1  /* Target macros for the FRV port of GCC.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     Contributed by Red Hat Inc.
       4  
       5     This file is part of GCC.
       6  
       7     GCC is free software; you can redistribute it and/or modify it
       8     under the terms of the GNU General Public License as published
       9     by the Free Software Foundation; either version 3, or (at your
      10     option) any later version.
      11  
      12     GCC is distributed in the hope that it will be useful, but WITHOUT
      13     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      14     or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
      15     License for more details.
      16  
      17     You should have received a copy of the GNU General Public License
      18     along with GCC; see the file COPYING3.  If not see
      19     <http://www.gnu.org/licenses/>.  */
      20  
      21  #ifndef __FRV_H__
      22  #define __FRV_H__
      23  
      24  /* Frv general purpose macros.  */
      25  /* Align an address.  */
      26  #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
      27  
      28  /* Driver configuration.  */
      29  
      30  /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
      31      FDPIC which multilib to use depends on whether FDPIC is in use or
      32      not.  The trick we use is to introduce -multilib-library-pic as a
      33      pseudo-flag that selects the library-pic multilib, and map fpic
      34      and fPIC to it only if fdpic is not selected.  Also, if fdpic is
      35      selected and no PIC/PIE options are present, we imply -fPIE.
      36      Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
      37      speed, or if we have -On with n>=3, enable inlining of PLTs.  As
      38      for -mgprel-ro, we want to enable it by default, but not for -fpic or
      39      -fpie.  */
      40  
      41  #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
      42  "%{mno-pack:\
      43     %{!mhard-float:-msoft-float}\
      44     %{!mmedia:-mno-media}}\
      45   %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
      46   %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
      47     	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
      48  	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
      49                      %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
      50  	  %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
      51  "
      52  #ifndef SUBTARGET_DRIVER_SELF_SPECS
      53  # define SUBTARGET_DRIVER_SELF_SPECS
      54  #endif
      55  
      56  #undef  ASM_SPEC
      57  #define ASM_SPEC "\
      58  %{G*} \
      59  %{mtomcat-stats} \
      60  %{!mno-eflags: \
      61      %{mcpu=*} \
      62      %{mgpr-*} %{mfpr-*} \
      63      %{msoft-float} %{mhard-float} \
      64      %{mdword} %{mno-dword} \
      65      %{mdouble} %{mno-double} \
      66      %{mmedia} %{mno-media} \
      67      %{mmuladd} %{mno-muladd} \
      68      %{mpack} %{mno-pack} \
      69      %{mno-fdpic:-mnopic} %{mfdpic} \
      70      %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
      71  
      72  #undef  STARTFILE_SPEC
      73  #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
      74  
      75  #undef  ENDFILE_SPEC
      76  #define ENDFILE_SPEC "frvend%O%s"
      77  
      78  
      79  #define MASK_DEFAULT_FRV	\
      80    (MASK_MEDIA			\
      81     | MASK_DOUBLE		\
      82     | MASK_MULADD		\
      83     | MASK_DWORD			\
      84     | MASK_PACK)
      85  
      86  #define MASK_DEFAULT_FR500 \
      87    (MASK_MEDIA | MASK_DWORD | MASK_PACK)
      88  
      89  #define MASK_DEFAULT_FR550 \
      90    (MASK_MEDIA | MASK_DWORD | MASK_PACK)
      91  
      92  #define MASK_DEFAULT_FR450	\
      93    (MASK_GPR_32			\
      94     | MASK_FPR_32		\
      95     | MASK_MEDIA			\
      96     | MASK_SOFT_FLOAT		\
      97     | MASK_DWORD			\
      98     | MASK_PACK)
      99  
     100  #define MASK_DEFAULT_FR400	\
     101    (MASK_GPR_32			\
     102     | MASK_FPR_32		\
     103     | MASK_MEDIA			\
     104     | MASK_ACC_4			\
     105     | MASK_SOFT_FLOAT		\
     106     | MASK_DWORD			\
     107     | MASK_PACK)
     108  
     109  #define MASK_DEFAULT_SIMPLE \
     110    (MASK_GPR_32 | MASK_SOFT_FLOAT)
     111  
     112  /* A C string constant that tells the GCC driver program options to pass to
     113     `cc1'.  It can also specify how to translate options you give to GCC into
     114     options for GCC to pass to the `cc1'.
     115  
     116     Do not define this macro if it does not need to do anything.  */
     117  /* For ABI compliance, we need to put bss data into the normal data section.  */
     118  #define CC1_SPEC "%{G*}"
     119  
     120  #undef	LINK_SPEC
     121  #define LINK_SPEC "\
     122  %{h*} %{v:-V} \
     123  %{mfdpic:-melf32frvfd -z text} \
     124  %{static:-dn -Bstatic} \
     125  %{shared:-Bdynamic} \
     126  %{symbolic:-Bsymbolic} \
     127  %{G*}"
     128  
     129  #undef  LIB_SPEC
     130  #define LIB_SPEC "--start-group -lc -lsim --end-group"
     131  
     132  #ifndef CPU_TYPE
     133  #define CPU_TYPE		FRV_CPU_FR500
     134  #endif
     135  
     136  /* Run-time target specifications */
     137  
     138  #define TARGET_CPU_CPP_BUILTINS()					\
     139    do									\
     140      {									\
     141        int issue_rate;							\
     142  									\
     143        builtin_define ("__frv__");					\
     144        builtin_assert ("machine=frv");					\
     145  									\
     146        issue_rate = frv_issue_rate ();					\
     147        if (issue_rate > 1)						\
     148  	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
     149        builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
     150        builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
     151        builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
     152  									\
     153        switch (frv_cpu_type)						\
     154  	{								\
     155  	case FRV_CPU_GENERIC:						\
     156  	  builtin_define ("__CPU_GENERIC__");				\
     157  	  break;							\
     158  	case FRV_CPU_FR550:						\
     159  	  builtin_define ("__CPU_FR550__");				\
     160  	  break;							\
     161  	case FRV_CPU_FR500:						\
     162  	case FRV_CPU_TOMCAT:						\
     163  	  builtin_define ("__CPU_FR500__");				\
     164  	  break;							\
     165  	case FRV_CPU_FR450:						\
     166  	  builtin_define ("__CPU_FR450__");				\
     167  	  break;							\
     168  	case FRV_CPU_FR405:						\
     169  	  builtin_define ("__CPU_FR405__");				\
     170  	  break;							\
     171  	case FRV_CPU_FR400:						\
     172  	  builtin_define ("__CPU_FR400__");				\
     173  	  break;							\
     174  	case FRV_CPU_FR300:						\
     175  	case FRV_CPU_SIMPLE:						\
     176  	  builtin_define ("__CPU_FR300__");				\
     177  	  break;							\
     178  	}								\
     179  									\
     180        if (TARGET_HARD_FLOAT)						\
     181  	builtin_define ("__FRV_HARD_FLOAT__");				\
     182        if (TARGET_DWORD)							\
     183  	builtin_define ("__FRV_DWORD__");				\
     184        if (TARGET_FDPIC)							\
     185  	builtin_define ("__FRV_FDPIC__");				\
     186        if (flag_leading_underscore > 0)					\
     187  	builtin_define ("__FRV_UNDERSCORE__");				\
     188      }									\
     189    while (0)
     190  
     191  
     192  #define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
     193  
     194  #define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
     195  #define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
     196  #define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
     197  
     198  /* X is a valid accumulator number if (X & ACC_MASK) == X.  */
     199  #define ACC_MASK						\
     200    (!TARGET_MEDIA ? 0						\
     201     : TARGET_ACC_4 ? 3						\
     202     : frv_cpu_type == FRV_CPU_FR450 ? 11				\
     203     : 7)
     204  
     205  /* Macros to identify the blend of media instructions available.  Revision 1
     206     is the one found on the FR500.  Revision 2 includes the changes made for
     207     the FR400.
     208  
     209     Treat the generic processor as a revision 1 machine for now, for
     210     compatibility with earlier releases.  */
     211  
     212  #define TARGET_MEDIA_REV1					\
     213    (TARGET_MEDIA							\
     214     && (frv_cpu_type == FRV_CPU_GENERIC				\
     215         || frv_cpu_type == FRV_CPU_FR500))
     216  
     217  #define TARGET_MEDIA_REV2					\
     218    (TARGET_MEDIA							\
     219     && (frv_cpu_type == FRV_CPU_FR400				\
     220         || frv_cpu_type == FRV_CPU_FR405				\
     221         || frv_cpu_type == FRV_CPU_FR450				\
     222         || frv_cpu_type == FRV_CPU_FR550))
     223  
     224  #define TARGET_MEDIA_FR450					\
     225    (frv_cpu_type == FRV_CPU_FR450)
     226  
     227  #define TARGET_FR500_FR550_BUILTINS				\
     228     (frv_cpu_type == FRV_CPU_FR500				\
     229      || frv_cpu_type == FRV_CPU_FR550)
     230  
     231  #define TARGET_FR405_BUILTINS					\
     232    (frv_cpu_type == FRV_CPU_FR405				\
     233     || frv_cpu_type == FRV_CPU_FR450)
     234  
     235  #ifndef HAVE_AS_TLS
     236  #define HAVE_AS_TLS 0
     237  #endif
     238  
     239  #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
     240  
     241  /* Small Data Area Support.  */
     242  /* Maximum size of variables that go in .sdata/.sbss.
     243     The -msdata=foo switch also controls how small variables are handled.  */
     244  #ifndef SDATA_DEFAULT_SIZE
     245  #define SDATA_DEFAULT_SIZE 8
     246  #endif
     247  
     248  
     249  /* Storage Layout */
     250  
     251  /* Define this macro to have the value 1 if the most significant bit in a byte
     252     has the lowest number; otherwise define it to have the value zero.  This
     253     means that bit-field instructions count from the most significant bit.  If
     254     the machine has no bit-field instructions, then this must still be defined,
     255     but it doesn't matter which value it is defined to.  This macro need not be
     256     a constant.
     257  
     258     This macro does not affect the way structure fields are packed into bytes or
     259     words; that is controlled by `BYTES_BIG_ENDIAN'.  */
     260  #define BITS_BIG_ENDIAN 1
     261  
     262  /* Define this macro to have the value 1 if the most significant byte in a word
     263     has the lowest number.  This macro need not be a constant.  */
     264  #define BYTES_BIG_ENDIAN 1
     265  
     266  /* Define this macro to have the value 1 if, in a multiword object, the most
     267     significant word has the lowest number.  This applies to both memory
     268     locations and registers; GCC fundamentally assumes that the order of
     269     words in memory is the same as the order in registers.  This macro need not
     270     be a constant.  */
     271  #define WORDS_BIG_ENDIAN 1
     272  
     273  /* Number of storage units in a word; normally 4.  */
     274  #define UNITS_PER_WORD 4
     275  
     276  /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
     277     which has the specified mode and signedness is to be stored in a register.
     278     This macro is only called when TYPE is a scalar type.
     279  
     280     On most RISC machines, which only have operations that operate on a full
     281     register, define this macro to set M to `word_mode' if M is an integer mode
     282     narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
     283     widened because wider-precision floating-point operations are usually more
     284     expensive than their narrower counterparts.
     285  
     286     For most machines, the macro definition does not change UNSIGNEDP.  However,
     287     some machines, have instructions that preferentially handle either signed or
     288     unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
     289     loads from memory and 32-bit add instructions sign-extend the result to 64
     290     bits.  On such machines, set UNSIGNEDP according to which kind of extension
     291     is more efficient.
     292  
     293     Do not define this macro if it would never modify MODE.  */
     294  #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
     295    do						\
     296      {						\
     297        if (GET_MODE_CLASS (MODE) == MODE_INT	\
     298  	  && GET_MODE_SIZE (MODE) < 4)		\
     299  	(MODE) = SImode;			\
     300      }						\
     301    while (0)
     302  
     303  /* Normal alignment required for function parameters on the stack, in bits.
     304     All stack parameters receive at least this much alignment regardless of data
     305     type.  On most machines, this is the same as the size of an integer.  */
     306  #define PARM_BOUNDARY 32
     307  
     308  /* Define this macro if you wish to preserve a certain alignment for the stack
     309     pointer.  The definition is a C expression for the desired alignment
     310     (measured in bits).
     311  
     312     If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
     313     specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
     314     strict alignment than `STACK_BOUNDARY', the stack may be momentarily
     315     unaligned while pushing arguments.  */
     316  #define STACK_BOUNDARY 64
     317  
     318  /* Alignment required for a function entry point, in bits.  */
     319  #define FUNCTION_BOUNDARY 128
     320  
     321  /* Biggest alignment that any data type can require on this machine,
     322     in bits.  */
     323  #define BIGGEST_ALIGNMENT 64
     324  
     325  /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
     326     some reason.  */
     327  #ifdef IN_TARGET_LIBS
     328  #define BIGGEST_FIELD_ALIGNMENT 64
     329  #else
     330  /* An expression for the alignment of a structure field FIELD if the
     331     alignment computed in the usual way is COMPUTED.  GCC uses this
     332     value instead of the value in `BIGGEST_ALIGNMENT' or
     333     `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
     334  #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) 			\
     335    frv_adjust_field_align (FIELD, COMPUTED)
     336  #endif
     337  
     338  /* If defined, a C expression to compute the alignment for a static variable.
     339     TYPE is the data type, and ALIGN is the alignment that the object
     340     would ordinarily have.  The value of this macro is used instead of that
     341     alignment to align the object.
     342  
     343     If this macro is not defined, then ALIGN is used.
     344  
     345     One use of this macro is to increase alignment of medium-size data to make
     346     it all fit in fewer cache lines.  Another is to cause character arrays to be
     347     word-aligned so that `strcpy' calls that copy constants to character arrays
     348     can be done inline.  */
     349  #define DATA_ALIGNMENT(TYPE, ALIGN)		\
     350    (TREE_CODE (TYPE) == ARRAY_TYPE		\
     351     && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
     352     && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
     353  
     354  /* Define this macro to be the value 1 if instructions will fail to work if
     355     given data not on the nominal alignment.  If instructions will merely go
     356     slower in that case, define this macro as 0.  */
     357  #define STRICT_ALIGNMENT 1
     358  
     359  #define PCC_BITFIELD_TYPE_MATTERS 1
     360  
     361  
     362  /* Layout of Source Language Data Types.  */
     363  
     364  #define CHAR_TYPE_SIZE         8
     365  #define SHORT_TYPE_SIZE       16
     366  #define INT_TYPE_SIZE         32
     367  #define LONG_TYPE_SIZE        32
     368  #define LONG_LONG_TYPE_SIZE   64
     369  #define FLOAT_TYPE_SIZE       32
     370  #define DOUBLE_TYPE_SIZE      64
     371  #define LONG_DOUBLE_TYPE_SIZE 64
     372  
     373  /* An expression whose value is 1 or 0, according to whether the type `char'
     374     should be signed or unsigned by default.  The user can always override this
     375     default with the options `-fsigned-char' and `-funsigned-char'.  */
     376  #define DEFAULT_SIGNED_CHAR 1
     377  
     378  #undef  SIZE_TYPE
     379  #define SIZE_TYPE "unsigned int"
     380  
     381  #undef  PTRDIFF_TYPE
     382  #define PTRDIFF_TYPE "int"
     383  
     384  #undef  WCHAR_TYPE
     385  #define WCHAR_TYPE "long int"
     386  
     387  #undef  WCHAR_TYPE_SIZE
     388  #define WCHAR_TYPE_SIZE BITS_PER_WORD
     389  
     390  
     391  /* General purpose registers.  */
     392  #define GPR_FIRST       0                       /* First gpr */
     393  #define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
     394  #define GPR_R0          GPR_FIRST               /* R0, constant 0 */
     395  #define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
     396  #define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
     397  						/* small data register */
     398  #define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
     399  #define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
     400  #define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
     401  #define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
     402  
     403  #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
     404  
     405  #define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
     406  
     407  #define FPR_FIRST       64			/* First FP reg */
     408  #define FPR_LAST        127			/* Last  FP reg */
     409  
     410  #define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
     411  
     412  /* We reserve the last CR and CCR in each category to be used as a reload
     413     register to reload the CR/CCR registers.  This is a kludge.  */
     414  #define CC_FIRST	128			/* First ICC/FCC reg */
     415  #define CC_LAST		135			/* Last  ICC/FCC reg */
     416  #define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
     417  #define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
     418  #define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
     419  #define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
     420  #define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
     421  
     422  /* Amount to shift a value to locate a ICC or FCC register in the CCR
     423     register and shift it to the bottom 4 bits.  */
     424  #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
     425  
     426  /* Mask to isolate a single ICC/FCC value.  */
     427  #define CC_MASK		0xf
     428  
     429  /* Masks to isolate the various bits in an ICC field.  */
     430  #define ICC_MASK_N	0x8	/* negative */
     431  #define ICC_MASK_Z	0x4	/* zero */
     432  #define ICC_MASK_V	0x2	/* overflow */
     433  #define ICC_MASK_C	0x1	/* carry */
     434  
     435  /* Mask to isolate the N/Z flags in an ICC.  */
     436  #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
     437  
     438  /* Mask to isolate the Z/C flags in an ICC.  */
     439  #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
     440  
     441  /* Masks to isolate the various bits in a FCC field.  */
     442  #define FCC_MASK_E	0x8	/* equal */
     443  #define FCC_MASK_L	0x4	/* less than */
     444  #define FCC_MASK_G	0x2	/* greater than */
     445  #define FCC_MASK_U	0x1	/* unordered */
     446  
     447  /* For CCR registers, the machine wants CR4..CR7 to be used for integer
     448     code and CR0..CR3 to be used for floating point.  */
     449  #define CR_FIRST	136			/* First CCR */
     450  #define CR_LAST		143			/* Last  CCR */
     451  #define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
     452  #define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
     453  #define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
     454  #define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
     455  #define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
     456  #define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
     457  
     458  /* Amount to shift a value to locate a CR register in the CCCR special purpose
     459     register and shift it to the bottom 2 bits.  */
     460  #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
     461  
     462  /* Mask to isolate a single CR value.  */
     463  #define CR_MASK		0x3
     464  
     465  #define ACC_FIRST	144			/* First acc register */
     466  #define ACC_LAST	155			/* Last  acc register */
     467  
     468  #define ACCG_FIRST	156			/* First accg register */
     469  #define ACCG_LAST	167			/* Last  accg register */
     470  
     471  #define AP_FIRST	168			/* fake argument pointer */
     472  
     473  #define SPR_FIRST	169
     474  #define SPR_LAST	172
     475  #define LR_REGNO	(SPR_FIRST)
     476  #define LCR_REGNO	(SPR_FIRST + 1)
     477  #define IACC_FIRST	(SPR_FIRST + 2)
     478  #define IACC_LAST	(SPR_FIRST + 3)
     479  
     480  #define GPR_P(R)	IN_RANGE (R, GPR_FIRST, GPR_LAST)
     481  #define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
     482  #define FPR_P(R)	IN_RANGE (R, FPR_FIRST, FPR_LAST)
     483  #define CC_P(R)		IN_RANGE (R, CC_FIRST, CC_LAST)
     484  #define ICC_P(R)	IN_RANGE (R, ICC_FIRST, ICC_LAST)
     485  #define FCC_P(R)	IN_RANGE (R, FCC_FIRST, FCC_LAST)
     486  #define CR_P(R)		IN_RANGE (R, CR_FIRST, CR_LAST)
     487  #define ICR_P(R)	IN_RANGE (R, ICR_FIRST, ICR_LAST)
     488  #define FCR_P(R)	IN_RANGE (R, FCR_FIRST, FCR_LAST)
     489  #define ACC_P(R)	IN_RANGE (R, ACC_FIRST, ACC_LAST)
     490  #define ACCG_P(R)	IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
     491  #define SPR_P(R)	IN_RANGE (R, SPR_FIRST, SPR_LAST)
     492  
     493  #define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     494  #define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     495  #define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     496  #define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     497  #define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     498  #define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     499  #define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     500  #define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     501  #define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     502  #define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     503  #define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
     504  
     505  #define MAX_STACK_IMMEDIATE_OFFSET 2047
     506  
     507  
     508  /* Register Basics.  */
     509  
     510  /* Number of hardware registers known to the compiler.  They receive numbers 0
     511     through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
     512     really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
     513  #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
     514  
     515  /* The first/last register that can contain the arguments to a function.  */
     516  #define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
     517  #define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
     518  
     519  /* Registers used by the exception handling functions.  These should be
     520     registers that are not otherwise used by the calling sequence.  */
     521  #define FIRST_EH_REGNUM		14
     522  #define LAST_EH_REGNUM		15
     523  
     524  /* Scratch registers used in the prologue, epilogue and thunks.
     525     OFFSET_REGNO is for loading constant addends that are too big for a
     526     single instruction.  TEMP_REGNO is used for transferring SPRs to and from
     527     the stack, and various other activities.  */
     528  #define OFFSET_REGNO		4
     529  #define TEMP_REGNO		5
     530  
     531  /* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
     532     which is sometimes used to set up the frame pointer.  */
     533  #define OLD_SP_REGNO		6
     534  
     535  /* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
     536     handler's stack adjustment.  */
     537  #define STACKADJ_REGNO		6
     538  
     539  /* Registers used in thunks.  JMP_REGNO is used for loading the target
     540     address.  */
     541  #define JUMP_REGNO		6
     542  
     543  #define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
     544  				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
     545  #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
     546  #define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
     547  
     548  #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
     549  
     550  /* An initializer that says which registers are used for fixed purposes all
     551     throughout the compiled code and are therefore not available for general
     552     allocation.  These would include the stack pointer, the frame pointer
     553     (except on machines where that can be used as a general register when no
     554     frame pointer is needed), the program counter on machines where that is
     555     considered one of the addressable registers, and any other numbered register
     556     with a standard use.
     557  
     558     This information is expressed as a sequence of numbers, separated by commas
     559     and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
     560     otherwise.
     561  
     562     The table initialized from this macro, and the table initialized by the
     563     following one, may be overridden at run time either automatically, by the
     564     actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
     565     command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
     566  
     567  /* gr0  -- Hard Zero
     568     gr1  -- Stack Pointer
     569     gr2  -- Frame Pointer
     570     gr3  -- Hidden Parameter
     571     gr16 -- Small Data reserved
     572     gr17 -- Pic reserved
     573     gr28 -- OS reserved
     574     gr29 -- OS reserved
     575     gr30 -- OS reserved
     576     gr31 -- OS reserved
     577     cr3  -- reserved to reload FCC registers.
     578     cr7  -- reserved to reload ICC registers.  */
     579  #define FIXED_REGISTERS							\
     580  {	/* Integer Registers */						\
     581  	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
     582  	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
     583  	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
     584  	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
     585  	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
     586  	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
     587  	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
     588  	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
     589  	/* Float Registers */						\
     590  	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
     591  	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
     592  	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
     593  	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
     594  	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
     595  	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
     596  	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
     597  	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
     598  	/* Condition Code Registers */					\
     599  	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
     600  	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
     601  	/* Conditional execution Registers (CCR) */			\
     602  	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
     603  	/* Accumulators */						\
     604  	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
     605  	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
     606  	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
     607  	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
     608  	/* Other registers */						\
     609  	1,				/* 168, AP   - fake arg ptr */	\
     610  	1,				/* 169, LR   - Link register*/	\
     611  	0,				/* 170, LCR  - Loop count reg*/	\
     612  	1, 1				/* 171-172, iacc0 */		\
     613  }
     614  
     615  /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
     616     general) by function calls as well as for fixed registers.  This macro
     617     therefore identifies the registers that are not available for general
     618     allocation of values that must live across function calls.
     619  
     620     If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
     621     saves it on function entry and restores it on function exit, if the register
     622     is used within the function.  */
     623  #define CALL_USED_REGISTERS						\
     624  {	/* Integer Registers */						\
     625  	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
     626  	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
     627  	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
     628  	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
     629  	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
     630  	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
     631  	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
     632  	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
     633  	/* Float Registers */						\
     634  	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
     635  	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
     636  	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
     637  	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
     638  	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
     639  	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
     640  	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
     641  	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
     642  	/* Condition Code Registers */					\
     643  	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
     644  	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
     645  	/* Conditional execution Registers (CCR) */			\
     646  	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
     647  	/* Accumulators */						\
     648  	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
     649  	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
     650  	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
     651  	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
     652  	/* Other registers */						\
     653  	1,				/* 168, AP  - fake arg ptr */	\
     654  	1,				/* 169, LR  - Link register*/	\
     655  	1,				/* 170, LCR - Loop count reg */	\
     656  	1, 1				/* 171-172, iacc0 */		\
     657  }
     658  
     659  
     660  /* Order of allocation of registers.  */
     661  
     662  /* If defined, an initializer for a vector of integers, containing the numbers
     663     of hard registers in the order in which GCC should prefer to use them
     664     (from most preferred to least).
     665  
     666     If this macro is not defined, registers are used lowest numbered first (all
     667     else being equal).
     668  
     669     One use of this macro is on machines where the highest numbered registers
     670     must always be saved and the save-multiple-registers instruction supports
     671     only sequences of consecutive registers.  On such machines, define
     672     `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
     673     allocatable register first.  */
     674  
     675  /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
     676     have a better chance of allocating 2 registers at a time and can use the
     677     double word load/store instructions in the prologue.  */
     678  #define REG_ALLOC_ORDER							\
     679  {									\
     680    /* volatile registers */						\
     681    GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
     682    GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
     683    GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
     684    GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
     685    GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
     686    GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
     687    GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
     688  									\
     689    FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
     690    FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
     691    FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
     692    FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
     693    FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
     694    FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
     695    FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
     696    FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
     697  									\
     698    ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
     699    FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
     700    CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
     701    CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
     702  									\
     703    /* saved registers */							\
     704    GPR_FIRST  + 18, GPR_FIRST  + 19,					\
     705    GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
     706    GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
     707    GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
     708    GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
     709    GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
     710    GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
     711    GPR_FIRST  + 16, GPR_FIRST  + 17,					\
     712  									\
     713    FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
     714    FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
     715    FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
     716    FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
     717    FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
     718    FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
     719    FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
     720    FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
     721  									\
     722    /* special or fixed registers */					\
     723    GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
     724    GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
     725    ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
     726    ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
     727    ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
     728    ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
     729    ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
     730    ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
     731    AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
     732    IACC_FIRST +  0, IACC_FIRST +  1					\
     733  }
     734  
     735  
     736  /* Define this macro if the compiler should avoid copies to/from CCmode
     737     registers.  You should only define this macro if support fo copying to/from
     738     CCmode is incomplete.  */
     739  #define AVOID_CCMODE_COPIES
     740  
     741  
     742  /* Register Classes.  */
     743  
     744  /* An enumeral type that must be defined with all the register class names as
     745     enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
     746     register class, followed by one more enumeral value, `LIM_REG_CLASSES',
     747     which is not a register class but rather tells how many classes there are.
     748  
     749     Each register class has a number, which is the value of casting the class
     750     name to type `int'.  The number serves as an index in many of the tables
     751     described below.  */
     752  enum reg_class
     753  {
     754    NO_REGS,
     755    ICC_REGS,
     756    FCC_REGS,
     757    CC_REGS,
     758    ICR_REGS,
     759    FCR_REGS,
     760    CR_REGS,
     761    LCR_REG,
     762    LR_REG,
     763    GR8_REGS,
     764    GR9_REGS,
     765    GR89_REGS,
     766    FDPIC_REGS,
     767    FDPIC_FPTR_REGS,
     768    FDPIC_CALL_REGS,
     769    SPR_REGS,
     770    QUAD_ACC_REGS,
     771    ACCG_REGS,
     772    QUAD_FPR_REGS,
     773    QUAD_REGS,
     774    GPR_REGS,
     775    ALL_REGS,
     776    LIM_REG_CLASSES
     777  };
     778  
     779  #define GENERAL_REGS GPR_REGS
     780  
     781  /* The number of distinct register classes, defined as follows:
     782  
     783          #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
     784  #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
     785  
     786  /* An initializer containing the names of the register classes as C string
     787     constants.  These names are used in writing some of the debugging dumps.  */
     788  #define REG_CLASS_NAMES {						\
     789     "NO_REGS",								\
     790     "ICC_REGS",								\
     791     "FCC_REGS",								\
     792     "CC_REGS",								\
     793     "ICR_REGS",								\
     794     "FCR_REGS",								\
     795     "CR_REGS",								\
     796     "LCR_REG",								\
     797     "LR_REG",								\
     798     "GR8_REGS",                                                          \
     799     "GR9_REGS",                                                          \
     800     "GR89_REGS",                                                         \
     801     "FDPIC_REGS",							\
     802     "FDPIC_FPTR_REGS",							\
     803     "FDPIC_CALL_REGS",							\
     804     "SPR_REGS",								\
     805     "QUAD_ACC_REGS",							\
     806     "ACCG_REGS",								\
     807     "QUAD_FPR_REGS",							\
     808     "QUAD_REGS",								\
     809     "GPR_REGS",								\
     810     "ALL_REGS"								\
     811  }
     812  
     813  /* An initializer containing the contents of the register classes, as integers
     814     which are bit masks.  The Nth integer specifies the contents of class N.
     815     The way the integer MASK is interpreted is that register R is in the class
     816     if `MASK & (1 << R)' is 1.
     817  
     818     When the machine has more than 32 registers, an integer does not suffice.
     819     Then the integers are replaced by sub-initializers, braced groupings
     820     containing several integers.  Each sub-initializer must be suitable as an
     821     initializer for the type `HARD_REG_SET' which is defined in
     822     `hard-reg-set.h'.  */
     823  #define REG_CLASS_CONTENTS						       \
     824  {  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
     825    { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
     826    { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
     827    { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
     828    { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
     829    { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
     830    { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
     831    { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
     832    { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
     833    { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
     834    { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
     835    { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
     836    { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
     837    { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
     838    { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
     839    { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
     840    { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
     841    { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
     842    { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
     843    { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
     844    { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
     845    { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
     846    { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
     847  }
     848  
     849  #define EVEN_ACC_REGS   QUAD_ACC_REGS
     850  #define ACC_REGS        QUAD_ACC_REGS
     851  #define FEVEN_REGS      QUAD_FPR_REGS
     852  #define FPR_REGS        QUAD_FPR_REGS
     853  #define EVEN_REGS       QUAD_REGS
     854  
     855  /* A C expression whose value is a register class containing hard register
     856     REGNO.  In general there is more than one such class; choose a class which
     857     is "minimal", meaning that no smaller class also contains the register.  */
     858  
     859  extern enum reg_class regno_reg_class[];
     860  #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
     861  
     862  /* A macro whose definition is the name of the class to which a valid base
     863     register must belong.  A base register is one used in an address which is
     864     the register value plus a displacement.  */
     865  #define BASE_REG_CLASS GPR_REGS
     866  
     867  /* A macro whose definition is the name of the class to which a valid index
     868     register must belong.  An index register is one used in an address where its
     869     value is either multiplied by a scale factor or added to another register
     870     (as well as added to a displacement).  */
     871  #define INDEX_REG_CLASS GPR_REGS
     872  
     873  /* A C expression which is nonzero if register number NUM is suitable for use
     874     as a base register in operand addresses.  It may be either a suitable hard
     875     register or a pseudo register that has been allocated such a hard register.  */
     876  #define REGNO_OK_FOR_BASE_P(NUM)           \
     877    ((NUM) < FIRST_PSEUDO_REGISTER           \
     878     ? GPR_P (NUM)                           \
     879     : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
     880  
     881  /* A C expression which is nonzero if register number NUM is suitable for use
     882     as an index register in operand addresses.  It may be either a suitable hard
     883     register or a pseudo register that has been allocated such a hard register.
     884  
     885     The difference between an index register and a base register is that the
     886     index register may be scaled.  If an address involves the sum of two
     887     registers, neither one of them scaled, then either one may be labeled the
     888     "base" and the other the "index"; but whichever labeling is used must fit
     889     the machine's constraints of which registers may serve in each capacity.
     890     The compiler will try both labelings, looking for one that is valid, and
     891     will reload one or both registers only if neither labeling works.  */
     892  #define REGNO_OK_FOR_INDEX_P(NUM)                                       \
     893    ((NUM) < FIRST_PSEUDO_REGISTER                                        \
     894     ? GPR_P (NUM)                                                        \
     895     : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
     896  
     897  #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
     898    frv_secondary_reload_class (CLASS, MODE, X)
     899  
     900  #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
     901    frv_secondary_reload_class (CLASS, MODE, X)
     902  
     903  #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
     904  
     905  #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
     906  
     907  
     908  /* Basic Stack Layout.  */
     909  
     910  /* Structure to describe information about a saved range of registers */
     911  
     912  typedef struct frv_stack_regs {
     913    const char * name;		/* name of the register ranges */
     914    int first;			/* first register in the range */
     915    int last;			/* last register in the range */
     916    int size_1word;		/* # of bytes to be stored via 1 word stores */
     917    int size_2words;		/* # of bytes to be stored via 2 word stores */
     918    unsigned char field_p;	/* true if the registers are a single SPR */
     919    unsigned char dword_p;	/* true if we can do dword stores */
     920    unsigned char special_p;	/* true if the regs have a fixed save loc.  */
     921  } frv_stack_regs_t;
     922  
     923  /* Register ranges to look into saving.  */
     924  #define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
     925  #define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
     926  #define STACK_REGS_LR		2	/* LR register */
     927  #define STACK_REGS_CC		3	/* CCrs (normally not saved) */
     928  #define STACK_REGS_LCR		5	/* lcr register */
     929  #define STACK_REGS_STDARG	6	/* stdarg registers */
     930  #define STACK_REGS_STRUCT	7	/* structure return (gr3) */
     931  #define STACK_REGS_FP		8	/* FP register */
     932  #define STACK_REGS_MAX		9	/* # of register ranges */
     933  
     934  /* Values for save_p field.  */
     935  #define REG_SAVE_NO_SAVE	0	/* register not saved */
     936  #define REG_SAVE_1WORD		1	/* save the register */
     937  #define REG_SAVE_2WORDS		2	/* save register and register+1 */
     938  
     939  /* Structure used to define the frv stack.  */
     940  
     941  typedef struct frv_stack {
     942    int total_size;		/* total bytes allocated for stack */
     943    int vars_size;		/* variable save area size */
     944    int parameter_size;		/* outgoing parameter size */
     945    int stdarg_size;		/* size of regs needed to be saved for stdarg */
     946    int regs_size;		/* size of the saved registers */
     947    int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
     948    int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
     949    int header_size;		/* size of the old FP, struct ret., LR save */
     950    int pretend_size;		/* size of pretend args */
     951    int vars_offset;		/* offset to save local variables from new SP*/
     952    int regs_offset;		/* offset to save registers from new SP */
     953  				/* register range information */
     954    frv_stack_regs_t regs[STACK_REGS_MAX];
     955  				/* offset to store each register */
     956    int reg_offset[FIRST_PSEUDO_REGISTER];
     957  				/* whether to save register (& reg+1) */
     958    unsigned char save_p[FIRST_PSEUDO_REGISTER];
     959  } frv_stack_t;
     960  
     961  /* Define this macro if pushing a word onto the stack moves the stack pointer
     962     to a smaller address.  */
     963  #define STACK_GROWS_DOWNWARD 1
     964  
     965  /* Define this macro to nonzero if the addresses of local variable slots
     966     are at negative offsets from the frame pointer.  */
     967  #define FRAME_GROWS_DOWNWARD 1
     968  
     969  /* Offset from the stack pointer register to the first location at which
     970     outgoing arguments are placed.  If not specified, the default value of zero
     971     is used.  This is the proper value for most machines.
     972  
     973     If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
     974     location at which outgoing arguments are placed.  */
     975  #define STACK_POINTER_OFFSET 0
     976  
     977  /* Offset from the argument pointer register to the first argument's address.
     978     On some machines it may depend on the data type of the function.
     979  
     980     If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
     981     argument's address.  */
     982  #define FIRST_PARM_OFFSET(FUNDECL) 0
     983  
     984  /* A C expression whose value is RTL representing the address in a stack frame
     985     where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
     986     an RTL expression for the address of the stack frame itself.
     987  
     988     If you don't define this macro, the default is to return the value of
     989     FRAMEADDR--that is, the stack frame address is also the address of the stack
     990     word that points to the previous frame.  */
     991  #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
     992  
     993  /* A C expression whose value is RTL representing the value of the return
     994     address for the frame COUNT steps up from the current frame, after the
     995     prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
     996     pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
     997     defined.
     998  
     999     The value of the expression must always be the correct address when COUNT is
    1000     zero, but may be `NULL_RTX' if there is not way to determine the return
    1001     address of other frames.  */
    1002  #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
    1003  
    1004  #define RETURN_POINTER_REGNUM LR_REGNO
    1005  
    1006  /* A C expression whose value is RTL representing the location of the incoming
    1007     return address at the beginning of any function, before the prologue.  This
    1008     RTL is either a `REG', indicating that the return value is saved in `REG',
    1009     or a `MEM' representing a location in the stack.
    1010  
    1011     You only need to define this macro if you want to support call frame
    1012     debugging information like that provided by DWARF 2.  */
    1013  #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
    1014  
    1015  
    1016  /* Register That Address the Stack Frame.  */
    1017  
    1018  /* The register number of the stack pointer register, which must also be a
    1019     fixed register according to `FIXED_REGISTERS'.  On most machines, the
    1020     hardware determines which register this is.  */
    1021  #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
    1022  
    1023  /* The register number of the frame pointer register, which is used to access
    1024     automatic variables in the stack frame.  On some machines, the hardware
    1025     determines which register this is.  On other machines, you can choose any
    1026     register you wish for this purpose.  */
    1027  #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
    1028  
    1029  /* The register number of the arg pointer register, which is used to access the
    1030     function's argument list.  On some machines, this is the same as the frame
    1031     pointer register.  On some machines, the hardware determines which register
    1032     this is.  On other machines, you can choose any register you wish for this
    1033     purpose.  If this is not the same register as the frame pointer register,
    1034     then you must mark it as a fixed register according to `FIXED_REGISTERS', or
    1035     arrange to be able to eliminate it.  */
    1036  
    1037  /* On frv this is a fake register that is eliminated in
    1038     terms of either the frame pointer or stack pointer.  */
    1039  #define ARG_POINTER_REGNUM AP_FIRST
    1040  
    1041  /* Register numbers used for passing a function's static chain pointer.  If
    1042     register windows are used, the register number as seen by the called
    1043     function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
    1044     seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
    1045     are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
    1046  
    1047     The static chain register need not be a fixed register.
    1048  
    1049     If the static chain is passed in memory, these macros should not be defined;
    1050     instead, the next two macros should be defined.  */
    1051  #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
    1052  #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
    1053  
    1054  
    1055  /* Eliminating the Frame Pointer and the Arg Pointer.  */
    1056  
    1057  /* If defined, this macro specifies a table of register pairs used to eliminate
    1058     unneeded registers that point into the stack frame.  If it is not defined,
    1059     the only elimination attempted by the compiler is to replace references to
    1060     the frame pointer with references to the stack pointer.
    1061  
    1062     The definition of this macro is a list of structure initializations, each of
    1063     which specifies an original and replacement register.
    1064  
    1065     On some machines, the position of the argument pointer is not known until
    1066     the compilation is completed.  In such a case, a separate hard register must
    1067     be used for the argument pointer.  This register can be eliminated by
    1068     replacing it with either the frame pointer or the argument pointer,
    1069     depending on whether or not the frame pointer has been eliminated.
    1070  
    1071     In this case, you might specify:
    1072          #define ELIMINABLE_REGS  \
    1073          {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
    1074           {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
    1075           {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
    1076  
    1077     Note that the elimination of the argument pointer with the stack pointer is
    1078     specified first since that is the preferred elimination.  */
    1079  
    1080  #define ELIMINABLE_REGS							\
    1081  {									\
    1082    {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
    1083    {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
    1084    {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
    1085  }
    1086  
    1087  /* This macro returns the initial difference between the specified pair
    1088     of registers.  */
    1089  
    1090  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
    1091    (OFFSET) = frv_initial_elimination_offset (FROM, TO)
    1092  
    1093  
    1094  /* Passing Function Arguments on the Stack.  */
    1095  
    1096  /* If defined, the maximum amount of space required for outgoing arguments will
    1097     be computed and placed into the variable
    1098     `crtl->outgoing_args_size'.  No space will be pushed onto the
    1099     stack for each call; instead, the function prologue should increase the
    1100     stack frame size by this amount.
    1101  
    1102     Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
    1103     proper.  */
    1104  #define ACCUMULATE_OUTGOING_ARGS 1
    1105  
    1106  
    1107  /* The number of register assigned to holding function arguments.  */
    1108  
    1109  #define FRV_NUM_ARG_REGS        6
    1110  
    1111  /* A C type for declaring a variable that is used as the first argument of
    1112     `FUNCTION_ARG' and other related values.  For some target machines, the type
    1113     `int' suffices and can hold the number of bytes of argument so far.
    1114  
    1115     There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
    1116     that have been passed on the stack.  The compiler has other variables to
    1117     keep track of that.  For target machines on which all arguments are passed
    1118     on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
    1119     however, the data structure must exist and should not be empty, so use
    1120     `int'.  */
    1121  #define CUMULATIVE_ARGS int
    1122  
    1123  /* A C statement (sans semicolon) for initializing the variable CUM for the
    1124     state at the beginning of the argument list.  The variable has type
    1125     `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
    1126     of the function which will receive the args, or 0 if the args are to a
    1127     compiler support library function.  The value of INDIRECT is nonzero when
    1128     processing an indirect call, for example a call through a function pointer.
    1129     The value of INDIRECT is zero for a call to an explicitly named function, a
    1130     library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
    1131     arguments for the function being compiled.
    1132  
    1133     When processing a call to a compiler support library function, LIBNAME
    1134     identifies which one.  It is a `symbol_ref' rtx which contains the name of
    1135     the function, as a string.  LIBNAME is 0 when an ordinary C function call is
    1136     being processed.  Thus, each time this macro is called, either LIBNAME or
    1137     FNTYPE is nonzero, but never both of them at once.  */
    1138  
    1139  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
    1140    frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
    1141  
    1142  /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
    1143     arguments for the function being compiled.  If this macro is undefined,
    1144     `INIT_CUMULATIVE_ARGS' is used instead.
    1145  
    1146     The value passed for LIBNAME is always 0, since library routines with
    1147     special calling conventions are never compiled with GCC.  The argument
    1148     LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
    1149  
    1150  #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
    1151    frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
    1152  
    1153  /* A C expression that is nonzero if REGNO is the number of a hard register in
    1154     which function arguments are sometimes passed.  This does *not* include
    1155     implicit arguments such as the static chain and the structure-value address.
    1156     On many machines, no registers can be used for this purpose since all
    1157     function arguments are pushed on the stack.  */
    1158  #define FUNCTION_ARG_REGNO_P(REGNO) \
    1159    ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
    1160  
    1161  
    1162  /* How Scalar Function Values are Returned.  */
    1163  
    1164  /* The number of the hard register that is used to return a scalar value from a
    1165     function call.  */
    1166  #define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
    1167  
    1168  #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
    1169  
    1170  
    1171  /* How Large Values are Returned.  */
    1172  
    1173  /* The number of the register that is used to pass the structure
    1174     value address.  */
    1175  #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
    1176  
    1177  
    1178  /* Function Entry and Exit.  */
    1179  
    1180  /* Define this macro as a C expression that is nonzero if the return
    1181     instruction or the function epilogue ignores the value of the stack pointer;
    1182     in other words, if it is safe to delete an instruction to adjust the stack
    1183     pointer before a return from the function.
    1184  
    1185     Note that this macro's value is relevant only for functions for which frame
    1186     pointers are maintained.  It is never safe to delete a final stack
    1187     adjustment in a function that has no frame pointer, and the compiler knows
    1188     this regardless of `EXIT_IGNORE_STACK'.  */
    1189  #define EXIT_IGNORE_STACK 1
    1190  
    1191  /* Generating Code for Profiling.  */
    1192  
    1193  /* A C statement or compound statement to output to FILE some assembler code to
    1194     call the profiling subroutine `mcount'.  Before calling, the assembler code
    1195     must load the address of a counter variable into a register where `mcount'
    1196     expects to find the address.  The name of this variable is `LP' followed by
    1197     the number LABELNO, so you would generate the name using `LP%d' in a
    1198     `fprintf'.
    1199  
    1200     The details of how the address should be passed to `mcount' are determined
    1201     by your operating system environment, not by GCC.  To figure them out,
    1202     compile a small program for profiling using the system's installed C
    1203     compiler and look at the assembler code that results.
    1204  
    1205     This declaration must be present, but it can be an abort if profiling is
    1206     not implemented.  */
    1207  
    1208  #define FUNCTION_PROFILER(FILE, LABELNO)
    1209  
    1210  /* Trampolines for Nested Functions.  */
    1211  
    1212  /* A C expression for the size in bytes of the trampoline, as an integer.  */
    1213  #define TRAMPOLINE_SIZE frv_trampoline_size ()
    1214  
    1215  /* Alignment required for trampolines, in bits.
    1216  
    1217     If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
    1218     aligning trampolines.  */
    1219  #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
    1220  
    1221  /* Define this macro if trampolines need a special subroutine to do their work.
    1222     The macro should expand to a series of `asm' statements which will be
    1223     compiled with GCC.  They go in a library function named
    1224     `__transfer_from_trampoline'.
    1225  
    1226     If you need to avoid executing the ordinary prologue code of a compiled C
    1227     function when you jump to the subroutine, you can do so by placing a special
    1228     label of your own in the assembler code.  Use one `asm' statement to
    1229     generate an assembler label, and another to make the label global.  Then
    1230     trampolines can use that label to jump directly to your special assembler
    1231     code.  */
    1232  
    1233  #ifdef __FRV_UNDERSCORE__
    1234  #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
    1235  #else
    1236  #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
    1237  #endif
    1238  
    1239  #define Twrite _write
    1240  
    1241  #if ! __FRV_FDPIC__
    1242  #define TRANSFER_FROM_TRAMPOLINE					\
    1243  extern int Twrite (int, const void *, unsigned);			\
    1244  									\
    1245  void									\
    1246  __trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
    1247  {									\
    1248    extern short __trampoline_template[];					\
    1249    short * to = addr;							\
    1250    short * from = &__trampoline_template[0];				\
    1251    int i;								\
    1252  									\
    1253    if (size < 20)							\
    1254      {									\
    1255        Twrite (2, "__trampoline_setup bad size\n",			\
    1256  	      sizeof ("__trampoline_setup bad size\n") - 1);		\
    1257        exit (-1);							\
    1258      }									\
    1259  									\
    1260    to[0] = from[0];							\
    1261    to[1] = (short)(fnaddr);						\
    1262    to[2] = from[2];							\
    1263    to[3] = (short)(sc);							\
    1264    to[4] = from[4];							\
    1265    to[5] = (short)(fnaddr >> 16);					\
    1266    to[6] = from[6];							\
    1267    to[7] = (short)(sc >> 16);						\
    1268    to[8] = from[8];							\
    1269    to[9] = from[9];							\
    1270  									\
    1271    for (i = 0; i < 20; i++)						\
    1272      __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
    1273  }									\
    1274  									\
    1275  __asm__("\n"								\
    1276  	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
    1277  	"\t.text\n"							\
    1278  	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
    1279  	"\tsetlos #0, gr6\n"	/* jump register */			\
    1280  	"\tsetlos #0, gr7\n"	/* static chain */			\
    1281  	"\tsethi #0, gr6\n"						\
    1282  	"\tsethi #0, gr7\n"						\
    1283  	"\tjmpl @(gr0,gr6)\n");
    1284  #else
    1285  #define TRANSFER_FROM_TRAMPOLINE					\
    1286  extern int Twrite (int, const void *, unsigned);			\
    1287  									\
    1288  void									\
    1289  __trampoline_setup (addr, size, fnaddr, sc)				\
    1290       short * addr;							\
    1291       int size;								\
    1292       int fnaddr;							\
    1293       int sc;								\
    1294  {									\
    1295    extern short __trampoline_template[];					\
    1296    short * from = &__trampoline_template[0];				\
    1297    int i;								\
    1298    short **desc = (short **)addr;					\
    1299    short * to = addr + 4;						\
    1300  									\
    1301    if (size != 32)							\
    1302      {									\
    1303        Twrite (2, "__trampoline_setup bad size\n",			\
    1304  	      sizeof ("__trampoline_setup bad size\n") - 1);		\
    1305        exit (-1);							\
    1306      }									\
    1307  									\
    1308    /* Create a function descriptor with the address of the code below	\
    1309       and NULL as the FDPIC value.  We don't need the real GOT value	\
    1310       here, since we don't use it, so we use NULL, that is just as	\
    1311       good.  */								\
    1312    desc[0] = to;								\
    1313    desc[1] = NULL;							\
    1314    size -= 8;								\
    1315  									\
    1316    to[0] = from[0];							\
    1317    to[1] = (short)(fnaddr);						\
    1318    to[2] = from[2];							\
    1319    to[3] = (short)(sc);							\
    1320    to[4] = from[4];							\
    1321    to[5] = (short)(fnaddr >> 16);					\
    1322    to[6] = from[6];							\
    1323    to[7] = (short)(sc >> 16);						\
    1324    to[8] = from[8];							\
    1325    to[9] = from[9];							\
    1326    to[10] = from[10];							\
    1327    to[11] = from[11];							\
    1328  									\
    1329    for (i = 0; i < size; i++)						\
    1330      __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
    1331  }									\
    1332  									\
    1333  __asm__("\n"								\
    1334  	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
    1335  	"\t.text\n"							\
    1336  	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
    1337  	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
    1338  	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
    1339  	"\tsethi #0, gr6\n"						\
    1340  	"\tsethi #0, gr7\n"						\
    1341  	"\tldd @(gr6,gr0),gr14\n"					\
    1342  	"\tjmpl @(gr14,gr0)\n"						\
    1343  	);
    1344  #endif
    1345  
    1346  
    1347  /* Addressing Modes.  */
    1348  
    1349  /* A number, the maximum number of registers that can appear in a valid memory
    1350     address.  Note that it is up to you to specify a value equal to the maximum
    1351     number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
    1352  #define MAX_REGS_PER_ADDRESS 2
    1353  
    1354  /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
    1355     use as a base register.  For hard registers, it should always accept those
    1356     which the hardware permits and reject the others.  Whether the macro accepts
    1357     or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
    1358     described above.  This usually requires two variant definitions, of which
    1359     `REG_OK_STRICT' controls the one actually used.  */
    1360  #ifdef REG_OK_STRICT
    1361  #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
    1362  #else
    1363  #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
    1364  #endif
    1365  
    1366  /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
    1367     use as an index register.
    1368  
    1369     The difference between an index register and a base register is that the
    1370     index register may be scaled.  If an address involves the sum of two
    1371     registers, neither one of them scaled, then either one may be labeled the
    1372     "base" and the other the "index"; but whichever labeling is used must fit
    1373     the machine's constraints of which registers may serve in each capacity.
    1374     The compiler will try both labelings, looking for one that is valid, and
    1375     will reload one or both registers only if neither labeling works.  */
    1376  #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
    1377  
    1378  #define FIND_BASE_TERM frv_find_base_term
    1379  
    1380  /* The load-and-update commands allow pre-modification in addresses.
    1381     The index has to be in a register.  */
    1382  #define HAVE_PRE_MODIFY_REG 1
    1383  
    1384  
    1385  /* We define extra CC modes in frv-modes.def so we need a selector.  */
    1386  
    1387  #define SELECT_CC_MODE frv_select_cc_mode
    1388  
    1389  /* A C expression whose value is one if it is always safe to reverse a
    1390     comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
    1391     a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
    1392     must be zero.
    1393  
    1394     You need not define this macro if it would always returns zero or if the
    1395     floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
    1396     example, here is the definition used on the SPARC, where floating-point
    1397     inequality comparisons are always given `CCFPEmode':
    1398  
    1399          #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
    1400  
    1401  /* On frv, don't consider floating point comparisons to be reversible.  In
    1402     theory, fp equality comparisons can be reversible.  */
    1403  #define REVERSIBLE_CC_MODE(MODE) \
    1404    ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
    1405  
    1406  
    1407  /* Describing Relative Costs of Operations.  */
    1408  
    1409  /* A C expression for the cost of a branch instruction.  A value of 1 is the
    1410     default; other values are interpreted relative to that.  */
    1411  #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
    1412  
    1413  /* Define this macro as a C expression which is nonzero if accessing less than
    1414     a word of memory (i.e. a `char' or a `short') is no faster than accessing a
    1415     word of memory, i.e., if such access require more than one instruction or if
    1416     there is no difference in cost between byte and (aligned) word loads.
    1417  
    1418     When this macro is not defined, the compiler will access a field by finding
    1419     the smallest containing object; when it is defined, a fullword load will be
    1420     used if alignment permits.  Unless bytes accesses are faster than word
    1421     accesses, using word accesses is preferable since it may eliminate
    1422     subsequent memory access if subsequent accesses occur to other fields in the
    1423     same word of the structure, but to different bytes.  */
    1424  #define SLOW_BYTE_ACCESS 1
    1425  
    1426  /* Define this macro if it is as good or better to call a constant function
    1427     address than to call an address kept in a register.  */
    1428  #define NO_FUNCTION_CSE 1
    1429  
    1430  
    1431  /* Dividing the output into sections.  */
    1432  
    1433  /* A C expression whose value is a string containing the assembler operation
    1434     that should precede instructions and read-only data.  Normally `".text"' is
    1435     right.  */
    1436  #define TEXT_SECTION_ASM_OP "\t.text"
    1437  
    1438  /* A C expression whose value is a string containing the assembler operation to
    1439     identify the following data as writable initialized data.  Normally
    1440     `".data"' is right.  */
    1441  #define DATA_SECTION_ASM_OP "\t.data"
    1442  
    1443  #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
    1444  
    1445  /* Short Data Support */
    1446  #define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
    1447  
    1448  #undef	INIT_SECTION_ASM_OP
    1449  #undef	FINI_SECTION_ASM_OP
    1450  #define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
    1451  #define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
    1452  
    1453  #undef CTORS_SECTION_ASM_OP
    1454  #undef DTORS_SECTION_ASM_OP
    1455  #define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
    1456  #define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
    1457  
    1458  /* A C expression whose value is a string containing the assembler operation to
    1459     switch to the fixup section that records all initialized pointers in a -fpic
    1460     program so they can be changed program startup time if the program is loaded
    1461     at a different address than linked for.  */
    1462  #define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
    1463  
    1464  /* Position Independent Code.  */
    1465  
    1466  /* A C expression that is nonzero if X is a legitimate immediate operand on the
    1467     target machine when generating position independent code.  You can assume
    1468     that X satisfies `CONSTANT_P', so you need not check this.  You can also
    1469     assume FLAG_PIC is true, so you need not check it either.  You need not
    1470     define this macro if all constants (including `SYMBOL_REF') can be immediate
    1471     operands when generating position independent code.  */
    1472  #define LEGITIMATE_PIC_OPERAND_P(X)					\
    1473    (   GET_CODE (X) == CONST_INT						\
    1474     || GET_CODE (X) == CONST_DOUBLE					\
    1475     || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
    1476     || got12_operand (X, VOIDmode))					\
    1477  
    1478  
    1479  /* The Overall Framework of an Assembler File.  */
    1480  
    1481  /* A C string constant describing how to begin a comment in the target
    1482     assembler language.  The compiler assumes that the comment will end at the
    1483     end of the line.  */
    1484  #define ASM_COMMENT_START ";"
    1485  
    1486  /* A C string constant for text to be output before each `asm' statement or
    1487     group of consecutive ones.  Normally this is `"#APP"', which is a comment
    1488     that has no effect on most assemblers but tells the GNU assembler that it
    1489     must check the lines that follow for all valid assembler constructs.  */
    1490  #define ASM_APP_ON "#APP\n"
    1491  
    1492  /* A C string constant for text to be output after each `asm' statement or
    1493     group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
    1494     GNU assembler to resume making the time-saving assumptions that are valid
    1495     for ordinary compiler output.  */
    1496  #define ASM_APP_OFF "#NO_APP\n"
    1497  
    1498  
    1499  /* Output of Data.  */
    1500  
    1501  /* This is how to output a label to dwarf/dwarf2.  */
    1502  #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
    1503  do {									\
    1504    fprintf (STREAM, "\t.picptr\t");					\
    1505    assemble_name (STREAM, LABEL);					\
    1506  } while (0)
    1507  
    1508  /* Whether to emit the gas specific dwarf2 line number support.  */
    1509  #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
    1510  
    1511  /* Output of Uninitialized Variables.  */
    1512  
    1513  /* A C statement (sans semicolon) to output to the stdio stream STREAM the
    1514     assembler definition of a local-common-label named NAME whose size is SIZE
    1515     bytes.  The variable ROUNDED is the size rounded up to whatever alignment
    1516     the caller wants.
    1517  
    1518     Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
    1519     before and after that, output the additional assembler syntax for defining
    1520     the name, and a newline.
    1521  
    1522     This macro controls how the assembler definitions of uninitialized static
    1523     variables are output.  */
    1524  #undef ASM_OUTPUT_LOCAL
    1525  
    1526  #undef ASM_OUTPUT_ALIGNED_LOCAL
    1527  
    1528  /* This is for final.cc, because it is used by ASM_DECLARE_OBJECT_NAME.  */
    1529  extern int size_directive_output;
    1530  
    1531  /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
    1532     parameter - the DECL of variable to be output, if there is one.
    1533     This macro can be called with DECL == NULL_TREE.  If you define
    1534     this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
    1535     `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
    1536     handling the destination of the variable.  */
    1537  #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
    1538  #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
    1539  do {                                                                   	\
    1540    if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value)	\
    1541      switch_to_section (get_named_section (NULL, ".sbss", 0));           \
    1542    else                                                                 	\
    1543      switch_to_section (bss_section);                                  	\
    1544    ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
    1545    ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
    1546    ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
    1547  } while (0)
    1548  
    1549  
    1550  /* Output and Generation of Labels.  */
    1551  
    1552  /* A C statement (sans semicolon) to output to the stdio stream STREAM the
    1553     assembler definition of a label named NAME.  Use the expression
    1554     `assemble_name (STREAM, NAME)' to output the name itself; before and after
    1555     that, output the additional assembler syntax for defining the name, and a
    1556     newline.  */
    1557  #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
    1558  do {									\
    1559    assemble_name (STREAM, NAME);						\
    1560    fputs (":\n", STREAM);						\
    1561  } while (0)
    1562  
    1563  /* Globalizing directive for a label.  */
    1564  #define GLOBAL_ASM_OP "\t.globl "
    1565  
    1566  #undef ASM_GENERATE_INTERNAL_LABEL
    1567  #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
    1568  do {									\
    1569    sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
    1570  } while (0)
    1571  
    1572  
    1573  /* Macros Controlling Initialization Routines.  */
    1574  
    1575  #undef INIT_SECTION_ASM_OP
    1576  
    1577  /* If defined, `main' will call `__main' despite the presence of
    1578     `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
    1579     init section is not actually run automatically, but is still useful for
    1580     collecting the lists of constructors and destructors.  */
    1581  #define INVOKE__main
    1582  
    1583  /* Output of Assembler Instructions.  */
    1584  
    1585  /* A C initializer containing the assembler's names for the machine registers,
    1586     each one as a C string constant.  This is what translates register numbers
    1587     in the compiler into assembler language.  */
    1588  #define REGISTER_NAMES							\
    1589  {									\
    1590   "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
    1591    "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
    1592    "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
    1593    "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
    1594    "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
    1595    "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
    1596    "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
    1597    "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
    1598  									\
    1599    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
    1600    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
    1601    "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
    1602    "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
    1603    "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
    1604    "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
    1605    "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
    1606    "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
    1607  									\
    1608    "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
    1609    "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
    1610    "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
    1611    "acc8", "acc9", "acc10", "acc11",					\
    1612    "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
    1613    "accg8", "accg9", "accg10", "accg11",					\
    1614    "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
    1615  }
    1616  
    1617  /* Define this macro if you are using an unusual assembler that
    1618     requires different names for the machine instructions.
    1619  
    1620     The definition is a C statement or statements which output an
    1621     assembler instruction opcode to the stdio stream STREAM.  The
    1622     macro-operand PTR is a variable of type `char *' which points to
    1623     the opcode name in its "internal" form--the form that is written
    1624     in the machine description.  The definition should output the
    1625     opcode name to STREAM, performing any translation you desire, and
    1626     increment the variable PTR to point at the end of the opcode so
    1627     that it will not be output twice.
    1628  
    1629     In fact, your macro definition may process less than the entire
    1630     opcode name, or more than the opcode name; but if you want to
    1631     process text that includes `%'-sequences to substitute operands,
    1632     you must take care of the substitution yourself.  Just be sure to
    1633     increment PTR over whatever text should not be output normally.
    1634  
    1635     If you need to look at the operand values, they can be found as the
    1636     elements of `recog_operand'.
    1637  
    1638     If the macro definition does nothing, the instruction is output in
    1639     the usual way.  */
    1640  
    1641  #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
    1642     (PTR) = frv_asm_output_opcode (STREAM, PTR)
    1643  
    1644  /* If defined, a C statement to be executed just prior to the output
    1645     of assembler code for INSN, to modify the extracted operands so
    1646     they will be output differently.
    1647  
    1648     Here the argument OPVEC is the vector containing the operands
    1649     extracted from INSN, and NOPERANDS is the number of elements of
    1650     the vector which contain meaningful data for this insn.  The
    1651     contents of this vector are what will be used to convert the insn
    1652     template into assembler code, so you can change the assembler
    1653     output by changing the contents of the vector.
    1654  
    1655     This macro is useful when various assembler syntaxes share a single
    1656     file of instruction patterns; by defining this macro differently,
    1657     you can cause a large class of instructions to be output
    1658     differently (such as with rearranged operands).  Naturally,
    1659     variations in assembler syntax affecting individual insn patterns
    1660     ought to be handled by writing conditional output routines in
    1661     those patterns.
    1662  
    1663     If this macro is not defined, it is equivalent to a null statement.  */
    1664  
    1665  #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
    1666    frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
    1667  
    1668  #undef USER_LABEL_PREFIX
    1669  #define USER_LABEL_PREFIX ""
    1670  #define REGISTER_PREFIX ""
    1671  #define LOCAL_LABEL_PREFIX "."
    1672  #define IMMEDIATE_PREFIX "#"
    1673  
    1674  
    1675  /* Output of dispatch tables.  */
    1676  
    1677  /* This macro should be provided on machines where the addresses in a dispatch
    1678     table are relative to the table's own address.
    1679  
    1680     The definition should be a C statement to output to the stdio stream STREAM
    1681     an assembler pseudo-instruction to generate a difference between two labels.
    1682     VALUE and REL are the numbers of two internal labels.  The definitions of
    1683     these labels are output using `(*targetm.asm_out.internal_label)', and they must be
    1684     printed in the same way here.  For example,
    1685  
    1686          fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
    1687  #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
    1688  fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
    1689  
    1690  /* This macro should be provided on machines where the addresses in a dispatch
    1691     table are absolute.
    1692  
    1693     The definition should be a C statement to output to the stdio stream STREAM
    1694     an assembler pseudo-instruction to generate a reference to a label.  VALUE
    1695     is the number of an internal label whose definition is output using
    1696     `(*targetm.asm_out.internal_label)'.  For example,
    1697  
    1698          fprintf (STREAM, "\t.word L%d\n", VALUE)  */
    1699  #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
    1700  fprintf (STREAM, "\t.word .L%d\n", VALUE)
    1701  
    1702  #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
    1703  
    1704  /* Assembler Commands for Exception Regions.  */
    1705  
    1706  /* Define this macro to 0 if your target supports DWARF 2 frame unwind
    1707     information, but it does not yet work with exception handling.  Otherwise,
    1708     if your target supports this information (if it defines
    1709     `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
    1710     a default definition of 1.
    1711  
    1712     If this macro is defined to 1, the DWARF 2 unwinder will be the default
    1713     exception handling mechanism; otherwise, setjmp/longjmp will be used by
    1714     default.
    1715  
    1716     If this macro is defined to anything, the DWARF 2 unwinder will be used
    1717     instead of inline unwinders and __unwind_function in the non-setjmp case.  */
    1718  #define DWARF2_UNWIND_INFO 1
    1719  
    1720  #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
    1721  
    1722  /* Assembler Commands for Alignment.  */
    1723  
    1724  #undef  ASM_OUTPUT_SKIP
    1725  #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
    1726    fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
    1727  
    1728  /* A C statement to output to the stdio stream STREAM an assembler command to
    1729     advance the location counter to a multiple of 2 to the POWER bytes.  POWER
    1730     will be a C expression of type `int'.  */
    1731  #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
    1732    fprintf ((STREAM), "\t.p2align %d\n", (POWER))
    1733  
    1734  /* Inside the text section, align with unpacked nops rather than zeros.  */
    1735  #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
    1736    fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
    1737  
    1738  /* Macros Affecting all Debug Formats.  */
    1739  
    1740  /* A C expression that returns the debugger register number for the compiler
    1741     register number REGNO.  In simple cases, the value of this expression may be
    1742     REGNO itself.  But sometimes there are some registers that the compiler
    1743     knows about and debugger does not, or vice versa.  In such cases, some register
    1744     may need to have one number in the compiler and another for debugger.
    1745  
    1746     If two registers have consecutive numbers inside GCC, and they can be
    1747     used as a pair to hold a multiword value, then they *must* have consecutive
    1748     numbers after renumbering with `DEBUGGER_REGNO'.  Otherwise, debuggers
    1749     will be unable to access such a pair, because they expect register pairs to
    1750     be consecutive in their own numbering scheme.
    1751  
    1752     If you find yourself defining `DEBUGGER_REGNO' in way that does not
    1753     preserve register pairs, then what you must do instead is redefine the
    1754     actual register numbering scheme.
    1755  
    1756     This declaration is required.  */
    1757  #define DEBUGGER_REGNO(REGNO) (REGNO)
    1758  
    1759  #undef  PREFERRED_DEBUGGING_TYPE
    1760  #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
    1761  
    1762  /* Miscellaneous Parameters.  */
    1763  
    1764  /* An alias for a machine mode name.  This is the machine mode that elements of
    1765     a jump-table should have.  */
    1766  #define CASE_VECTOR_MODE SImode
    1767  
    1768  /* Define this macro if operations between registers with integral mode smaller
    1769     than a word are always performed on the entire register.  Most RISC machines
    1770     have this property and most CISC machines do not.  */
    1771  #define WORD_REGISTER_OPERATIONS 1
    1772  
    1773  /* Define this macro to be a C expression indicating when insns that read
    1774     memory in MODE, an integral mode narrower than a word, set the bits outside
    1775     of MODE to be either the sign-extension or the zero-extension of the data
    1776     read.  Return `SIGN_EXTEND' for values of MODE for which the insn
    1777     sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
    1778     modes.
    1779  
    1780     This macro is not called with MODE non-integral or with a width greater than
    1781     or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
    1782     not define this macro if it would always return `UNKNOWN'.  On machines where
    1783     this macro is defined, you will normally define it as the constant
    1784     `SIGN_EXTEND' or `ZERO_EXTEND'.  */
    1785  #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
    1786  
    1787  /* Define if loading short immediate values into registers sign extends.  */
    1788  #define SHORT_IMMEDIATES_SIGN_EXTEND 1
    1789  
    1790  /* The maximum number of bytes that a single instruction can move quickly from
    1791     memory to memory.  */
    1792  #define MOVE_MAX 8
    1793  
    1794  /* An alias for the machine mode for pointers.  On most machines, define this
    1795     to be the integer mode corresponding to the width of a hardware pointer;
    1796     `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
    1797     you must define this to be one of the partial integer modes, such as
    1798     `PSImode'.
    1799  
    1800     The width of `Pmode' must be at least as large as the value of
    1801     `POINTER_SIZE'.  If it is not equal, you must define the macro
    1802     `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
    1803  #define Pmode SImode
    1804  
    1805  /* An alias for the machine mode used for memory references to functions being
    1806     called, in `call' RTL expressions.  On most machines this should be
    1807     `QImode'.  */
    1808  #define FUNCTION_MODE QImode
    1809  
    1810  /* A C expression for the maximum number of instructions to execute via
    1811     conditional execution instructions instead of a branch.  A value of
    1812     BRANCH_COST+1 is the default if the machine does not use
    1813     cc0, and 1 if it does use cc0.  */
    1814  #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
    1815  
    1816  /* A C expression to modify the code described by the conditional if
    1817     information CE_INFO, possibly updating the tests in TRUE_EXPR, and
    1818     FALSE_EXPR for converting if-then and if-then-else code to conditional
    1819     instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
    1820     tests cannot be converted.  */
    1821  #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
    1822  frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
    1823  
    1824  /* A C expression to modify the code described by the conditional if
    1825     information CE_INFO, for the basic block BB, possibly updating the tests in
    1826     TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
    1827     if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
    1828     the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
    1829     the tests cannot be converted.  */
    1830  #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
    1831  frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
    1832  
    1833  /* A C expression to modify the code described by the conditional if
    1834     information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
    1835     pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
    1836     insn cannot be converted to be executed conditionally.  */
    1837  #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
    1838  (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
    1839  
    1840  /* A C expression to perform any final machine dependent modifications in
    1841     converting code to conditional execution in the code described by the
    1842     conditional if information CE_INFO.  */
    1843  #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
    1844  
    1845  /* A C expression to cancel any machine dependent modifications in converting
    1846     code to conditional execution in the code described by the conditional if
    1847     information CE_INFO.  */
    1848  #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
    1849  
    1850  /* Initialize the machine-specific static data for if-conversion.  */
    1851  #define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
    1852  
    1853  /* The definition of the following macro results in that the 2nd jump
    1854     optimization (after the 2nd insn scheduling) is minimal.  It is
    1855     necessary to define when start cycle marks of insns (TImode is used
    1856     for this) is used for VLIW insn packing.  Some jump optimizations
    1857     make such marks invalid.  These marks are corrected for some
    1858     (minimal) optimizations.  ??? Probably the macro is temporary.
    1859     Final solution could making the 2nd jump optimizations before the
    1860     2nd instruction scheduling or corrections of the marks for all jump
    1861     optimizations.  Although some jump optimizations are actually
    1862     deoptimizations for VLIW (super-scalar) processors.  */
    1863  
    1864  #define MINIMAL_SECOND_JUMP_OPTIMIZATION
    1865  
    1866  
    1867  /* If the following macro is defined and nonzero and deterministic
    1868     finite state automata are used for pipeline hazard recognition, we
    1869     will try to exchange insns in queue ready to improve the schedule.
    1870     The more macro value, the more tries will be made.  */
    1871  #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
    1872  
    1873  /* The following macro is used only when value of
    1874     FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
    1875     the more tries will be made to choose better schedule.  If the
    1876     macro value is zero or negative there will be no multi-pass
    1877     scheduling.  */
    1878  #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
    1879  
    1880  enum frv_builtins
    1881  {
    1882    FRV_BUILTIN_MAND,
    1883    FRV_BUILTIN_MOR,
    1884    FRV_BUILTIN_MXOR,
    1885    FRV_BUILTIN_MNOT,
    1886    FRV_BUILTIN_MAVEH,
    1887    FRV_BUILTIN_MSATHS,
    1888    FRV_BUILTIN_MSATHU,
    1889    FRV_BUILTIN_MADDHSS,
    1890    FRV_BUILTIN_MADDHUS,
    1891    FRV_BUILTIN_MSUBHSS,
    1892    FRV_BUILTIN_MSUBHUS,
    1893    FRV_BUILTIN_MPACKH,
    1894    FRV_BUILTIN_MQADDHSS,
    1895    FRV_BUILTIN_MQADDHUS,
    1896    FRV_BUILTIN_MQSUBHSS,
    1897    FRV_BUILTIN_MQSUBHUS,
    1898    FRV_BUILTIN_MUNPACKH,
    1899    FRV_BUILTIN_MDPACKH,
    1900    FRV_BUILTIN_MBTOH,
    1901    FRV_BUILTIN_MHTOB,
    1902    FRV_BUILTIN_MCOP1,
    1903    FRV_BUILTIN_MCOP2,
    1904    FRV_BUILTIN_MROTLI,
    1905    FRV_BUILTIN_MROTRI,
    1906    FRV_BUILTIN_MWCUT,
    1907    FRV_BUILTIN_MSLLHI,
    1908    FRV_BUILTIN_MSRLHI,
    1909    FRV_BUILTIN_MSRAHI,
    1910    FRV_BUILTIN_MEXPDHW,
    1911    FRV_BUILTIN_MEXPDHD,
    1912    FRV_BUILTIN_MMULHS,
    1913    FRV_BUILTIN_MMULHU,
    1914    FRV_BUILTIN_MMULXHS,
    1915    FRV_BUILTIN_MMULXHU,
    1916    FRV_BUILTIN_MMACHS,
    1917    FRV_BUILTIN_MMACHU,
    1918    FRV_BUILTIN_MMRDHS,
    1919    FRV_BUILTIN_MMRDHU,
    1920    FRV_BUILTIN_MQMULHS,
    1921    FRV_BUILTIN_MQMULHU,
    1922    FRV_BUILTIN_MQMULXHU,
    1923    FRV_BUILTIN_MQMULXHS,
    1924    FRV_BUILTIN_MQMACHS,
    1925    FRV_BUILTIN_MQMACHU,
    1926    FRV_BUILTIN_MCPXRS,
    1927    FRV_BUILTIN_MCPXRU,
    1928    FRV_BUILTIN_MCPXIS,
    1929    FRV_BUILTIN_MCPXIU,
    1930    FRV_BUILTIN_MQCPXRS,
    1931    FRV_BUILTIN_MQCPXRU,
    1932    FRV_BUILTIN_MQCPXIS,
    1933    FRV_BUILTIN_MQCPXIU,
    1934    FRV_BUILTIN_MCUT,
    1935    FRV_BUILTIN_MCUTSS,
    1936    FRV_BUILTIN_MWTACC,
    1937    FRV_BUILTIN_MWTACCG,
    1938    FRV_BUILTIN_MRDACC,
    1939    FRV_BUILTIN_MRDACCG,
    1940    FRV_BUILTIN_MTRAP,
    1941    FRV_BUILTIN_MCLRACC,
    1942    FRV_BUILTIN_MCLRACCA,
    1943    FRV_BUILTIN_MDUNPACKH,
    1944    FRV_BUILTIN_MBTOHE,
    1945    FRV_BUILTIN_MQXMACHS,
    1946    FRV_BUILTIN_MQXMACXHS,
    1947    FRV_BUILTIN_MQMACXHS,
    1948    FRV_BUILTIN_MADDACCS,
    1949    FRV_BUILTIN_MSUBACCS,
    1950    FRV_BUILTIN_MASACCS,
    1951    FRV_BUILTIN_MDADDACCS,
    1952    FRV_BUILTIN_MDSUBACCS,
    1953    FRV_BUILTIN_MDASACCS,
    1954    FRV_BUILTIN_MABSHS,
    1955    FRV_BUILTIN_MDROTLI,
    1956    FRV_BUILTIN_MCPLHI,
    1957    FRV_BUILTIN_MCPLI,
    1958    FRV_BUILTIN_MDCUTSSI,
    1959    FRV_BUILTIN_MQSATHS,
    1960    FRV_BUILTIN_MQLCLRHS,
    1961    FRV_BUILTIN_MQLMTHS,
    1962    FRV_BUILTIN_MQSLLHI,
    1963    FRV_BUILTIN_MQSRAHI,
    1964    FRV_BUILTIN_MHSETLOS,
    1965    FRV_BUILTIN_MHSETLOH,
    1966    FRV_BUILTIN_MHSETHIS,
    1967    FRV_BUILTIN_MHSETHIH,
    1968    FRV_BUILTIN_MHDSETS,
    1969    FRV_BUILTIN_MHDSETH,
    1970    FRV_BUILTIN_SMUL,
    1971    FRV_BUILTIN_UMUL,
    1972    FRV_BUILTIN_PREFETCH0,
    1973    FRV_BUILTIN_PREFETCH,
    1974    FRV_BUILTIN_SMASS,
    1975    FRV_BUILTIN_SMSSS,
    1976    FRV_BUILTIN_SMU,
    1977    FRV_BUILTIN_SCUTSS,
    1978    FRV_BUILTIN_ADDSS,
    1979    FRV_BUILTIN_SUBSS,
    1980    FRV_BUILTIN_SLASS,
    1981    FRV_BUILTIN_IACCreadll,
    1982    FRV_BUILTIN_IACCreadl,
    1983    FRV_BUILTIN_IACCsetll,
    1984    FRV_BUILTIN_IACCsetl,
    1985    FRV_BUILTIN_SCAN,
    1986    FRV_BUILTIN_READ8,
    1987    FRV_BUILTIN_READ16,
    1988    FRV_BUILTIN_READ32,
    1989    FRV_BUILTIN_READ64,
    1990    FRV_BUILTIN_WRITE8,
    1991    FRV_BUILTIN_WRITE16,
    1992    FRV_BUILTIN_WRITE32,
    1993    FRV_BUILTIN_WRITE64
    1994  };
    1995  #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
    1996  
    1997  /* Enable prototypes on the call rtl functions.  */
    1998  #define MD_CALL_PROTOTYPES 1
    1999  
    2000  #define CPU_UNITS_QUERY 1
    2001  
    2002  #endif /* __FRV_H__ */