       6,   6,    6,    6,    6,    6,    6,    6,		\
     978  /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
     979       1,    1,     1,    1,    1,    1,    1,    1,		\
     980  /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
     981       1,    1,     1,    1,    1,    1,    1,    1,		\
     982   /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
     983       1,   1,   1,   1,   1,   1,   1,   1 }
     984  
     985  /* Order in which to allocate registers.  Each register must be
     986     listed once, even those in FIXED_REGISTERS.  List frame pointer
     987     late and fixed registers last.  Note that, in general, we prefer
     988     registers listed in CALL_USED_REGISTERS, keeping the others
     989     available for storage of persistent values.
     990  
     991     The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
     992     so this is just empty initializer for array.  */
     993  
     994  #define REG_ALLOC_ORDER							\
     995  { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,			\
     996    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
     997    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
     998    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
     999    64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
    1000  
    1001  /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
    1002     to be rearranged based on a particular function.  When using sse math,
    1003     we want to allocate SSE before x87 registers and vice versa.  */
    1004  
    1005  #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
    1006  
    1007  
    1008  #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
    1009  
    1010  #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
    1011    (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT				\
    1012     && GENERAL_REGNO_P (REGNO)						\
    1013     && ((MODE) == XFmode || (MODE) == XCmode))
    1014  
    1015  #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
    1016  
    1017  #define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
    1018  
    1019  #define VALID_AVX256_REG_MODE(MODE)					\
    1020    ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
    1021     || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
    1022     || (MODE) == V4DFmode || (MODE) == V16HFmode || (MODE) == V16BFmode)
    1023  
    1024  #define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
    1025    (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
    1026  
    1027  #define VALID_AVX512F_SCALAR_MODE(MODE)					\
    1028    ((MODE) == DImode || (MODE) == DFmode					\
    1029     || (MODE) == SImode || (MODE) == SFmode				\
    1030     || (MODE) == HImode || (MODE) == HFmode || (MODE) == BFmode)
    1031  
    1032  #define VALID_AVX512F_REG_MODE(MODE)					\
    1033    ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
    1034     || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
    1035     || (MODE) == V4TImode || (MODE) == V32HFmode || (MODE) == V32BFmode)
    1036  
    1037  #define VALID_AVX512F_REG_OR_XI_MODE(MODE)				\
    1038    (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
    1039  
    1040  #define VALID_AVX512VL_128_REG_MODE(MODE)				\
    1041    ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
    1042     || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode	\
    1043     || (MODE) == TFmode || (MODE) == V1TImode || (MODE) == V8HFmode	\
    1044     || (MODE) == V8BFmode || (MODE) == TImode)
    1045  
    1046  #define VALID_AVX512FP16_REG_MODE(MODE)					\
    1047    ((MODE) == V8HFmode || (MODE) == V16HFmode || (MODE) == V32HFmode)
    1048  
    1049  #define VALID_SSE2_REG_MODE(MODE)					\
    1050    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
    1051     || (MODE) == V8HFmode || (MODE) == V4HFmode || (MODE) == V2HFmode	\
    1052     || (MODE) == V8BFmode || (MODE) == V4BFmode || (MODE) == V2BFmode	\
    1053     || (MODE) == V4QImode || (MODE) == V2HImode || (MODE) == V1SImode	\
    1054     || (MODE) == V2DImode || (MODE) == V2QImode				\
    1055     || (MODE) == DFmode	|| (MODE) == DImode				\
    1056     || (MODE) == HFmode || (MODE) == BFmode)
    1057  
    1058  #define VALID_SSE_REG_MODE(MODE)					\
    1059    ((MODE) == V1TImode || (MODE) == TImode				\
    1060     || (MODE) == V4SFmode || (MODE) == V4SImode				\
    1061     || (MODE) == SFmode || (MODE) == SImode				\
    1062     || (MODE) == TFmode || (MODE) == TDmode)
    1063  
    1064  #define VALID_MMX_REG_MODE_3DNOW(MODE) \
    1065    ((MODE) == V2SFmode || (MODE) == SFmode)
    1066  
    1067  /* To match ia32 psABI, V4HFmode should be added here.  */
    1068  #define VALID_MMX_REG_MODE(MODE)					\
    1069    ((MODE) == V1DImode || (MODE) == DImode				\
    1070     || (MODE) == V2SImode || (MODE) == SImode				\
    1071     || (MODE) == V4HImode || (MODE) == V8QImode				\
    1072     || (MODE) == V4HFmode || (MODE) == V4BFmode)
    1073  
    1074  #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
    1075  
    1076  #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
    1077  
    1078  #define VALID_FP_MODE_P(MODE)						\
    1079    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
    1080     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)
    1081  
    1082  #define VALID_INT_MODE_P(MODE)						\
    1083    ((MODE) == QImode || (MODE) == HImode					\
    1084     || (MODE) == SImode || (MODE) == DImode				\
    1085     || (MODE) == CQImode || (MODE) == CHImode				\
    1086     || (MODE) == CSImode || (MODE) == CDImode				\
    1087     || (MODE) == SDmode || (MODE) == DDmode				\
    1088     || (MODE) == HFmode || (MODE) == HCmode || (MODE) == BFmode		\
    1089     || (MODE) == V2HImode || (MODE) == V2HFmode || (MODE) == V2BFmode	\
    1090     || (MODE) == V1SImode || (MODE) == V4QImode || (MODE) == V2QImode	\
    1091     || (TARGET_64BIT							\
    1092         && ((MODE) == TImode || (MODE) == CTImode			\
    1093  	   || (MODE) == TFmode || (MODE) == TCmode			\
    1094  	   || (MODE) == V8QImode || (MODE) == V4HImode			\
    1095  	   || (MODE) == V2SImode || (MODE) == TDmode)))
    1096  
    1097  /* Return true for modes passed in SSE registers.  */
    1098  #define SSE_REG_MODE_P(MODE)						\
    1099    ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
    1100     || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
    1101     || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
    1102     || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
    1103     || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
    1104     || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
    1105     || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
    1106     || (MODE) == V16SFmode \
    1107     || (MODE) == V32HFmode || (MODE) == V16HFmode || (MODE) == V8HFmode  \
    1108     || (MODE) == V32BFmode || (MODE) == V16BFmode || (MODE) == V8BFmode)
    1109  
    1110  #define X87_FLOAT_MODE_P(MODE)	\
    1111    (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
    1112  
    1113  #define SSE_FLOAT_MODE_P(MODE) \
    1114    ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
    1115  
    1116  #define SSE_FLOAT_MODE_SSEMATH_OR_HF_P(MODE)				\
    1117    ((SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)				\
    1118     || (TARGET_AVX512FP16 && (MODE) == HFmode))
    1119  
    1120  #define FMA4_VEC_FLOAT_MODE_P(MODE) \
    1121    (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
    1122  		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
    1123  
    1124  #define VALID_BCST_MODE_P(MODE)			\
    1125    ((MODE) == SFmode || (MODE) == DFmode		\
    1126     || (MODE) == SImode || (MODE) == DImode	\
    1127     || (MODE) == HFmode)
    1128  
    1129  /* It is possible to write patterns to move flags; but until someone
    1130     does it,  */
    1131  #define AVOID_CCMODE_COPIES
    1132  
    1133  /* Specify the modes required to caller save a given hard regno.
    1134     We do this on i386 to prevent flags from being saved at all.
    1135  
    1136     Kill any attempts to combine saving of modes.  */
    1137  
    1138  #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
    1139    (CC_REGNO_P (REGNO) ? VOIDmode					\
    1140     : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
    1141     : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL)	\
    1142     : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO)			\
    1143  			    && TARGET_PARTIAL_REG_STALL)		\
    1144  			   || MASK_REGNO_P (REGNO)) ? SImode		\
    1145     : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO)			\
    1146  			   || MASK_REGNO_P (REGNO)) ? SImode		\
    1147     : (MODE))
    1148  
    1149  /* Specify the registers used for certain standard purposes.
    1150     The values of these macros are register numbers.  */
    1151  
    1152  /* on the 386 the pc register is %eip, and is not usable as a general
    1153     register.  The ordinary mov instructions won't work */
    1154  /* #define PC_REGNUM  */
    1155  
    1156  /* Base register for access to arguments of the function.  */
    1157  #define ARG_POINTER_REGNUM ARGP_REG
    1158  
    1159  /* Register to use for pushing function arguments.  */
    1160  #define STACK_POINTER_REGNUM SP_REG
    1161  
    1162  /* Base register for access to local variables of the function.  */
    1163  #define FRAME_POINTER_REGNUM FRAME_REG
    1164  #define HARD_FRAME_POINTER_REGNUM BP_REG
    1165  
    1166  #define FIRST_INT_REG AX_REG
    1167  #define LAST_INT_REG  SP_REG
    1168  
    1169  #define FIRST_QI_REG AX_REG
    1170  #define LAST_QI_REG  BX_REG
    1171  
    1172  /* First & last stack-like regs */
    1173  #define FIRST_STACK_REG ST0_REG
    1174  #define LAST_STACK_REG  ST7_REG
    1175  
    1176  #define FIRST_SSE_REG XMM0_REG
    1177  #define LAST_SSE_REG  XMM7_REG
    1178  
    1179  #define FIRST_MMX_REG  MM0_REG
    1180  #define LAST_MMX_REG   MM7_REG
    1181  
    1182  #define FIRST_REX_INT_REG  R8_REG
    1183  #define LAST_REX_INT_REG   R15_REG
    1184  
    1185  #define FIRST_REX_SSE_REG  XMM8_REG
    1186  #define LAST_REX_SSE_REG   XMM15_REG
    1187  
    1188  #define FIRST_EXT_REX_SSE_REG  XMM16_REG
    1189  #define LAST_EXT_REX_SSE_REG   XMM31_REG
    1190  
    1191  #define FIRST_MASK_REG  MASK0_REG
    1192  #define LAST_MASK_REG   MASK7_REG
    1193  
    1194  /* Override this in other tm.h files to cope with various OS lossage
    1195     requiring a frame pointer.  */
    1196  #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
    1197  #define SUBTARGET_FRAME_POINTER_REQUIRED 0
    1198  #endif
    1199  
    1200  /* Define the shadow offset for asan. Other OS's can override in the
    1201     respective tm.h files.  */
    1202  #ifndef SUBTARGET_SHADOW_OFFSET
    1203  #define SUBTARGET_SHADOW_OFFSET	    \
    1204    (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
    1205  #endif
    1206  
    1207  /* Make sure we can access arbitrary call frames.  */
    1208  #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
    1209  
    1210  /* Register to hold the addressing base for position independent
    1211     code access to data items.  We don't use PIC pointer for 64bit
    1212     mode.  Define the regnum to dummy value to prevent gcc from
    1213     pessimizing code dealing with EBX.
    1214  
    1215     To avoid clobbering a call-saved register unnecessarily, we renumber
    1216     the pic register when possible.  The change is visible after the
    1217     prologue has been emitted.  */
    1218  
    1219  #define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
    1220  
    1221  #define PIC_OFFSET_TABLE_REGNUM						\
    1222    (ix86_use_pseudo_pic_reg ()						\
    1223     ? (pic_offset_table_rtx						\
    1224        ? INVALID_REGNUM							\
    1225        : REAL_PIC_OFFSET_TABLE_REGNUM)					\
    1226     : INVALID_REGNUM)
    1227  
    1228  #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
    1229  
    1230  /* This is overridden by <cygwin.h>.  */
    1231  #define MS_AGGREGATE_RETURN 0
    1232  
    1233  #define KEEP_AGGREGATE_RETURN_POINTER 0
    1234  
    1235  /* Define the classes of registers for register constraints in the
    1236     machine description.  Also define ranges of constants.
    1237  
    1238     One of the classes must always be named ALL_REGS and include all hard regs.
    1239     If there is more than one class, another class must be named NO_REGS
    1240     and contain no registers.
    1241  
    1242     The name GENERAL_REGS must be the name of a class (or an alias for
    1243     another name such as ALL_REGS).  This is the class of registers
    1244     that is allowed by "g" or "r" in a register constraint.
    1245     Also, registers outside this class are allocated only when
    1246     instructions express preferences for them.
    1247  
    1248     The classes must be numbered in nondecreasing order; that is,
    1249     a larger-numbered class must never be contained completely
    1250     in a smaller-numbered class.  This is why CLOBBERED_REGS class
    1251     is listed early, even though in 64-bit mode it contains more
    1252     registers than just %eax, %ecx, %edx.
    1253  
    1254     For any two classes, it is very desirable that there be another
    1255     class that represents their union.
    1256  
    1257     The flags and fpsr registers are in no class.  */
    1258  
    1259  enum reg_class
    1260  {
    1261    NO_REGS,
    1262    AREG, DREG, CREG, BREG, SIREG, DIREG,
    1263    AD_REGS,			/* %eax/%edx for DImode */
    1264    CLOBBERED_REGS,		/* call-clobbered integer registers */
    1265    Q_REGS,			/* %eax %ebx %ecx %edx */
    1266    NON_Q_REGS,			/* %esi %edi %ebp %esp */
    1267    TLS_GOTBASE_REGS,		/* %ebx %ecx %edx %esi %edi %ebp */
    1268    INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
    1269    LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
    1270    GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
    1271  				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
    1272    FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
    1273    FLOAT_REGS,
    1274    SSE_FIRST_REG,
    1275    NO_REX_SSE_REGS,
    1276    SSE_REGS,
    1277    ALL_SSE_REGS,
    1278    MMX_REGS,
    1279    FLOAT_SSE_REGS,
    1280    FLOAT_INT_REGS,
    1281    INT_SSE_REGS,
    1282    FLOAT_INT_SSE_REGS,
    1283    MASK_REGS,
    1284    ALL_MASK_REGS,
    1285    INT_MASK_REGS,
    1286    ALL_REGS,
    1287    LIM_REG_CLASSES
    1288  };
    1289  
    1290  #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
    1291  
    1292  #define INTEGER_CLASS_P(CLASS) \
    1293    reg_class_subset_p ((CLASS), GENERAL_REGS)
    1294  #define FLOAT_CLASS_P(CLASS) \
    1295    reg_class_subset_p ((CLASS), FLOAT_REGS)
    1296  #define SSE_CLASS_P(CLASS) \
    1297    reg_class_subset_p ((CLASS), ALL_SSE_REGS)
    1298  #define INT_SSE_CLASS_P(CLASS) \
    1299    reg_class_subset_p ((CLASS), INT_SSE_REGS)
    1300  #define MMX_CLASS_P(CLASS) \
    1301    ((CLASS) == MMX_REGS)
    1302  #define MASK_CLASS_P(CLASS) \
    1303    reg_class_subset_p ((CLASS), ALL_MASK_REGS)
    1304  #define MAYBE_INTEGER_CLASS_P(CLASS) \
    1305    reg_classes_intersect_p ((CLASS), GENERAL_REGS)
    1306  #define MAYBE_FLOAT_CLASS_P(CLASS) \
    1307    reg_classes_intersect_p ((CLASS), FLOAT_REGS)
    1308  #define MAYBE_SSE_CLASS_P(CLASS) \
    1309    reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
    1310  #define MAYBE_MMX_CLASS_P(CLASS) \
    1311    reg_classes_intersect_p ((CLASS), MMX_REGS)
    1312  #define MAYBE_MASK_CLASS_P(CLASS) \
    1313    reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
    1314  
    1315  #define Q_CLASS_P(CLASS) \
    1316    reg_class_subset_p ((CLASS), Q_REGS)
    1317  
    1318  #define MAYBE_NON_Q_CLASS_P(CLASS) \
    1319    reg_classes_intersect_p ((CLASS), NON_Q_REGS)
    1320  
    1321  /* Give names of register classes as strings for dump file.  */
    1322  
    1323  #define REG_CLASS_NAMES \
    1324  {  "NO_REGS",				\
    1325     "AREG", "DREG", "CREG", "BREG",	\
    1326     "SIREG", "DIREG",			\
    1327     "AD_REGS",				\
    1328     "CLOBBERED_REGS",			\
    1329     "Q_REGS", "NON_Q_REGS",		\
    1330     "TLS_GOTBASE_REGS",			\
    1331     "INDEX_REGS",			\
    1332     "LEGACY_REGS",			\
    1333     "GENERAL_REGS",			\
    1334     "FP_TOP_REG", "FP_SECOND_REG",	\
    1335     "FLOAT_REGS",			\
    1336     "SSE_FIRST_REG",			\
    1337     "NO_REX_SSE_REGS",			\
    1338     "SSE_REGS",				\
    1339     "ALL_SSE_REGS",			\
    1340     "MMX_REGS",				\
    1341     "FLOAT_SSE_REGS",			\
    1342     "FLOAT_INT_REGS",			\
    1343     "INT_SSE_REGS",			\
    1344     "FLOAT_INT_SSE_REGS",		\
    1345     "MASK_REGS",				\
    1346     "ALL_MASK_REGS",			\
    1347     "INT_MASK_REGS",			\
    1348     "ALL_REGS" }
    1349  
    1350  /* Define which registers fit in which classes.  This is an initializer
    1351     for a vector of HARD_REG_SET of length N_REG_CLASSES.
    1352  
    1353     Note that CLOBBERED_REGS are calculated by
    1354     TARGET_CONDITIONAL_REGISTER_USAGE.  */
    1355  
    1356  #define REG_CLASS_CONTENTS						\
    1357  {      { 0x0,        0x0,   0x0 },	/* NO_REGS */			\
    1358        { 0x01,        0x0,   0x0 },	/* AREG */			\
    1359        { 0x02,        0x0,   0x0 },	/* DREG */			\
    1360        { 0x04,        0x0,   0x0 },	/* CREG */			\
    1361        { 0x08,        0x0,   0x0 },	/* BREG */			\
    1362        { 0x10,        0x0,   0x0 },	/* SIREG */			\
    1363        { 0x20,        0x0,   0x0 },	/* DIREG */			\
    1364        { 0x03,        0x0,   0x0 },	/* AD_REGS */			\
    1365        { 0x07,        0x0,   0x0 },	/* CLOBBERED_REGS */		\
    1366        { 0x0f,        0x0,   0x0 },	/* Q_REGS */			\
    1367     { 0x900f0,        0x0,   0x0 },	/* NON_Q_REGS */		\
    1368        { 0x7e,      0xff0,   0x0 },	/* TLS_GOTBASE_REGS */		\
    1369        { 0x7f,      0xff0,   0x0 },	/* INDEX_REGS */		\
    1370     { 0x900ff,        0x0,   0x0 },	/* LEGACY_REGS */		\
    1371     { 0x900ff,      0xff0,   0x0 },	/* GENERAL_REGS */		\
    1372       { 0x100,        0x0,   0x0 },	/* FP_TOP_REG */		\
    1373       { 0x200,        0x0,   0x0 },	/* FP_SECOND_REG */		\
    1374      { 0xff00,        0x0,   0x0 },	/* FLOAT_REGS */		\
    1375    { 0x100000,        0x0,   0x0 },	/* SSE_FIRST_REG */		\
    1376   { 0xff00000,        0x0,   0x0 },	/* NO_REX_SSE_REGS */		\
    1377   { 0xff00000,    0xff000,   0x0 },	/* SSE_REGS */			\
    1378   { 0xff00000, 0xfffff000,   0xf },	/* ALL_SSE_REGS */		\
    1379  { 0xf0000000,        0xf,   0x0 },	/* MMX_REGS */			\
    1380   { 0xff0ff00, 0xfffff000,   0xf },	/* FLOAT_SSE_REGS */		\
    1381   {   0x9ffff,      0xff0,   0x0 },	/* FLOAT_INT_REGS */		\
    1382   { 0xff900ff, 0xfffffff0,   0xf },	/* INT_SSE_REGS */		\
    1383   { 0xff9ffff, 0xfffffff0,   0xf },	/* FLOAT_INT_SSE_REGS */	\
    1384         { 0x0,        0x0, 0xfe0 },	/* MASK_REGS */			\
    1385         { 0x0,        0x0, 0xff0 },	/* ALL_MASK_REGS */		\
    1386     { 0x900ff,      0xff0, 0xff0 },	/* INT_MASK_REGS */	\
    1387  { 0xffffffff, 0xffffffff, 0xfff }	/* ALL_REGS  */			\
    1388  }
    1389  
    1390  /* The same information, inverted:
    1391     Return the class number of the smallest class containing
    1392     reg number REGNO.  This could be a conditional expression
    1393     or could index an array.  */
    1394  
    1395  #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
    1396  
    1397  /* When this hook returns true for MODE, the compiler allows
    1398     registers explicitly used in the rtl to be used as spill registers
    1399     but prevents the compiler from extending the lifetime of these
    1400     registers.  */
    1401  #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
    1402  
    1403  #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
    1404  #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
    1405  
    1406  #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
    1407  #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
    1408  
    1409  #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
    1410  #define REX_INT_REGNO_P(N) \
    1411    IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
    1412  
    1413  #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
    1414  #define GENERAL_REGNO_P(N) \
    1415    (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
    1416  
    1417  #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
    1418  #define ANY_QI_REGNO_P(N) \
    1419    (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
    1420  
    1421  #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
    1422  #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
    1423  
    1424  #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
    1425  #define SSE_REGNO_P(N)						\
    1426    (LEGACY_SSE_REGNO_P (N)					\
    1427     || REX_SSE_REGNO_P (N)					\
    1428     || EXT_REX_SSE_REGNO_P (N))
    1429  
    1430  #define LEGACY_SSE_REGNO_P(N) \
    1431    IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)
    1432  
    1433  #define REX_SSE_REGNO_P(N) \
    1434    IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
    1435  
    1436  #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
    1437  
    1438  #define EXT_REX_SSE_REGNO_P(N) \
    1439    IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
    1440  
    1441  #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
    1442  #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
    1443  
    1444  #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
    1445  #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
    1446  #define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
    1447  
    1448  #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
    1449  #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
    1450  
    1451  #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
    1452  #define CC_REGNO_P(X) ((X) == FLAGS_REG)
    1453  
    1454  #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
    1455  #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG  \
    1456  			     || (N) == XMM4_REG  \
    1457  			     || (N) == XMM8_REG  \
    1458  			     || (N) == XMM12_REG \
    1459  			     || (N) == XMM16_REG \
    1460  			     || (N) == XMM20_REG \
    1461  			     || (N) == XMM24_REG \
    1462  			     || (N) == XMM28_REG)
    1463  
    1464  /* First floating point reg */
    1465  #define FIRST_FLOAT_REG FIRST_STACK_REG
    1466  #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
    1467  
    1468  #define GET_SSE_REGNO(N)			\
    1469    ((N) < 8 ? FIRST_SSE_REG + (N)		\
    1470     : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8	\
    1471     : FIRST_EXT_REX_SSE_REG + (N) - 16)
    1472  
    1473  /* The class value for index registers, and the one for base regs.  */
    1474  
    1475  #define INDEX_REG_CLASS INDEX_REGS
    1476  #define BASE_REG_CLASS GENERAL_REGS
    1477  
    1478  /* Stack layout; function entry, exit and calling.  */
    1479  
    1480  /* Define this if pushing a word on the stack
    1481     makes the stack pointer a smaller address.  */
    1482  #define STACK_GROWS_DOWNWARD 1
    1483  
    1484  /* Define this to nonzero if the nominal address of the stack frame
    1485     is at the high-address end of the local variables;
    1486     that is, each additional local variable allocated
    1487     goes at a more negative offset in the frame.  */
    1488  #define FRAME_GROWS_DOWNWARD 1
    1489  
    1490  #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
    1491  
    1492  /* If defined, the maximum amount of space required for outgoing arguments
    1493     will be computed and placed into the variable `crtl->outgoing_args_size'.
    1494     No space will be pushed onto the stack for each call; instead, the
    1495     function prologue should increase the stack frame size by this amount.  
    1496  
    1497     In 32bit mode enabling argument accumulation results in about 5% code size
    1498     growth because move instructions are less compact than push.  In 64bit
    1499     mode the difference is less drastic but visible.  
    1500  
    1501     FIXME: Unlike earlier implementations, the size of unwind info seems to
    1502     actually grow with accumulation.  Is that because accumulated args
    1503     unwind info became unnecesarily bloated?
    1504  
    1505     With the 64-bit MS ABI, we can generate correct code with or without
    1506     accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
    1507     generated without accumulated args is terrible.
    1508  
    1509     If stack probes are required, the space used for large function
    1510     arguments on the stack must also be probed, so enable
    1511     -maccumulate-outgoing-args so this happens in the prologue.
    1512  
    1513     We must use argument accumulation in interrupt function if stack
    1514     may be realigned to avoid DRAP.  */
    1515  
    1516  #define ACCUMULATE_OUTGOING_ARGS \
    1517    ((TARGET_ACCUMULATE_OUTGOING_ARGS \
    1518      && optimize_function_for_speed_p (cfun)) \
    1519     || (cfun->machine->func_type != TYPE_NORMAL \
    1520         && crtl->stack_realign_needed) \
    1521     || TARGET_STACK_PROBE \
    1522     || TARGET_64BIT_MS_ABI \
    1523     || (TARGET_MACHO && crtl->profile))
    1524  
    1525  /* We want the stack and args grow in opposite directions, even if
    1526     targetm.calls.push_argument returns false.  */
    1527  #define PUSH_ARGS_REVERSED 1
    1528  
    1529  /* Offset of first parameter from the argument pointer register value.  */
    1530  #define FIRST_PARM_OFFSET(FNDECL) 0
    1531  
    1532  /* Define this macro if functions should assume that stack space has been
    1533     allocated for arguments even when their values are passed in registers.
    1534  
    1535     The value of this macro is the size, in bytes, of the area reserved for
    1536     arguments passed in registers for the function represented by FNDECL.
    1537  
    1538     This space can be allocated by the caller, or be a part of the
    1539     machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
    1540     which.  */
    1541  #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
    1542  
    1543  #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
    1544    (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
    1545  
    1546  /* Define how to find the value returned by a library function
    1547     assuming the value has mode MODE.  */
    1548  
    1549  #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
    1550  
    1551  /* Define the size of the result block used for communication between
    1552     untyped_call and untyped_return.  The block contains a DImode value
    1553     followed by the block used by fnsave and frstor.  */
    1554  
    1555  #define APPLY_RESULT_SIZE (8+108)
    1556  
    1557  /* 1 if N is a possible register number for function argument passing.  */
    1558  #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
    1559  
    1560  /* Define a data type for recording info about an argument list
    1561     during the scan of that argument list.  This data type should
    1562     hold all necessary information about the function itself
    1563     and about the args processed so far, enough to enable macros
    1564     such as FUNCTION_ARG to determine where the next arg should go.  */
    1565  
    1566  typedef struct ix86_args {
    1567    int words;			/* # words passed so far */
    1568    int nregs;			/* # registers available for passing */
    1569    int regno;			/* next available register number */
    1570    int fastcall;			/* fastcall or thiscall calling convention
    1571  				   is used */
    1572    int sse_words;		/* # sse words passed so far */
    1573    int sse_nregs;		/* # sse registers available for passing */
    1574    int warn_avx512f;		/* True when we want to warn
    1575  				   about AVX512F ABI.  */
    1576    int warn_avx;			/* True when we want to warn about AVX ABI.  */
    1577    int warn_sse;			/* True when we want to warn about SSE ABI.  */
    1578    int warn_mmx;			/* True when we want to warn about MMX ABI.  */
    1579    int warn_empty;		/* True when we want to warn about empty classes
    1580  				   passing ABI change.  */
    1581    int sse_regno;		/* next available sse register number */
    1582    int mmx_words;		/* # mmx words passed so far */
    1583    int mmx_nregs;		/* # mmx registers available for passing */
    1584    int mmx_regno;		/* next available mmx register number */
    1585    int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
    1586    int caller;			/* true if it is caller.  */
    1587    int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
    1588  				   SFmode/DFmode arguments should be passed
    1589  				   in SSE registers.  Otherwise 0.  */
    1590    int stdarg;                   /* Set to 1 if function is stdarg.  */
    1591    enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
    1592   				   MS_ABI for ms abi.  */
    1593    tree decl;			/* Callee decl.  */
    1594  } CUMULATIVE_ARGS;
    1595  
    1596  /* Initialize a variable CUM of type CUMULATIVE_ARGS
    1597     for a call to a function whose data type is FNTYPE.
    1598     For a library call, FNTYPE is 0.  */
    1599  
    1600  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
    1601    init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
    1602  			(N_NAMED_ARGS) != -1)
    1603  
    1604  /* Output assembler code to FILE to increment profiler label # LABELNO
    1605     for profiling a function entry.  */
    1606  
    1607  #define FUNCTION_PROFILER(FILE, LABELNO) \
    1608    x86_function_profiler ((FILE), (LABELNO))
    1609  
    1610  #define MCOUNT_NAME "_mcount"
    1611  
    1612  #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
    1613  
    1614  #define PROFILE_COUNT_REGISTER "edx"
    1615  
    1616  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
    1617     the stack pointer does not matter.  The value is tested only in
    1618     functions that have frame pointers.
    1619     No definition is equivalent to always zero.  */
    1620  /* Note on the 386 it might be more efficient not to define this since
    1621     we have to restore it ourselves from the frame pointer, in order to
    1622     use pop */
    1623  
    1624  #define EXIT_IGNORE_STACK 1
    1625  
    1626  /* Define this macro as a C expression that is nonzero for registers
    1627     used by the epilogue or the `return' pattern.  */
    1628  
    1629  #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
    1630  
    1631  /* Output assembler code for a block containing the constant parts
    1632     of a trampoline, leaving space for the variable parts.  */
    1633  
    1634  /* On the 386, the trampoline contains two instructions:
    1635       mov #STATIC,ecx
    1636       jmp FUNCTION
    1637     The trampoline is generated entirely at runtime.  The operand of JMP
    1638     is the address of FUNCTION relative to the instruction following the
    1639     JMP (which is 5 bytes long).  */
    1640  
    1641  /* Length in units of the trampoline for entering a nested function.  */
    1642  
    1643  #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
    1644  
    1645  /* Definitions for register eliminations.
    1646  
    1647     This is an array of structures.  Each structure initializes one pair
    1648     of eliminable registers.  The "from" register number is given first,
    1649     followed by "to".  Eliminations of the same "from" register are listed
    1650     in order of preference.
    1651  
    1652     There are two registers that can always be eliminated on the i386.
    1653     The frame pointer and the arg pointer can be replaced by either the
    1654     hard frame pointer or to the stack pointer, depending upon the
    1655     circumstances.  The hard frame pointer is not used before reload and
    1656     so it is not eligible for elimination.  */
    1657  
    1658  #define ELIMINABLE_REGS					\
    1659  {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
    1660   { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
    1661   { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
    1662   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
    1663  
    1664  /* Define the offset between two registers, one to be eliminated, and the other
    1665     its replacement, at the start of a routine.  */
    1666  
    1667  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
    1668    ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
    1669  
    1670  /* Addressing modes, and classification of registers for them.  */
    1671  
    1672  /* Macros to check register numbers against specific register classes.  */
    1673  
    1674  /* These assume that REGNO is a hard or pseudo reg number.
    1675     They give nonzero only if REGNO is a hard reg of the suitable class
    1676     or a pseudo reg currently allocated to a suitable hard reg.
    1677     Since they use reg_renumber, they are safe only once reg_renumber
    1678     has been allocated, which happens in reginfo.cc during register
    1679     allocation.  */
    1680  
    1681  #define REGNO_OK_FOR_INDEX_P(REGNO) 					\
    1682    ((REGNO) < STACK_POINTER_REGNUM 					\
    1683     || REX_INT_REGNO_P (REGNO)						\
    1684     || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
    1685     || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
    1686  
    1687  #define REGNO_OK_FOR_BASE_P(REGNO) 					\
    1688    (GENERAL_REGNO_P (REGNO)						\
    1689     || (REGNO) == ARG_POINTER_REGNUM 					\
    1690     || (REGNO) == FRAME_POINTER_REGNUM 					\
    1691     || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
    1692  
    1693  /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
    1694     and check its validity for a certain class.
    1695     We have two alternate definitions for each of them.
    1696     The usual definition accepts all pseudo regs; the other rejects
    1697     them unless they have been allocated suitable hard regs.
    1698     The symbol REG_OK_STRICT causes the latter definition to be used.
    1699  
    1700     Most source files want to accept pseudo regs in the hope that
    1701     they will get allocated to the class that the insn wants them to be in.
    1702     Source files for reload pass need to be strict.
    1703     After reload, it makes no difference, since pseudo regs have
    1704     been eliminated by then.  */
    1705  
    1706  
    1707  /* Non strict versions, pseudos are ok.  */
    1708  #define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
    1709    (REGNO (X) < STACK_POINTER_REGNUM					\
    1710     || REX_INT_REGNO_P (REGNO (X))					\
    1711     || REGNO (X) >= FIRST_PSEUDO_REGISTER)
    1712  
    1713  #define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
    1714    (GENERAL_REGNO_P (REGNO (X))						\
    1715     || REGNO (X) == ARG_POINTER_REGNUM					\
    1716     || REGNO (X) == FRAME_POINTER_REGNUM 				\
    1717     || REGNO (X) >= FIRST_PSEUDO_REGISTER)
    1718  
    1719  /* Strict versions, hard registers only */
    1720  #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
    1721  #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
    1722  
    1723  #ifndef REG_OK_STRICT
    1724  #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
    1725  #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
    1726  
    1727  #else
    1728  #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
    1729  #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
    1730  #endif
    1731  
    1732  /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
    1733     that is a valid memory address for an instruction.
    1734     The MODE argument is the machine mode for the MEM expression
    1735     that wants to use this address.
    1736  
    1737     The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
    1738     except for CONSTANT_ADDRESS_P which is usually machine-independent.
    1739  
    1740     See legitimize_pic_address in i386.cc for details as to what
    1741     constitutes a legitimate address when -fpic is used.  */
    1742  
    1743  #define MAX_REGS_PER_ADDRESS 2
    1744  
    1745  #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
    1746  
    1747  /* If defined, a C expression to determine the base term of address X.
    1748     This macro is used in only one place: `find_base_term' in alias.cc.
    1749  
    1750     It is always safe for this macro to not be defined.  It exists so
    1751     that alias analysis can understand machine-dependent addresses.
    1752  
    1753     The typical use of this macro is to handle addresses containing
    1754     a label_ref or symbol_ref within an UNSPEC.  */
    1755  
    1756  #define FIND_BASE_TERM(X) ix86_find_base_term (X)
    1757  
    1758  /* Nonzero if the constant value X is a legitimate general operand
    1759     when generating PIC code.  It is given that flag_pic is on and
    1760     that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
    1761  
    1762  #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
    1763  
    1764  #define STRIP_UNARY(X) (UNARY_P (X) ? XEXP (X, 0) : X)
    1765  
    1766  #define SYMBOLIC_CONST(X)	\
    1767    (GET_CODE (X) == SYMBOL_REF						\
    1768     || GET_CODE (X) == LABEL_REF						\
    1769     || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
    1770  
    1771  /* Max number of args passed in registers.  If this is more than 3, we will
    1772     have problems with ebx (register #4), since it is a caller save register and
    1773     is also used as the pic register in ELF.  So for now, don't allow more than
    1774     3 registers to be passed in registers.  */
    1775  
    1776  /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
    1777  #define X86_64_REGPARM_MAX 6
    1778  #define X86_64_MS_REGPARM_MAX 4
    1779  
    1780  #define X86_32_REGPARM_MAX 3
    1781  
    1782  #define REGPARM_MAX							\
    1783    (TARGET_64BIT								\
    1784     ? (TARGET_64BIT_MS_ABI						\
    1785        ? X86_64_MS_REGPARM_MAX						\
    1786        : X86_64_REGPARM_MAX)						\
    1787     : X86_32_REGPARM_MAX)
    1788  
    1789  #define X86_64_SSE_REGPARM_MAX 8
    1790  #define X86_64_MS_SSE_REGPARM_MAX 4
    1791  
    1792  #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
    1793  
    1794  #define SSE_REGPARM_MAX							\
    1795    (TARGET_64BIT								\
    1796     ? (TARGET_64BIT_MS_ABI						\
    1797        ? X86_64_MS_SSE_REGPARM_MAX					\
    1798        : X86_64_SSE_REGPARM_MAX)						\
    1799     : X86_32_SSE_REGPARM_MAX)
    1800  
    1801  #define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
    1802  
    1803  #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
    1804  
    1805  /* Specify the machine mode that this machine uses
    1806     for the index in the tablejump instruction.  */
    1807  #define CASE_VECTOR_MODE \
    1808   (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
    1809  
    1810  /* Define this as 1 if `char' should by default be signed; else as 0.  */
    1811  #define DEFAULT_SIGNED_CHAR 1
    1812  
    1813  /* The constant maximum number of bytes that a single instruction can
    1814     move quickly between memory and registers or between two memory
    1815     locations.  */
    1816  #define MAX_MOVE_MAX 64
    1817  
    1818  /* Max number of bytes we can move from memory to memory in one
    1819     reasonably fast instruction, as opposed to MOVE_MAX_PIECES which
    1820     is the number of bytes at a time which we can move efficiently.
    1821     MOVE_MAX_PIECES defaults to MOVE_MAX.  */
    1822  
    1823  #define MOVE_MAX \
    1824    ((TARGET_AVX512F \
    1825      && (ix86_move_max == PVW_AVX512 \
    1826  	|| ix86_store_max == PVW_AVX512)) \
    1827     ? 64 \
    1828     : ((TARGET_AVX \
    1829         && (ix86_move_max >= PVW_AVX256 \
    1830  	   || ix86_store_max >= PVW_AVX256)) \
    1831        ? 32 \
    1832        : ((TARGET_SSE2 \
    1833  	  && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
    1834  	  && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
    1835  	 ? 16 : UNITS_PER_WORD)))
    1836  
    1837  /* STORE_MAX_PIECES is the number of bytes at a time that we can store
    1838     efficiently.  Allow 16/32/64 bytes only if inter-unit move is enabled
    1839     since vec_duplicate enabled by inter-unit move is used to implement
    1840     store_by_pieces of 16/32/64 bytes.  */
    1841  #define STORE_MAX_PIECES \
    1842    (TARGET_INTER_UNIT_MOVES_TO_VEC \
    1843     ? ((TARGET_AVX512F && ix86_store_max == PVW_AVX512) \
    1844        ? 64 \
    1845        : ((TARGET_AVX \
    1846  	  && ix86_store_max >= PVW_AVX256) \
    1847  	  ? 32 \
    1848  	  : ((TARGET_SSE2 \
    1849  	      && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
    1850  	      ? 16 : UNITS_PER_WORD))) \
    1851     : UNITS_PER_WORD)
    1852  
    1853  /* If a memory-to-memory move would take MOVE_RATIO or more simple
    1854     move-instruction pairs, we will do a cpymem or libcall instead.
    1855     Increasing the value will always make code faster, but eventually
    1856     incurs high cost in increased code size.
    1857  
    1858     If you don't define this, a reasonable default is used.  */
    1859  
    1860  #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
    1861  
    1862  /* If a clear memory operation would take CLEAR_RATIO or more simple
    1863     move-instruction sequences, we will do a clrmem or libcall instead.  */
    1864  
    1865  #define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
    1866  
    1867  /* Define if shifts truncate the shift count which implies one can
    1868     omit a sign-extension or zero-extension of a shift count.
    1869  
    1870     On i386, shifts do truncate the count.  But bit test instructions
    1871     take the modulo of the bit offset operand.  */
    1872  
    1873  /* #define SHIFT_COUNT_TRUNCATED */
    1874  
    1875  /* A macro to update M and UNSIGNEDP when an object whose type is
    1876     TYPE and which has the specified mode and signedness is to be
    1877     stored in a register.  This macro is only called when TYPE is a
    1878     scalar type.
    1879  
    1880     On i386 it is sometimes useful to promote HImode and QImode
    1881     quantities to SImode.  The choice depends on target type.  */
    1882  
    1883  #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
    1884  do {							\
    1885    if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
    1886        || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
    1887      (MODE) = SImode;					\
    1888  } while (0)
    1889  
    1890  /* Specify the machine mode that pointers have.
    1891     After generation of rtl, the compiler makes no further distinction
    1892     between pointers and any other objects of this machine mode.  */
    1893  #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
    1894  
    1895  /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
    1896     NONLOCAL needs space to save both shadow stack and stack pointers.
    1897  
    1898     FIXME: We only need to save and restore stack pointer in ptr_mode.
    1899     But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
    1900     to save and restore stack pointer.  See
    1901     https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
    1902   */
    1903  #define STACK_SAVEAREA_MODE(LEVEL)			\
    1904    ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
    1905  
    1906  /* Specify the machine_mode of the size increment
    1907     operand of an 'allocate_stack' named pattern.  */
    1908  #define STACK_SIZE_MODE Pmode
    1909  
    1910  /* A C expression whose value is zero if pointers that need to be extended
    1911     from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
    1912     greater then zero if they are zero-extended and less then zero if the
    1913     ptr_extend instruction should be used.  */
    1914  
    1915  #define POINTERS_EXTEND_UNSIGNED 1
    1916  
    1917  /* A function address in a call instruction
    1918     is a byte address (for indexing purposes)
    1919     so give the MEM rtx a byte's mode.  */
    1920  #define FUNCTION_MODE QImode
    1921  
    1922  
    1923  /* A C expression for the cost of a branch instruction.  A value of 1
    1924     is the default; other values are interpreted relative to that.  */
    1925  
    1926  #define BRANCH_COST(speed_p, predictable_p) \
    1927    (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
    1928  
    1929  /* An integer expression for the size in bits of the largest integer machine
    1930     mode that should actually be used.  We allow pairs of registers.  */
    1931  #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
    1932  
    1933  /* Define this macro as a C expression which is nonzero if accessing
    1934     less than a word of memory (i.e. a `char' or a `short') is no
    1935     faster than accessing a word of memory, i.e., if such access
    1936     require more than one instruction or if there is no difference in
    1937     cost between byte and (aligned) word loads.
    1938  
    1939     When this macro is not defined, the compiler will access a field by
    1940     finding the smallest containing object; when it is defined, a
    1941     fullword load will be used if alignment permits.  Unless bytes
    1942     accesses are faster than word accesses, using word accesses is
    1943     preferable since it may eliminate subsequent memory access if
    1944     subsequent accesses occur to other fields in the same word of the
    1945     structure, but to different bytes.  */
    1946  
    1947  #define SLOW_BYTE_ACCESS 0
    1948  
    1949  /* Define this macro if it is as good or better to call a constant
    1950     function address than to call an address kept in a register.
    1951  
    1952     Desirable on the 386 because a CALL with a constant address is
    1953     faster than one with a register address.  */
    1954  
    1955  #define NO_FUNCTION_CSE 1
    1956  
    1957  /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
    1958     return the mode to be used for the comparison.
    1959  
    1960     For floating-point equality comparisons, CCFPEQmode should be used.
    1961     VOIDmode should be used in all other cases.
    1962  
    1963     For integer comparisons against zero, reduce to CCNOmode or CCZmode if
    1964     possible, to allow for more combinations.  */
    1965  
    1966  #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
    1967  
    1968  /* Return nonzero if MODE implies a floating point inequality can be
    1969     reversed.  */
    1970  
    1971  #define REVERSIBLE_CC_MODE(MODE) 1
    1972  
    1973  /* A C expression whose value is reversed condition code of the CODE for
    1974     comparison done in CC_MODE mode.  */
    1975  #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
    1976  
    1977  
    1978  /* Control the assembler format that we output, to the extent
    1979     this does not vary between assemblers.  */
    1980  
    1981  /* How to refer to registers in assembler output.
    1982     This sequence is indexed by compiler's hard-register-number (see above).  */
    1983  
    1984  /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
    1985     For non floating point regs, the following are the HImode names.
    1986  
    1987     For float regs, the stack top is sometimes referred to as "%st(0)"
    1988     instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
    1989     "y" code.  */
    1990  
    1991  #define HI_REGISTER_NAMES						\
    1992  {"ax","dx","cx","bx","si","di","bp","sp",				\
    1993   "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
    1994   "argp", "flags", "fpsr", "frame",					\
    1995   "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
    1996   "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
    1997   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
    1998   "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
    1999   "xmm16", "xmm17", "xmm18", "xmm19",					\
    2000   "xmm20", "xmm21", "xmm22", "xmm23",					\
    2001   "xmm24", "xmm25", "xmm26", "xmm27",					\
    2002   "xmm28", "xmm29", "xmm30", "xmm31",					\
    2003   "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
    2004  
    2005  #define REGISTER_NAMES HI_REGISTER_NAMES
    2006  
    2007  #define QI_REGISTER_NAMES \
    2008  {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
    2009  
    2010  #define QI_HIGH_REGISTER_NAMES \
    2011  {"ah", "dh", "ch", "bh"}
    2012  
    2013  /* Table of additional register names to use in user input.  */
    2014  
    2015  #define ADDITIONAL_REGISTER_NAMES						\
    2016  {										\
    2017    { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG },	\
    2018    { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG },	\
    2019    { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG },	\
    2020    { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG },	\
    2021    { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG },	\
    2022    { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG },	\
    2023    { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG },	\
    2024    { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
    2025    { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
    2026    { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
    2027    { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
    2028    { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
    2029    { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
    2030    { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
    2031    { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
    2032    { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
    2033    { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
    2034    { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
    2035    { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
    2036    { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
    2037    { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
    2038    { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
    2039    { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG }  \
    2040  }
    2041  
    2042  /* How to renumber registers for gdb.  */
    2043  
    2044  #define DEBUGGER_REGNO(N) \
    2045    (TARGET_64BIT ? debugger64_register_map[(N)] : debugger_register_map[(N)])
    2046  
    2047  extern int const debugger_register_map[FIRST_PSEUDO_REGISTER];
    2048  extern int const debugger64_register_map[FIRST_PSEUDO_REGISTER];
    2049  extern int const svr4_debugger_register_map[FIRST_PSEUDO_REGISTER];
    2050  
    2051  /* Before the prologue, RA is at 0(%esp).  */
    2052  #define INCOMING_RETURN_ADDR_RTX \
    2053    gen_rtx_MEM (Pmode, stack_pointer_rtx)
    2054  
    2055  /* After the prologue, RA is at -4(AP) in the current frame.  */
    2056  #define RETURN_ADDR_RTX(COUNT, FRAME)					\
    2057    ((COUNT) == 0								\
    2058     ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,		\
    2059  					-UNITS_PER_WORD))		\
    2060     : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
    2061  
    2062  /* PC is dbx register 8; let's use that column for RA.  */
    2063  #define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
    2064  
    2065  /* Before the prologue, there are return address and error code for
    2066     exception handler on the top of the frame.  */
    2067  #define INCOMING_FRAME_SP_OFFSET \
    2068    (cfun->machine->func_type == TYPE_EXCEPTION \
    2069     ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
    2070  
    2071  /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
    2072     .cfi_startproc.  */
    2073  #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
    2074  
    2075  /* Describe how we implement __builtin_eh_return.  */
    2076  #define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
    2077  #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
    2078  
    2079  
    2080  /* Select a format to encode pointers in exception handling data.  CODE
    2081     is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
    2082     true if the symbol may be affected by dynamic relocations.
    2083  
    2084     ??? All x86 object file formats are capable of representing this.
    2085     After all, the relocation needed is the same as for the call insn.
    2086     Whether or not a particular assembler allows us to enter such, I
    2087     guess we'll have to see.  */
    2088  #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
    2089    asm_preferred_eh_data_format ((CODE), (GLOBAL))
    2090  
    2091  /* These are a couple of extensions to the formats accepted
    2092     by asm_fprintf:
    2093       %z prints out opcode suffix for word-mode instruction
    2094       %r prints out word-mode name for reg_names[arg]  */
    2095  #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
    2096    case 'z':						\
    2097      fputc (TARGET_64BIT ? 'q' : 'l', (FILE));		\
    2098      break;						\
    2099  							\
    2100    case 'r':						\
    2101      {							\
    2102        unsigned int regno = va_arg ((ARGS), int);	\
    2103        if (LEGACY_INT_REGNO_P (regno))			\
    2104  	fputc (TARGET_64BIT ? 'r' : 'e', (FILE));	\
    2105        fputs (reg_names[regno], (FILE));			\
    2106        break;						\
    2107      }
    2108  
    2109  /* This is how to output an insn to push a register on the stack.  */
    2110  
    2111  #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)		\
    2112    asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
    2113  
    2114  /* This is how to output an insn to pop a register from the stack.  */
    2115  
    2116  #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
    2117    asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
    2118  
    2119  /* This is how to output an element of a case-vector that is absolute.  */
    2120  
    2121  #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
    2122    ix86_output_addr_vec_elt ((FILE), (VALUE))
    2123  
    2124  /* This is how to output an element of a case-vector that is relative.  */
    2125  
    2126  #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
    2127    ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
    2128  
    2129  /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
    2130  
    2131  #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
    2132  {						\
    2133    if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
    2134      (PTR) += TARGET_AVX ? 1 : 2;		\
    2135  }
    2136  
    2137  /* A C statement or statements which output an assembler instruction
    2138     opcode to the stdio stream STREAM.  The macro-operand PTR is a
    2139     variable of type `char *' which points to the opcode name in
    2140     its "internal" form--the form that is written in the machine
    2141     description.  */
    2142  
    2143  #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
    2144    ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
    2145  
    2146  /* A C statement to output to the stdio stream FILE an assembler
    2147     command to pad the location counter to a multiple of 1<<LOG
    2148     bytes if it is within MAX_SKIP bytes.  */
    2149  
    2150  #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
    2151  # define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP)			\
    2152    do {									\
    2153      if ((LOG) != 0) {							\
    2154        if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1)		\
    2155  	fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
    2156        else								\
    2157  	fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
    2158      }									\
    2159    } while (0)
    2160  #endif
    2161  
    2162  /* Write the extra assembler code needed to declare a function
    2163     properly.  */
    2164  
    2165  #undef ASM_OUTPUT_FUNCTION_LABEL
    2166  #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
    2167    ix86_asm_output_function_label ((FILE), (NAME), (DECL))
    2168  
    2169  /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
    2170     If not defined, assemble_name will be used to output the name of the
    2171     symbol.  This macro may be used to modify the way a symbol is referenced
    2172     depending on information encoded by TARGET_ENCODE_SECTION_INFO.  */
    2173  
    2174  #ifndef ASM_OUTPUT_SYMBOL_REF
    2175  #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
    2176    do {							\
    2177      const char *name					\
    2178        = assemble_name_resolve (XSTR (x, 0));		\
    2179      /* In -masm=att wrap identifiers that start with $	\
    2180         into parens.  */					\
    2181      if (ASSEMBLER_DIALECT == ASM_ATT			\
    2182  	&& name[0] == '$'				\
    2183  	&& user_label_prefix[0] == '\0')		\
    2184        {							\
    2185  	fputc ('(', (FILE));				\
    2186  	assemble_name_raw ((FILE), name);		\
    2187  	fputc (')', (FILE));				\
    2188        }							\
    2189      else						\
    2190        assemble_name_raw ((FILE), name);			\
    2191    } while (0)
    2192  #endif
    2193  
    2194  /* Under some conditions we need jump tables in the text section,
    2195     because the assembler cannot handle label differences between
    2196     sections.  */
    2197  
    2198  #define JUMP_TABLES_IN_TEXT_SECTION \
    2199    (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
    2200  
    2201  /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
    2202     and switch back.  For x86 we do this only to save a few bytes that
    2203     would otherwise be unused in the text section.  */
    2204  #define CRT_MKSTR2(VAL) #VAL
    2205  #define CRT_MKSTR(x) CRT_MKSTR2(x)
    2206  
    2207  #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
    2208     asm (SECTION_OP "\n\t"					\
    2209  	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
    2210  	TEXT_SECTION_ASM_OP);
    2211  
    2212  /* Default threshold for putting data in large sections
    2213     with x86-64 medium memory model */
    2214  #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
    2215  
    2216  /* Which processor to tune code generation for.  These must be in sync
    2217     with processor_target_table in i386.cc.  */ 
    2218  
    2219  enum processor_type
    2220  {
    2221    PROCESSOR_GENERIC = 0,
    2222    PROCESSOR_I386,			/* 80386 */
    2223    PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
    2224    PROCESSOR_PENTIUM,
    2225    PROCESSOR_LAKEMONT,
    2226    PROCESSOR_PENTIUMPRO,
    2227    PROCESSOR_PENTIUM4,
    2228    PROCESSOR_NOCONA,
    2229    PROCESSOR_CORE2,
    2230    PROCESSOR_NEHALEM,
    2231    PROCESSOR_SANDYBRIDGE,
    2232    PROCESSOR_HASWELL,
    2233    PROCESSOR_BONNELL,
    2234    PROCESSOR_SILVERMONT,
    2235    PROCESSOR_GOLDMONT,
    2236    PROCESSOR_GOLDMONT_PLUS,
    2237    PROCESSOR_TREMONT,
    2238    PROCESSOR_SIERRAFOREST,
    2239    PROCESSOR_GRANDRIDGE,
    2240    PROCESSOR_KNL,
    2241    PROCESSOR_KNM,
    2242    PROCESSOR_SKYLAKE,
    2243    PROCESSOR_SKYLAKE_AVX512,
    2244    PROCESSOR_CANNONLAKE,
    2245    PROCESSOR_ICELAKE_CLIENT,
    2246    PROCESSOR_ICELAKE_SERVER,
    2247    PROCESSOR_CASCADELAKE,
    2248    PROCESSOR_TIGERLAKE,
    2249    PROCESSOR_COOPERLAKE,
    2250    PROCESSOR_SAPPHIRERAPIDS,
    2251    PROCESSOR_ALDERLAKE,
    2252    PROCESSOR_ROCKETLAKE,
    2253    PROCESSOR_GRANITERAPIDS,
    2254    PROCESSOR_INTEL,
    2255    PROCESSOR_LUJIAZUI,
    2256    PROCESSOR_GEODE,
    2257    PROCESSOR_K6,
    2258    PROCESSOR_ATHLON,
    2259    PROCESSOR_K8,
    2260    PROCESSOR_AMDFAM10,
    2261    PROCESSOR_BDVER1,
    2262    PROCESSOR_BDVER2,
    2263    PROCESSOR_BDVER3,
    2264    PROCESSOR_BDVER4,
    2265    PROCESSOR_BTVER1,
    2266    PROCESSOR_BTVER2,
    2267    PROCESSOR_ZNVER1,
    2268    PROCESSOR_ZNVER2,
    2269    PROCESSOR_ZNVER3,
    2270    PROCESSOR_ZNVER4,
    2271    PROCESSOR_max
    2272  };
    2273  
    2274  #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
    2275  extern const char *const processor_names[];
    2276  
    2277  #include "wide-int-bitmask.h"
    2278  
    2279  enum pta_flag
    2280  {
    2281  #define DEF_PTA(NAME) _ ## NAME,
    2282  #include "i386-isa.def"
    2283  #undef DEF_PTA
    2284    END_PTA
    2285  };
    2286  
    2287  /* wide_int_bitmask can handle only 128 flags.  */
    2288  STATIC_ASSERT (END_PTA <= 128);
    2289  
    2290  #define WIDE_INT_BITMASK_FROM_NTH(N) (N < 64 ? wide_int_bitmask (0, 1ULL << N) \
    2291  				      : wide_int_bitmask (1ULL << (N - 64), 0))
    2292  
    2293  #define DEF_PTA(NAME) constexpr wide_int_bitmask PTA_ ## NAME \
    2294    = WIDE_INT_BITMASK_FROM_NTH ((pta_flag) _ ## NAME);
    2295  #include "i386-isa.def"
    2296  #undef DEF_PTA
    2297  
    2298  constexpr wide_int_bitmask PTA_X86_64_BASELINE = PTA_64BIT | PTA_MMX | PTA_SSE
    2299    | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR;
    2300  constexpr wide_int_bitmask PTA_X86_64_V2 = (PTA_X86_64_BASELINE
    2301  					    & (~PTA_NO_SAHF))
    2302    | PTA_CX16 | PTA_POPCNT | PTA_SSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_SSSE3;
    2303  constexpr wide_int_bitmask PTA_X86_64_V3 = PTA_X86_64_V2
    2304    | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
    2305    | PTA_MOVBE | PTA_XSAVE;
    2306  constexpr wide_int_bitmask PTA_X86_64_V4 = PTA_X86_64_V3
    2307    | PTA_AVX512F | PTA_AVX512BW | PTA_AVX512CD | PTA_AVX512DQ | PTA_AVX512VL;
    2308  
    2309  constexpr wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
    2310    | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
    2311  constexpr wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
    2312    | PTA_POPCNT;
    2313  constexpr wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
    2314  constexpr wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
    2315    | PTA_XSAVEOPT;
    2316  constexpr wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
    2317    | PTA_RDRND | PTA_F16C;
    2318  constexpr wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
    2319    | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
    2320  constexpr wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
    2321    | PTA_PRFCHW;
    2322  constexpr wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES
    2323    | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
    2324  constexpr wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
    2325    | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
    2326    | PTA_CLWB;
    2327  constexpr wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512
    2328    | PTA_AVX512VNNI;
    2329  constexpr wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
    2330  constexpr wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
    2331    | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
    2332    | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
    2333  constexpr wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
    2334    | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
    2335    | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
    2336  constexpr wide_int_bitmask PTA_ROCKETLAKE = PTA_ICELAKE_CLIENT & ~PTA_SGX;
    2337  constexpr wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT
    2338    | PTA_PCONFIG | PTA_WBNOINVD | PTA_CLWB;
    2339  constexpr wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
    2340    | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT | PTA_KL | PTA_WIDEKL;
    2341  constexpr wide_int_bitmask PTA_SAPPHIRERAPIDS = PTA_ICELAKE_SERVER | PTA_MOVDIRI
    2342    | PTA_MOVDIR64B | PTA_ENQCMD | PTA_CLDEMOTE | PTA_PTWRITE | PTA_WAITPKG
    2343    | PTA_SERIALIZE | PTA_TSXLDTRK | PTA_AMX_TILE | PTA_AMX_INT8 | PTA_AMX_BF16
    2344    | PTA_UINTR | PTA_AVXVNNI | PTA_AVX512FP16 | PTA_AVX512BF16;
    2345  constexpr wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF
    2346    | PTA_AVX512ER | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
    2347  constexpr wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
    2348  constexpr wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE
    2349    | PTA_RDRND | PTA_PRFCHW;
    2350  constexpr wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA
    2351    | PTA_XSAVE | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT
    2352    | PTA_XSAVEOPT | PTA_FSGSBASE;
    2353  constexpr wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
    2354    | PTA_SGX | PTA_PTWRITE;
    2355  constexpr wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
    2356    | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
    2357  constexpr wide_int_bitmask PTA_ALDERLAKE = PTA_TREMONT | PTA_ADX | PTA_AVX
    2358    | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
    2359    | PTA_PCONFIG | PTA_PKU | PTA_VAES | PTA_VPCLMULQDQ | PTA_SERIALIZE
    2360    | PTA_HRESET | PTA_KL | PTA_WIDEKL | PTA_AVXVNNI;
    2361  constexpr wide_int_bitmask PTA_SIERRAFOREST = PTA_ALDERLAKE | PTA_AVXIFMA
    2362    | PTA_AVXVNNIINT8 | PTA_AVXNECONVERT | PTA_CMPCCXADD | PTA_ENQCMD | PTA_UINTR;
    2363  constexpr wide_int_bitmask PTA_GRANITERAPIDS = PTA_SAPPHIRERAPIDS | PTA_AMX_FP16
    2364    | PTA_PREFETCHI;
    2365  constexpr wide_int_bitmask PTA_GRANITERAPIDS_D = PTA_GRANITERAPIDS
    2366    | PTA_AMX_COMPLEX;
    2367  constexpr wide_int_bitmask PTA_GRANDRIDGE = PTA_SIERRAFOREST | PTA_RAOINT;
    2368  constexpr wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
    2369    | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
    2370  constexpr wide_int_bitmask PTA_ZNVER1 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
    2371    | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
    2372    | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2
    2373    | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT
    2374    | PTA_FSGSBASE | PTA_RDRND | PTA_MOVBE | PTA_MWAITX | PTA_ADX | PTA_RDSEED
    2375    | PTA_CLZERO | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SHA | PTA_LZCNT
    2376    | PTA_POPCNT;
    2377  constexpr wide_int_bitmask PTA_ZNVER2 = PTA_ZNVER1 | PTA_CLWB | PTA_RDPID
    2378    | PTA_WBNOINVD;
    2379  constexpr wide_int_bitmask PTA_ZNVER3 = PTA_ZNVER2 | PTA_VAES | PTA_VPCLMULQDQ
    2380    | PTA_PKU;
    2381  constexpr wide_int_bitmask PTA_ZNVER4 = PTA_ZNVER3 | PTA_AVX512F | PTA_AVX512DQ
    2382    | PTA_AVX512IFMA | PTA_AVX512CD | PTA_AVX512BW | PTA_AVX512VL
    2383    | PTA_AVX512BF16 | PTA_AVX512VBMI | PTA_AVX512VBMI2 | PTA_GFNI
    2384    | PTA_AVX512VNNI | PTA_AVX512BITALG | PTA_AVX512VPOPCNTDQ;
    2385  
    2386  #ifndef GENERATOR_FILE
    2387  
    2388  #include "insn-attr-common.h"
    2389  
    2390  #include "common/config/i386/i386-cpuinfo.h"
    2391  
    2392  class pta
    2393  {
    2394  public:
    2395    const char *const name;		/* processor name or nickname.  */
    2396    const enum processor_type processor;
    2397    const enum attr_cpu schedule;
    2398    const wide_int_bitmask flags;
    2399    const int model;
    2400    const enum feature_priority priority;
    2401  };
    2402  
    2403  extern const pta processor_alias_table[];
    2404  extern unsigned int const pta_size;
    2405  extern unsigned int const num_arch_names;
    2406  #endif
    2407  
    2408  #endif
    2409  
    2410  extern enum processor_type ix86_tune;
    2411  extern enum processor_type ix86_arch;
    2412  
    2413  /* Size of the RED_ZONE area.  */
    2414  #define RED_ZONE_SIZE 128
    2415  /* Reserved area of the red zone for temporaries.  */
    2416  #define RED_ZONE_RESERVE 8
    2417  
    2418  extern unsigned int ix86_preferred_stack_boundary;
    2419  extern unsigned int ix86_incoming_stack_boundary;
    2420  
    2421  /* Smallest class containing REGNO.  */
    2422  extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
    2423  
    2424  enum ix86_fpcmp_strategy {
    2425    IX86_FPCMP_SAHF,
    2426    IX86_FPCMP_COMI,
    2427    IX86_FPCMP_ARITH
    2428  };
    2429  
    2430  /* To properly truncate FP values into integers, we need to set i387 control
    2431     word.  We can't emit proper mode switching code before reload, as spills
    2432     generated by reload may truncate values incorrectly, but we still can avoid
    2433     redundant computation of new control word by the mode switching pass.
    2434     The fldcw instructions are still emitted redundantly, but this is probably
    2435     not going to be noticeable problem, as most CPUs do have fast path for
    2436     the sequence.
    2437  
    2438     The machinery is to emit simple truncation instructions and split them
    2439     before reload to instructions having USEs of two memory locations that
    2440     are filled by this code to old and new control word.
    2441  
    2442     Post-reload pass may be later used to eliminate the redundant fildcw if
    2443     needed.  */
    2444  
    2445  enum ix86_stack_slot
    2446  {
    2447    SLOT_TEMP = 0,
    2448    SLOT_CW_STORED,
    2449    SLOT_CW_ROUNDEVEN,
    2450    SLOT_CW_TRUNC,
    2451    SLOT_CW_FLOOR,
    2452    SLOT_CW_CEIL,
    2453    SLOT_STV_TEMP,
    2454    SLOT_FLOATxFDI_387,
    2455    MAX_386_STACK_LOCALS
    2456  };
    2457  
    2458  enum ix86_entity
    2459  {
    2460    X86_DIRFLAG = 0,
    2461    AVX_U128,
    2462    I387_ROUNDEVEN,
    2463    I387_TRUNC,
    2464    I387_FLOOR,
    2465    I387_CEIL,
    2466    MAX_386_ENTITIES
    2467  };
    2468  
    2469  enum x86_dirflag_state
    2470  {
    2471    X86_DIRFLAG_RESET,
    2472    X86_DIRFLAG_ANY
    2473  };
    2474  
    2475  enum avx_u128_state
    2476  {
    2477    AVX_U128_CLEAN,
    2478    AVX_U128_DIRTY,
    2479    AVX_U128_ANY
    2480  };
    2481  
    2482  /* Define this macro if the port needs extra instructions inserted
    2483     for mode switching in an optimizing compilation.  */
    2484  
    2485  #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
    2486     ix86_optimize_mode_switching[(ENTITY)]
    2487  
    2488  /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
    2489     initializer for an array of integers.  Each initializer element N
    2490     refers to an entity that needs mode switching, and specifies the
    2491     number of different modes that might need to be set for this
    2492     entity.  The position of the initializer in the initializer -
    2493     starting counting at zero - determines the integer that is used to
    2494     refer to the mode-switched entity in question.  */
    2495  
    2496  #define NUM_MODES_FOR_MODE_SWITCHING			\
    2497    { X86_DIRFLAG_ANY, AVX_U128_ANY,			\
    2498      I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY  }
    2499  
    2500  
    2501  /* Avoid renaming of stack registers, as doing so in combination with
    2502     scheduling just increases amount of live registers at time and in
    2503     the turn amount of fxch instructions needed.
    2504  
    2505     ??? Maybe Pentium chips benefits from renaming, someone can try....
    2506  
    2507     Don't rename evex to non-evex sse registers.  */
    2508  
    2509  #define HARD_REGNO_RENAME_OK(SRC, TARGET)				\
    2510    (!STACK_REGNO_P (SRC)							\
    2511     && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
    2512  
    2513  
    2514  #define FASTCALL_PREFIX '@'
    2515  
    2516  #ifndef USED_FOR_TARGET
    2517  /* Structure describing stack frame layout.
    2518     Stack grows downward:
    2519  
    2520     [arguments]
    2521  					<- ARG_POINTER
    2522     saved pc
    2523  
    2524     saved static chain			if ix86_static_chain_on_stack
    2525  
    2526     saved frame pointer			if frame_pointer_needed
    2527  					<- HARD_FRAME_POINTER
    2528     [saved regs]
    2529  					<- reg_save_offset
    2530     [padding0]
    2531  					<- stack_realign_offset
    2532     [saved SSE regs]
    2533  	OR
    2534     [stub-saved registers for ms x64 --> sysv clobbers
    2535  			<- Start of out-of-line, stub-saved/restored regs
    2536  			   (see libgcc/config/i386/(sav|res)ms64*.S)
    2537       [XMM6-15]
    2538       [RSI]
    2539       [RDI]
    2540       [?RBX]		only if RBX is clobbered
    2541       [?RBP]		only if RBP and RBX are clobbered
    2542       [?R12]		only if R12 and all previous regs are clobbered
    2543       [?R13]		only if R13 and all previous regs are clobbered
    2544       [?R14]		only if R14 and all previous regs are clobbered
    2545       [?R15]		only if R15 and all previous regs are clobbered
    2546  			<- end of stub-saved/restored regs
    2547       [padding1]
    2548     ]
    2549  					<- sse_reg_save_offset
    2550     [padding2]
    2551  		       |		<- FRAME_POINTER
    2552     [va_arg registers]  |
    2553  		       |
    2554     [frame]	       |
    2555  		       |
    2556     [padding2]	       | = to_allocate
    2557  					<- STACK_POINTER
    2558    */
    2559  struct GTY(()) ix86_frame
    2560  {
    2561    int nsseregs;
    2562    int nregs;
    2563    int va_arg_size;
    2564    int red_zone_size;
    2565    int outgoing_arguments_size;
    2566  
    2567    /* The offsets relative to ARG_POINTER.  */
    2568    HOST_WIDE_INT frame_pointer_offset;
    2569    HOST_WIDE_INT hard_frame_pointer_offset;
    2570    HOST_WIDE_INT stack_pointer_offset;
    2571    HOST_WIDE_INT hfp_save_offset;
    2572    HOST_WIDE_INT reg_save_offset;
    2573    HOST_WIDE_INT stack_realign_allocate;
    2574    HOST_WIDE_INT stack_realign_offset;
    2575    HOST_WIDE_INT sse_reg_save_offset;
    2576  
    2577    /* When save_regs_using_mov is set, emit prologue using
    2578       move instead of push instructions.  */
    2579    bool save_regs_using_mov;
    2580  
    2581    /* Assume without checking that:
    2582         EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT).  */
    2583    bool expensive_p;
    2584    int expensive_count;
    2585  };
    2586  
    2587  /* Machine specific frame tracking during prologue/epilogue generation.  All
    2588     values are positive, but since the x86 stack grows downward, are subtratced
    2589     from the CFA to produce a valid address.  */
    2590  
    2591  struct GTY(()) machine_frame_state
    2592  {
    2593    /* This pair tracks the currently active CFA as reg+offset.  When reg
    2594       is drap_reg, we don't bother trying to record here the real CFA when
    2595       it might really be a DW_CFA_def_cfa_expression.  */
    2596    rtx cfa_reg;
    2597    HOST_WIDE_INT cfa_offset;
    2598  
    2599    /* The current offset (canonically from the CFA) of ESP and EBP.
    2600       When stack frame re-alignment is active, these may not be relative
    2601       to the CFA.  However, in all cases they are relative to the offsets
    2602       of the saved registers stored in ix86_frame.  */
    2603    HOST_WIDE_INT sp_offset;
    2604    HOST_WIDE_INT fp_offset;
    2605  
    2606    /* The size of the red-zone that may be assumed for the purposes of
    2607       eliding register restore notes in the epilogue.  This may be zero
    2608       if no red-zone is in effect, or may be reduced from the real
    2609       red-zone value by a maximum runtime stack re-alignment value.  */
    2610    int red_zone_offset;
    2611  
    2612    /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
    2613       value within the frame.  If false then the offset above should be
    2614       ignored.  Note that DRAP, if valid, *always* points to the CFA and
    2615       thus has an offset of zero.  */
    2616    BOOL_BITFIELD sp_valid : 1;
    2617    BOOL_BITFIELD fp_valid : 1;
    2618    BOOL_BITFIELD drap_valid : 1;
    2619  
    2620    /* Indicate whether the local stack frame has been re-aligned.  When
    2621       set, the SP/FP offsets above are relative to the aligned frame
    2622       and not the CFA.  */
    2623    BOOL_BITFIELD realigned : 1;
    2624  
    2625    /* Indicates whether the stack pointer has been re-aligned.  When set,
    2626       SP/FP continue to be relative to the CFA, but the stack pointer
    2627       should only be used for offsets > sp_realigned_offset, while
    2628       the frame pointer should be used for offsets <= sp_realigned_fp_last.
    2629       The flags realigned and sp_realigned are mutually exclusive.  */
    2630    BOOL_BITFIELD sp_realigned : 1;
    2631  
    2632    /* If sp_realigned is set, this is the last valid offset from the CFA
    2633       that can be used for access with the frame pointer.  */
    2634    HOST_WIDE_INT sp_realigned_fp_last;
    2635  
    2636    /* If sp_realigned is set, this is the offset from the CFA that the stack
    2637       pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
    2638       Access via the stack pointer is only valid for offsets that are greater than
    2639       this value.  */
    2640    HOST_WIDE_INT sp_realigned_offset;
    2641  };
    2642  
    2643  /* Private to winnt.cc.  */
    2644  struct seh_frame_state;
    2645  
    2646  enum function_type
    2647  {
    2648    TYPE_UNKNOWN = 0,
    2649    TYPE_NORMAL,
    2650    /* The current function is an interrupt service routine with a
    2651       pointer argument as specified by the "interrupt" attribute.  */
    2652    TYPE_INTERRUPT,
    2653    /* The current function is an interrupt service routine with a
    2654       pointer argument and an integer argument as specified by the
    2655       "interrupt" attribute.  */
    2656    TYPE_EXCEPTION
    2657  };
    2658  
    2659  enum queued_insn_type
    2660  {
    2661    TYPE_NONE = 0,
    2662    TYPE_ENDBR,
    2663    TYPE_PATCHABLE_AREA
    2664  };
    2665  
    2666  struct GTY(()) machine_function {
    2667    struct stack_local_entry *stack_locals;
    2668    int varargs_gpr_size;
    2669    int varargs_fpr_size;
    2670    int optimize_mode_switching[MAX_386_ENTITIES];
    2671  
    2672    /* Cached initial frame layout for the current function.  */
    2673    struct ix86_frame frame;
    2674  
    2675    /* For -fsplit-stack support: A stack local which holds a pointer to
    2676       the stack arguments for a function with a variable number of
    2677       arguments.  This is set at the start of the function and is used
    2678       to initialize the overflow_arg_area field of the va_list
    2679       structure.  */
    2680    rtx split_stack_varargs_pointer;
    2681  
    2682    /* This value is used for amd64 targets and specifies the current abi
    2683       to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
    2684    ENUM_BITFIELD(calling_abi) call_abi : 8;
    2685  
    2686    /* Nonzero if the function accesses a previous frame.  */
    2687    BOOL_BITFIELD accesses_prev_frame : 1;
    2688  
    2689    /* Set by ix86_compute_frame_layout and used by prologue/epilogue
    2690       expander to determine the style used.  */
    2691    BOOL_BITFIELD use_fast_prologue_epilogue : 1;
    2692  
    2693    /* Nonzero if the current function calls pc thunk and
    2694       must not use the red zone.  */
    2695    BOOL_BITFIELD pc_thunk_call_expanded : 1;
    2696  
    2697    /* If true, the current function needs the default PIC register, not
    2698       an alternate register (on x86) and must not use the red zone (on
    2699       x86_64), even if it's a leaf function.  We don't want the
    2700       function to be regarded as non-leaf because TLS calls need not
    2701       affect register allocation.  This flag is set when a TLS call
    2702       instruction is expanded within a function, and never reset, even
    2703       if all such instructions are optimized away.  Use the
    2704       ix86_current_function_calls_tls_descriptor macro for a better
    2705       approximation.  */
    2706    BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
    2707  
    2708    /* If true, the current function has a STATIC_CHAIN is placed on the
    2709       stack below the return address.  */
    2710    BOOL_BITFIELD static_chain_on_stack : 1;
    2711  
    2712    /* If true, it is safe to not save/restore DRAP register.  */
    2713    BOOL_BITFIELD no_drap_save_restore : 1;
    2714  
    2715    /* Function type.  */
    2716    ENUM_BITFIELD(function_type) func_type : 2;
    2717  
    2718    /* How to generate indirec branch.  */
    2719    ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
    2720  
    2721    /* If true, the current function has local indirect jumps, like
    2722       "indirect_jump" or "tablejump".  */
    2723    BOOL_BITFIELD has_local_indirect_jump : 1;
    2724  
    2725    /* How to generate function return.  */
    2726    ENUM_BITFIELD(indirect_branch) function_return_type : 3;
    2727  
    2728    /* If true, the current function is a function specified with
    2729       the "interrupt" or "no_caller_saved_registers" attribute.  */
    2730    BOOL_BITFIELD no_caller_saved_registers : 1;
    2731  
    2732    /* If true, there is register available for argument passing.  This
    2733       is used only in ix86_function_ok_for_sibcall by 32-bit to determine
    2734       if there is scratch register available for indirect sibcall.  In
    2735       64-bit, rax, r10 and r11 are scratch registers which aren't used to
    2736       pass arguments and can be used for indirect sibcall.  */
    2737    BOOL_BITFIELD arg_reg_available : 1;
    2738  
    2739    /* If true, we're out-of-lining reg save/restore for regs clobbered
    2740       by 64-bit ms_abi functions calling a sysv_abi function.  */
    2741    BOOL_BITFIELD call_ms2sysv : 1;
    2742  
    2743    /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
    2744       needs padding prior to out-of-line stub save/restore area.  */
    2745    BOOL_BITFIELD call_ms2sysv_pad_in : 1;
    2746  
    2747    /* This is the number of extra registers saved by stub (valid range is
    2748       0-6). Each additional register is only saved/restored by the stubs
    2749       if all successive ones are. (Will always be zero when using a hard
    2750       frame pointer.) */
    2751    unsigned int call_ms2sysv_extra_regs:3;
    2752  
    2753    /* Nonzero if the function places outgoing arguments on stack.  */
    2754    BOOL_BITFIELD outgoing_args_on_stack : 1;
    2755  
    2756    /* If true, ENDBR or patchable area is queued at function entrance.  */
    2757    ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
    2758  
    2759    /* If true, the function label has been emitted.  */
    2760    BOOL_BITFIELD function_label_emitted : 1;
    2761  
    2762    /* True if the function needs a stack frame.  */
    2763    BOOL_BITFIELD stack_frame_required : 1;
    2764  
    2765    /* True if we should act silently, rather than raise an error for
    2766       invalid calls.  */
    2767    BOOL_BITFIELD silent_p : 1;
    2768  
    2769    /* True if red zone is used.  */
    2770    BOOL_BITFIELD red_zone_used : 1;
    2771  
    2772    /* The largest alignment, in bytes, of stack slot actually used.  */
    2773    unsigned int max_used_stack_alignment;
    2774  
    2775    /* During prologue/epilogue generation, the current frame state.
    2776       Otherwise, the frame state at the end of the prologue.  */
    2777    struct machine_frame_state fs;
    2778  
    2779    /* During SEH output, this is non-null.  */
    2780    struct seh_frame_state * GTY((skip(""))) seh;
    2781  };
    2782  
    2783  extern GTY(()) tree sysv_va_list_type_node;
    2784  extern GTY(()) tree ms_va_list_type_node;
    2785  #endif
    2786  
    2787  #define ix86_stack_locals (cfun->machine->stack_locals)
    2788  #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
    2789  #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
    2790  #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
    2791  #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
    2792  #define ix86_tls_descriptor_calls_expanded_in_cfun \
    2793    (cfun->machine->tls_descriptor_call_expanded_p)
    2794  /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
    2795     calls are optimized away, we try to detect cases in which it was
    2796     optimized away.  Since such instructions (use (reg REG_SP)), we can
    2797     verify whether there's any such instruction live by testing that
    2798     REG_SP is live.  */
    2799  #define ix86_current_function_calls_tls_descriptor \
    2800    (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
    2801  #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
    2802  #define ix86_red_zone_used (cfun->machine->red_zone_used)
    2803  
    2804  /* Control behavior of x86_file_start.  */
    2805  #define X86_FILE_START_VERSION_DIRECTIVE false
    2806  #define X86_FILE_START_FLTUSED false
    2807  
    2808  /* Flag to mark data that is in the large address area.  */
    2809  #define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
    2810  #define SYMBOL_REF_FAR_ADDR_P(X)	\
    2811  	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
    2812  
    2813  /* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
    2814     have defined always, to avoid ifdefing.  */
    2815  #define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
    2816  #define SYMBOL_REF_DLLIMPORT_P(X) \
    2817  	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
    2818  
    2819  #define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
    2820  #define SYMBOL_REF_DLLEXPORT_P(X) \
    2821  	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
    2822  
    2823  #define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
    2824  #define SYMBOL_REF_STUBVAR_P(X) \
    2825  	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
    2826  
    2827  extern void debug_ready_dispatch (void);
    2828  extern void debug_dispatch_window (int);
    2829  
    2830  /* The value at zero is only defined for the BMI instructions
    2831     LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
    2832  #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
    2833  	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
    2834  #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
    2835  	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
    2836  
    2837  
    2838  /* Flags returned by ix86_get_callcvt ().  */
    2839  #define IX86_CALLCVT_CDECL	0x1
    2840  #define IX86_CALLCVT_STDCALL	0x2
    2841  #define IX86_CALLCVT_FASTCALL	0x4
    2842  #define IX86_CALLCVT_THISCALL	0x8
    2843  #define IX86_CALLCVT_REGPARM	0x10
    2844  #define IX86_CALLCVT_SSEREGPARM	0x20
    2845  
    2846  #define IX86_BASE_CALLCVT(FLAGS) \
    2847  	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
    2848  		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
    2849  
    2850  #define RECIP_MASK_NONE		0x00
    2851  #define RECIP_MASK_DIV		0x01
    2852  #define RECIP_MASK_SQRT		0x02
    2853  #define RECIP_MASK_VEC_DIV	0x04
    2854  #define RECIP_MASK_VEC_SQRT	0x08
    2855  #define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
    2856  			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
    2857  #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
    2858  
    2859  #define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
    2860  #define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
    2861  #define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
    2862  #define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
    2863  
    2864  /* Use 128-bit AVX instructions in the auto-vectorizer.  */
    2865  #define TARGET_PREFER_AVX128	(prefer_vector_width_type == PVW_AVX128)
    2866  /* Use 256-bit AVX instructions in the auto-vectorizer.  */
    2867  #define TARGET_PREFER_AVX256	(TARGET_PREFER_AVX128 \
    2868  				 || prefer_vector_width_type == PVW_AVX256)
    2869  
    2870  #define TARGET_INDIRECT_BRANCH_REGISTER \
    2871    (ix86_indirect_branch_register \
    2872     || cfun->machine->indirect_branch_type != indirect_branch_keep)
    2873  
    2874  #define IX86_HLE_ACQUIRE (1 << 16)
    2875  #define IX86_HLE_RELEASE (1 << 17)
    2876  
    2877  /* For switching between functions with different target attributes.  */
    2878  #define SWITCHABLE_TARGET 1
    2879  
    2880  #define TARGET_SUPPORTS_WIDE_INT 1
    2881  
    2882  #if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
    2883  extern enum attr_cpu ix86_schedule;
    2884  
    2885  #define NUM_X86_64_MS_CLOBBERED_REGS 12
    2886  #endif
    2887  
    2888  /* __builtin_eh_return can't handle stack realignment, so disable MMX/SSE
    2889     in 32-bit libgcc functions that call it.  */
    2890  #ifndef __x86_64__
    2891  #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((target ("no-mmx,no-sse")))
    2892  #endif
    2893  
    2894  /*
    2895  Local variables:
    2896  version-control: t
    2897  End:
    2898  */