1  /* Definitions of target machine for GNU compiler, for DEC Alpha.
       2     Copyright (C) 1992-2023 Free Software Foundation, Inc.
       3     Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
       4  
       5  This file is part of GCC.
       6  
       7  GCC is free software; you can redistribute it and/or modify
       8  it under the terms of the GNU General Public License as published by
       9  the Free Software Foundation; either version 3, or (at your option)
      10  any later version.
      11  
      12  GCC is distributed in the hope that it will be useful,
      13  but WITHOUT ANY WARRANTY; without even the implied warranty of
      14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15  GNU General Public License for more details.
      16  
      17  You should have received a copy of the GNU General Public License
      18  along with GCC; see the file COPYING3.  If not see
      19  <http://www.gnu.org/licenses/>.  */
      20  
      21  /* Target CPU builtins.  */
      22  #define TARGET_CPU_CPP_BUILTINS()			\
      23    do							\
      24      {							\
      25  	builtin_define ("__alpha");			\
      26  	builtin_define ("__alpha__");			\
      27  	builtin_assert ("cpu=alpha");			\
      28  	builtin_assert ("machine=alpha");		\
      29  	if (TARGET_CIX)					\
      30  	  {						\
      31  	    builtin_define ("__alpha_cix__");		\
      32  	    builtin_assert ("cpu=cix");			\
      33  	  }						\
      34  	if (TARGET_FIX)					\
      35  	  {						\
      36  	    builtin_define ("__alpha_fix__");		\
      37  	    builtin_assert ("cpu=fix");			\
      38  	  }						\
      39  	if (TARGET_BWX)					\
      40  	  {						\
      41  	    builtin_define ("__alpha_bwx__");		\
      42  	    builtin_assert ("cpu=bwx");			\
      43  	  }						\
      44  	if (TARGET_MAX)					\
      45  	  {						\
      46  	    builtin_define ("__alpha_max__");		\
      47  	    builtin_assert ("cpu=max");			\
      48  	  }						\
      49  	if (alpha_cpu == PROCESSOR_EV6)			\
      50  	  {						\
      51  	    builtin_define ("__alpha_ev6__");		\
      52  	    builtin_assert ("cpu=ev6");			\
      53  	  }						\
      54  	else if (alpha_cpu == PROCESSOR_EV5)		\
      55  	  {						\
      56  	    builtin_define ("__alpha_ev5__");		\
      57  	    builtin_assert ("cpu=ev5");			\
      58  	  }						\
      59  	else	/* Presumably ev4.  */			\
      60  	  {						\
      61  	    builtin_define ("__alpha_ev4__");		\
      62  	    builtin_assert ("cpu=ev4");			\
      63  	  }						\
      64  	if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)	\
      65  	  builtin_define ("_IEEE_FP");			\
      66  	if (TARGET_IEEE_WITH_INEXACT)			\
      67  	  builtin_define ("_IEEE_FP_INEXACT");		\
      68  	if (TARGET_LONG_DOUBLE_128)			\
      69  	  builtin_define ("__LONG_DOUBLE_128__");	\
      70  							\
      71  	/* Macros dependent on the C dialect.  */	\
      72  	SUBTARGET_LANGUAGE_CPP_BUILTINS();		\
      73  } while (0)
      74  
      75  #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
      76  #define SUBTARGET_LANGUAGE_CPP_BUILTINS()		\
      77    do							\
      78      {							\
      79        if (preprocessing_asm_p ())			\
      80  	builtin_define_std ("LANGUAGE_ASSEMBLY");	\
      81        else if (c_dialect_cxx ())			\
      82  	{						\
      83  	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");	\
      84  	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");	\
      85  	}						\
      86        else						\
      87  	builtin_define_std ("LANGUAGE_C");		\
      88        if (c_dialect_objc ())				\
      89  	{						\
      90  	  builtin_define ("__LANGUAGE_OBJECTIVE_C");	\
      91  	  builtin_define ("__LANGUAGE_OBJECTIVE_C__");	\
      92  	}						\
      93      }							\
      94    while (0)
      95  #endif
      96  
      97  /* Run-time compilation parameters selecting different hardware subsets.  */
      98  
      99  /* Which processor to schedule for. The cpu attribute defines a list that
     100     mirrors this list, so changes to alpha.md must be made at the same time.  */
     101  
     102  enum processor_type
     103  {
     104    PROCESSOR_EV4,			/* 2106[46]{a,} */
     105    PROCESSOR_EV5,			/* 21164{a,pc,} */
     106    PROCESSOR_EV6,			/* 21264 */
     107    PROCESSOR_MAX
     108  };
     109  
     110  extern enum processor_type alpha_cpu;
     111  extern enum processor_type alpha_tune;
     112  
     113  enum alpha_trap_precision
     114  {
     115    ALPHA_TP_PROG,	/* No precision (default).  */
     116    ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
     117    ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe.  */
     118  };
     119  
     120  enum alpha_fp_rounding_mode
     121  {
     122    ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
     123    ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
     124    ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0).  */
     125    ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
     126  };
     127  
     128  enum alpha_fp_trap_mode
     129  {
     130    ALPHA_FPTM_N,		/* Normal trap mode.  */
     131    ALPHA_FPTM_U,		/* Underflow traps enabled.  */
     132    ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
     133    ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
     134  };
     135  
     136  extern enum alpha_trap_precision alpha_tp;
     137  extern enum alpha_fp_rounding_mode alpha_fprm;
     138  extern enum alpha_fp_trap_mode alpha_fptm;
     139  
     140  /* Invert the easy way to make options work.  */
     141  #define TARGET_FP	(!TARGET_SOFT_FP)
     142  
     143  /* These are for target os support and cannot be changed at runtime.  */
     144  #define TARGET_ABI_OPEN_VMS	0
     145  #define TARGET_ABI_OSF		(!TARGET_ABI_OPEN_VMS)
     146  
     147  #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
     148  #define TARGET_CAN_FAULT_IN_PROLOGUE 0
     149  #endif
     150  #ifndef TARGET_HAS_XFLOATING_LIBS
     151  #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
     152  #endif
     153  #ifndef TARGET_PROFILING_NEEDS_GP
     154  #define TARGET_PROFILING_NEEDS_GP 0
     155  #endif
     156  #ifndef TARGET_FIXUP_EV5_PREFETCH
     157  #define TARGET_FIXUP_EV5_PREFETCH 0
     158  #endif
     159  #ifndef HAVE_AS_TLS
     160  #define HAVE_AS_TLS 0
     161  #endif
     162  
     163  #define TARGET_DEFAULT MASK_FPREGS
     164  
     165  #ifndef TARGET_CPU_DEFAULT
     166  #define TARGET_CPU_DEFAULT 0
     167  #endif
     168  
     169  #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
     170  #ifdef HAVE_AS_EXPLICIT_RELOCS
     171  #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
     172  #define TARGET_SUPPORT_ARCH 1
     173  #else
     174  #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
     175  #endif
     176  #endif
     177  
     178  #ifndef TARGET_SUPPORT_ARCH
     179  #define TARGET_SUPPORT_ARCH 0
     180  #endif
     181  
     182  /* Support for a compile-time default CPU, et cetera.  The rules are:
     183     --with-cpu is ignored if -mcpu is specified.
     184     --with-tune is ignored if -mtune is specified.  */
     185  #define OPTION_DEFAULT_SPECS \
     186    {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
     187    {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
     188  
     189  
     190  /* target machine storage layout */
     191  
     192  /* Define the size of `int'.  The default is the same as the word size.  */
     193  #define INT_TYPE_SIZE 32
     194  
     195  /* Define the size of `long long'.  The default is the twice the word size.  */
     196  #define LONG_LONG_TYPE_SIZE 64
     197  
     198  /* The two floating-point formats we support are S-floating, which is
     199     4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
     200     and `long double' are T.  */
     201  
     202  #define FLOAT_TYPE_SIZE 32
     203  #define DOUBLE_TYPE_SIZE 64
     204  #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
     205  
     206  /* Work around target_flags dependency in ada/targtyps.cc.  */
     207  #define WIDEST_HARDWARE_FP_SIZE 64
     208  
     209  #define	WCHAR_TYPE "unsigned int"
     210  #define	WCHAR_TYPE_SIZE 32
     211  
     212  /* Define this macro if it is advisable to hold scalars in registers
     213     in a wider mode than that declared by the program.  In such cases,
     214     the value is constrained to be within the bounds of the declared
     215     type, but kept valid in the wider mode.  The signedness of the
     216     extension may differ from that of the type.
     217  
     218     For Alpha, we always store objects in a full register.  32-bit integers
     219     are always sign-extended, but smaller objects retain their signedness.
     220  
     221     Note that small vector types can get mapped onto integer modes at the
     222     whim of not appearing in alpha-modes.def.  We never promoted these
     223     values before; don't do so now that we've trimmed the set of modes to
     224     those actually implemented in the backend.  */
     225  
     226  #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)			\
     227    if (GET_MODE_CLASS (MODE) == MODE_INT				\
     228        && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)	\
     229        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
     230      {								\
     231        if ((MODE) == SImode)					\
     232  	(UNSIGNEDP) = 0;					\
     233        (MODE) = DImode;						\
     234      }
     235  
     236  /* Define this if most significant bit is lowest numbered
     237     in instructions that operate on numbered bit-fields.
     238  
     239     There are no such instructions on the Alpha, but the documentation
     240     is little endian.  */
     241  #define BITS_BIG_ENDIAN 0
     242  
     243  /* Define this if most significant byte of a word is the lowest numbered.
     244     This is false on the Alpha.  */
     245  #define BYTES_BIG_ENDIAN 0
     246  
     247  /* Define this if most significant word of a multiword number is lowest
     248     numbered.
     249  
     250     For Alpha we can decide arbitrarily since there are no machine instructions
     251     for them.  Might as well be consistent with bytes.  */
     252  #define WORDS_BIG_ENDIAN 0
     253  
     254  /* Width of a word, in units (bytes).  */
     255  #define UNITS_PER_WORD 8
     256  
     257  /* Width in bits of a pointer.
     258     See also the macro `Pmode' defined below.  */
     259  #define POINTER_SIZE 64
     260  
     261  /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
     262  #define PARM_BOUNDARY 64
     263  
     264  /* Boundary (in *bits*) on which stack pointer should be aligned.  */
     265  #define STACK_BOUNDARY 128
     266  
     267  /* Allocation boundary (in *bits*) for the code of a function.  */
     268  #define FUNCTION_BOUNDARY 32
     269  
     270  /* Alignment of field after `int : 0' in a structure.  */
     271  #define EMPTY_FIELD_BOUNDARY 64
     272  
     273  /* Every structure's size must be a multiple of this.  */
     274  #define STRUCTURE_SIZE_BOUNDARY 8
     275  
     276  /* A bit-field declared as `int' forces `int' alignment for the struct.  */
     277  #undef PCC_BITFILED_TYPE_MATTERS
     278  #define PCC_BITFIELD_TYPE_MATTERS 1
     279  
     280  /* No data type wants to be aligned rounder than this.  */
     281  #define BIGGEST_ALIGNMENT 128
     282  
     283  /* For atomic access to objects, must have at least 32-bit alignment
     284     unless the machine has byte operations.  */
     285  #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
     286  
     287  /* Align all constants and variables to at least a word boundary so
     288     we can pick up pieces of them faster.  */
     289  /* ??? Only if block-move stuff knows about different source/destination
     290     alignment.  */
     291  #if 0
     292  #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
     293  #endif
     294  
     295  /* Set this nonzero if move instructions will actually fail to work
     296     when given unaligned data.
     297  
     298     Since we get an error message when we do one, call them invalid.  */
     299  
     300  #define STRICT_ALIGNMENT 1
     301  
     302  /* Standard register usage.  */
     303  
     304  /* Number of actual hardware registers.
     305     The hardware registers are assigned numbers for the compiler
     306     from 0 to just below FIRST_PSEUDO_REGISTER.
     307     All registers that the compiler knows about must be given numbers,
     308     even those that are not normally considered general registers.
     309  
     310     We define all 32 integer registers, even though $31 is always zero,
     311     and all 32 floating-point registers, even though $f31 is also
     312     always zero.  We do not bother defining the FP status register and
     313     there are no other registers.
     314  
     315     Since $31 is always zero, we will use register number 31 as the
     316     argument pointer.  It will never appear in the generated code
     317     because we will always be eliminating it in favor of the stack
     318     pointer or hardware frame pointer.
     319  
     320     Likewise, we use $f31 for the frame pointer, which will always
     321     be eliminated in favor of the hardware frame pointer or the
     322     stack pointer.  */
     323  
     324  #define FIRST_PSEUDO_REGISTER 64
     325  
     326  /* 1 for registers that have pervasive standard uses
     327     and are not available for the register allocator.  */
     328  
     329  #define FIXED_REGISTERS  \
     330   {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
     331    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
     332    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
     333    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
     334  
     335  /* 1 for registers not available across function calls.
     336     These must include the FIXED_REGISTERS and also any
     337     registers that can be used without being saved.
     338     The latter must include the registers where values are returned
     339     and the register where structure-value addresses are passed.
     340     Aside from that, you can include as many other registers as you like.  */
     341  #define CALL_USED_REGISTERS  \
     342   {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
     343    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
     344    1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
     345    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
     346  
     347  /* List the order in which to allocate registers.  Each register must be
     348     listed once, even those in FIXED_REGISTERS.  */
     349  
     350  #define REG_ALLOC_ORDER { \
     351     1, 2, 3, 4, 5, 6, 7, 8,	/* nonsaved integer registers */	\
     352     22, 23, 24, 25, 28,		/* likewise */				\
     353     0,				/* likewise, but return value */	\
     354     21, 20, 19, 18, 17, 16,	/* likewise, but input args */		\
     355     27,				/* likewise, but OSF procedure value */	\
     356  									\
     357     42, 43, 44, 45, 46, 47,	/* nonsaved floating-point registers */	\
     358     54, 55, 56, 57, 58, 59,	/* likewise */				\
     359     60, 61, 62,			/* likewise */				\
     360     32, 33,			/* likewise, but return values */	\
     361     53, 52, 51, 50, 49, 48,	/* likewise, but input args */		\
     362  									\
     363     9, 10, 11, 12, 13, 14,	/* saved integer registers */		\
     364     26,				/* return address */			\
     365     15,				/* hard frame pointer */		\
     366  									\
     367     34, 35, 36, 37, 38, 39,	/* saved floating-point registers */	\
     368     40, 41,			/* likewise */				\
     369  									\
     370     29, 30, 31, 63		/* gp, sp, ap, sfp */			\
     371  }
     372  
     373  /* Specify the registers used for certain standard purposes.
     374     The values of these macros are register numbers.  */
     375  
     376  /* Alpha pc isn't overloaded on a register that the compiler knows about.  */
     377  /* #define PC_REGNUM  */
     378  
     379  /* Register to use for pushing function arguments.  */
     380  #define STACK_POINTER_REGNUM 30
     381  
     382  /* Base register for access to local variables of the function.  */
     383  #define HARD_FRAME_POINTER_REGNUM 15
     384  
     385  /* Base register for access to arguments of the function.  */
     386  #define ARG_POINTER_REGNUM 31
     387  
     388  /* Base register for access to local variables of function.  */
     389  #define FRAME_POINTER_REGNUM 63
     390  
     391  /* Register in which static-chain is passed to a function.
     392  
     393     For the Alpha, this is based on an example; the calling sequence
     394     doesn't seem to specify this.  */
     395  #define STATIC_CHAIN_REGNUM 1
     396  
     397  /* The register number of the register used to address a table of
     398     static data addresses in memory.  */
     399  #define PIC_OFFSET_TABLE_REGNUM 29
     400  
     401  /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
     402     is clobbered by calls.  */
     403  /* ??? It is and it isn't.  It's required to be valid for a given
     404     function when the function returns.  It isn't clobbered by
     405     current_file functions.  Moreover, we do not expose the ldgp
     406     until after reload, so we're probably safe.  */
     407  /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
     408  
     409  /* Define the classes of registers for register constraints in the
     410     machine description.  Also define ranges of constants.
     411  
     412     One of the classes must always be named ALL_REGS and include all hard regs.
     413     If there is more than one class, another class must be named NO_REGS
     414     and contain no registers.
     415  
     416     The name GENERAL_REGS must be the name of a class (or an alias for
     417     another name such as ALL_REGS).  This is the class of registers
     418     that is allowed by "g" or "r" in a register constraint.
     419     Also, registers outside this class are allocated only when
     420     instructions express preferences for them.
     421  
     422     The classes must be numbered in nondecreasing order; that is,
     423     a larger-numbered class must never be contained completely
     424     in a smaller-numbered class.
     425  
     426     For any two classes, it is very desirable that there be another
     427     class that represents their union.  */
     428  
     429  enum reg_class {
     430    NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
     431    GENERAL_REGS, FLOAT_REGS, ALL_REGS,
     432    LIM_REG_CLASSES
     433  };
     434  
     435  #define N_REG_CLASSES (int) LIM_REG_CLASSES
     436  
     437  /* Give names of register classes as strings for dump file.  */
     438  
     439  #define REG_CLASS_NAMES					\
     440   {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG",	\
     441    "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
     442  
     443  /* Define which registers fit in which classes.
     444     This is an initializer for a vector of HARD_REG_SET
     445     of length N_REG_CLASSES.  */
     446  
     447  #define REG_CLASS_CONTENTS				\
     448  { {0x00000000, 0x00000000},	/* NO_REGS */		\
     449    {0x00000001, 0x00000000},	/* R0_REG */		\
     450    {0x01000000, 0x00000000},	/* R24_REG */		\
     451    {0x02000000, 0x00000000},	/* R25_REG */		\
     452    {0x08000000, 0x00000000},	/* R27_REG */		\
     453    {0xffffffff, 0x80000000},	/* GENERAL_REGS */	\
     454    {0x00000000, 0x7fffffff},	/* FLOAT_REGS */	\
     455    {0xffffffff, 0xffffffff} }
     456  
     457  /* The same information, inverted:
     458     Return the class number of the smallest class containing
     459     reg number REGNO.  This could be a conditional expression
     460     or could index an array.  */
     461  
     462  #define REGNO_REG_CLASS(REGNO)			\
     463   ((REGNO) == 0 ? R0_REG				\
     464    : (REGNO) == 24 ? R24_REG			\
     465    : (REGNO) == 25 ? R25_REG			\
     466    : (REGNO) == 27 ? R27_REG			\
     467    : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS	\
     468    : GENERAL_REGS)
     469  
     470  /* The class value for index registers, and the one for base regs.  */
     471  #define INDEX_REG_CLASS NO_REGS
     472  #define BASE_REG_CLASS GENERAL_REGS
     473  
     474  /* Given an rtx X being reloaded into a reg required to be
     475     in class CLASS, return the class of reg to actually use.
     476     In general this is just CLASS; but on some machines
     477     in some cases it is preferable to use a more restrictive class.  */
     478  
     479  #define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
     480  
     481  /* Provide the cost of a branch.  Exact meaning under development.  */
     482  #define BRANCH_COST(speed_p, predictable_p) 5
     483  
     484  /* Stack layout; function entry, exit and calling.  */
     485  
     486  /* Define this if pushing a word on the stack
     487     makes the stack pointer a smaller address.  */
     488  #define STACK_GROWS_DOWNWARD 1
     489  
     490  /* Define this to nonzero if the nominal address of the stack frame
     491     is at the high-address end of the local variables;
     492     that is, each additional local variable allocated
     493     goes at a more negative offset in the frame.  */
     494  /* #define FRAME_GROWS_DOWNWARD 0 */
     495  
     496  /* If we generate an insn to push BYTES bytes,
     497     this says how many the stack pointer really advances by.
     498     On Alpha, don't define this because there are no push insns.  */
     499  /*  #define PUSH_ROUNDING(BYTES) */
     500  
     501  /* Define this to be nonzero if stack checking is built into the ABI.  */
     502  #define STACK_CHECK_BUILTIN 1
     503  
     504  /* Define this if the maximum size of all the outgoing args is to be
     505     accumulated and pushed during the prologue.  The amount can be
     506     found in the variable crtl->outgoing_args_size.  */
     507  #define ACCUMULATE_OUTGOING_ARGS 1
     508  
     509  /* Offset of first parameter from the argument pointer register value.  */
     510  
     511  #define FIRST_PARM_OFFSET(FNDECL) 0
     512  
     513  /* Definitions for register eliminations.
     514  
     515     We have two registers that can be eliminated on the Alpha.  First, the
     516     frame pointer register can often be eliminated in favor of the stack
     517     pointer register.  Secondly, the argument pointer register can always be
     518     eliminated; it is replaced with either the stack or frame pointer.  */
     519  
     520  /* This is an array of structures.  Each structure initializes one pair
     521     of eliminable registers.  The "from" register number is given first,
     522     followed by "to".  Eliminations of the same "from" register are listed
     523     in order of preference.  */
     524  
     525  #define ELIMINABLE_REGS				     \
     526  {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
     527   { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
     528   { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
     529   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
     530  
     531  /* Round up to a multiple of 16 bytes.  */
     532  #define ALPHA_ROUND(X) ROUND_UP ((X), 16)
     533  
     534  /* Define the offset between two registers, one to be eliminated, and the other
     535     its replacement, at the start of a routine.  */
     536  #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
     537    ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
     538  
     539  /* Define this if stack space is still allocated for a parameter passed
     540     in a register.  */
     541  /* #define REG_PARM_STACK_SPACE */
     542  
     543  /* 1 if N is a possible register number for function argument passing.
     544     On Alpha, these are $16-$21 and $f16-$f21.  */
     545  
     546  #define FUNCTION_ARG_REGNO_P(N) \
     547    (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
     548  
     549  /* Define a data type for recording info about an argument list
     550     during the scan of that argument list.  This data type should
     551     hold all necessary information about the function itself
     552     and about the args processed so far, enough to enable macros
     553     such as FUNCTION_ARG to determine where the next arg should go.
     554  
     555     On Alpha, this is a single integer, which is a number of words
     556     of arguments scanned so far.
     557     Thus 6 or more means all following args should go on the stack.  */
     558  
     559  #define CUMULATIVE_ARGS int
     560  
     561  /* Initialize a variable CUM of type CUMULATIVE_ARGS
     562     for a call to a function whose data type is FNTYPE.
     563     For a library call, FNTYPE is 0.  */
     564  
     565  #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
     566    (CUM) = 0
     567  
     568  /* Define intermediate macro to compute
     569     the size (in registers) of an argument.  */
     570  
     571  #define ALPHA_ARG_SIZE(MODE, TYPE)					\
     572    ((MODE) == TFmode || (MODE) == TCmode ? 1				\
     573     : CEIL (((MODE) == BLKmode						\
     574  	    ? int_size_in_bytes (TYPE)					\
     575  	    : GET_MODE_SIZE (MODE)),					\
     576  	   UNITS_PER_WORD))
     577  
     578  /* Make (or fake) .linkage entry for function call.
     579     IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
     580  
     581  /* This macro defines the start of an assembly comment.  */
     582  
     583  #define ASM_COMMENT_START " #"
     584  
     585  /* This macro produces the initial definition of a function.  */
     586  
     587  #undef ASM_DECLARE_FUNCTION_NAME
     588  #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
     589    alpha_start_function(FILE,NAME,DECL);
     590  
     591  /* This macro closes up a function definition for the assembler.  */
     592  
     593  #undef ASM_DECLARE_FUNCTION_SIZE
     594  #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
     595    alpha_end_function(FILE,NAME,DECL)
     596  
     597  /* Output any profiling code before the prologue.  */
     598  
     599  #define PROFILE_BEFORE_PROLOGUE 1
     600  
     601  /* Never use profile counters.  */
     602  
     603  #define NO_PROFILE_COUNTERS 1
     604  
     605  /* Output assembler code to FILE to increment profiler label # LABELNO
     606     for profiling a function entry.  Under OSF/1, profiling is enabled
     607     by simply passing -pg to the assembler and linker.  */
     608  
     609  #define FUNCTION_PROFILER(FILE, LABELNO)
     610  
     611  /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
     612     the stack pointer does not matter.  The value is tested only in
     613     functions that have frame pointers.
     614     No definition is equivalent to always zero.  */
     615  
     616  #define EXIT_IGNORE_STACK 1
     617  
     618  /* Define registers used by the epilogue and return instruction.  */
     619  
     620  #define EPILOGUE_USES(REGNO)	((REGNO) == 26)
     621  
     622  /* Length in units of the trampoline for entering a nested function.  */
     623  
     624  #define TRAMPOLINE_SIZE    32
     625  
     626  /* The alignment of a trampoline, in bits.  */
     627  
     628  #define TRAMPOLINE_ALIGNMENT  64
     629  
     630  /* A C expression whose value is RTL representing the value of the return
     631     address for the frame COUNT steps up from the current frame.
     632     FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
     633     the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
     634  
     635  #define RETURN_ADDR_RTX  alpha_return_addr
     636  
     637  /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
     638     can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
     639     as the default definition in dwarf2out.cc.  */
     640  #undef DWARF_FRAME_REGNUM
     641  #define DWARF_FRAME_REGNUM(REG) DEBUGGER_REGNO (REG)
     642  
     643  /* Before the prologue, RA lives in $26.  */
     644  #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
     645  #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
     646  #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
     647  #define DWARF_ZERO_REG 31
     648  
     649  /* Describe how we implement __builtin_eh_return.  */
     650  #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 16 : INVALID_REGNUM)
     651  #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 28)
     652  #define EH_RETURN_HANDLER_RTX \
     653    gen_rtx_MEM (Pmode, plus_constant (Pmode, stack_pointer_rtx, \
     654  				     crtl->outgoing_args_size))
     655  
     656  /* Addressing modes, and classification of registers for them.  */
     657  
     658  /* Macros to check register numbers against specific register classes.  */
     659  
     660  /* These assume that REGNO is a hard or pseudo reg number.
     661     They give nonzero only if REGNO is a hard reg of the suitable class
     662     or a pseudo reg currently allocated to a suitable hard reg.
     663     Since they use reg_renumber, they are safe only once reg_renumber
     664     has been allocated, which happens in reginfo.cc during register
     665     allocation.  */
     666  
     667  #define REGNO_OK_FOR_INDEX_P(REGNO) 0
     668  #define REGNO_OK_FOR_BASE_P(REGNO) \
     669  ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
     670   || (REGNO) == 63 || reg_renumber[REGNO] == 63)
     671  
     672  /* Maximum number of registers that can appear in a valid memory address.  */
     673  #define MAX_REGS_PER_ADDRESS 1
     674  
     675  /* Recognize any constant value that is a valid address.  For the Alpha,
     676     there are only constants none since we want to use LDA to load any
     677     symbolic addresses into registers.  */
     678  
     679  #define CONSTANT_ADDRESS_P(X)   \
     680    (CONST_INT_P (X)		\
     681     && (UINTVAL (X) + 0x8000) < 0x10000)
     682  
     683  /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
     684     and check its validity for a certain class.
     685     We have two alternate definitions for each of them.
     686     The usual definition accepts all pseudo regs; the other rejects
     687     them unless they have been allocated suitable hard regs.
     688     The symbol REG_OK_STRICT causes the latter definition to be used.
     689  
     690     Most source files want to accept pseudo regs in the hope that
     691     they will get allocated to the class that the insn wants them to be in.
     692     Source files for reload pass need to be strict.
     693     After reload, it makes no difference, since pseudo regs have
     694     been eliminated by then.  */
     695  
     696  /* Nonzero if X is a hard reg that can be used as an index
     697     or if it is a pseudo reg.  */
     698  #define REG_OK_FOR_INDEX_P(X) 0
     699  
     700  /* Nonzero if X is a hard reg that can be used as a base reg
     701     or if it is a pseudo reg.  */
     702  #define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
     703    (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
     704  
     705  /* ??? Nonzero if X is the frame pointer, or some virtual register
     706     that may eliminate to the frame pointer.  These will be allowed to
     707     have offsets greater than 32K.  This is done because register
     708     elimination offsets will change the hi/lo split, and if we split
     709     before reload, we will require additional instructions.  */
     710  #define NONSTRICT_REG_OK_FP_BASE_P(X)		\
     711    (REGNO (X) == 31 || REGNO (X) == 63		\
     712     || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
     713         && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
     714  
     715  /* Nonzero if X is a hard reg that can be used as a base reg.  */
     716  #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
     717  
     718  #ifdef REG_OK_STRICT
     719  #define REG_OK_FOR_BASE_P(X)	STRICT_REG_OK_FOR_BASE_P (X)
     720  #else
     721  #define REG_OK_FOR_BASE_P(X)	NONSTRICT_REG_OK_FOR_BASE_P (X)
     722  #endif
     723  
     724  /* Try a machine-dependent way of reloading an illegitimate address
     725     operand.  If we find one, push the reload and jump to WIN.  This
     726     macro is used in only one place: `find_reloads_address' in reload.cc.  */
     727  
     728  #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
     729  do {									     \
     730    rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
     731    if (new_x)								     \
     732      {									     \
     733        X = new_x;							     \
     734        goto WIN;								     \
     735      }									     \
     736  } while (0)
     737  
     738  
     739  /* Specify the machine mode that this machine uses
     740     for the index in the tablejump instruction.  */
     741  #define CASE_VECTOR_MODE SImode
     742  
     743  /* Define as C expression which evaluates to nonzero if the tablejump
     744     instruction expects the table to contain offsets from the address of the
     745     table.
     746  
     747     Do not define this if the table should contain absolute addresses.
     748     On the Alpha, the table is really GP-relative, not relative to the PC
     749     of the table, but we pretend that it is PC-relative; this should be OK,
     750     but we should try to find some better way sometime.  */
     751  #define CASE_VECTOR_PC_RELATIVE 1
     752  
     753  /* Define this as 1 if `char' should by default be signed; else as 0.  */
     754  #define DEFAULT_SIGNED_CHAR 1
     755  
     756  /* Max number of bytes we can move to or from memory
     757     in one reasonably fast instruction.  */
     758  
     759  #define MOVE_MAX 8
     760  
     761  /* If a memory-to-memory move would take MOVE_RATIO or more simple
     762     move-instruction pairs, we will do a cpymem or libcall instead.
     763  
     764     Without byte/word accesses, we want no more than four instructions;
     765     with, several single byte accesses are better.  */
     766  
     767  #define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
     768  
     769  /* Largest number of bytes of an object that can be placed in a register.
     770     On the Alpha we have plenty of registers, so use TImode.  */
     771  #define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)
     772  
     773  /* Nonzero if access to memory by bytes is no faster than for words.
     774     Also nonzero if doing byte operations (specifically shifts) in registers
     775     is undesirable.
     776  
     777     On the Alpha, we want to not use the byte operation and instead use
     778     masking operations to access fields; these will save instructions.  */
     779  
     780  #define SLOW_BYTE_ACCESS	1
     781  
     782  /* Define if operations between registers always perform the operation
     783     on the full register even if a narrower mode is specified.  */
     784  #define WORD_REGISTER_OPERATIONS 1
     785  
     786  /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
     787     will either zero-extend or sign-extend.  The value of this macro should
     788     be the code that says which one of the two operations is implicitly
     789     done, UNKNOWN if none.  */
     790  #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
     791  
     792  /* Define if loading short immediate values into registers sign extends.  */
     793  #define SHORT_IMMEDIATES_SIGN_EXTEND 1
     794  
     795  /* The CIX ctlz and cttz instructions return 64 for zero.  */
     796  #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, \
     797    TARGET_CIX ? 1 : 0)
     798  #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, \
     799    TARGET_CIX ? 1 : 0)
     800  
     801  /* Define the value returned by a floating-point comparison instruction.  */
     802  
     803  #define FLOAT_STORE_FLAG_VALUE(MODE) \
     804    REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
     805  
     806  /* Specify the machine mode that pointers have.
     807     After generation of rtl, the compiler makes no further distinction
     808     between pointers and any other objects of this machine mode.  */
     809  #define Pmode DImode
     810  
     811  /* Mode of a function address in a call instruction (for indexing purposes).  */
     812  
     813  #define FUNCTION_MODE Pmode
     814  
     815  /* Define this if addresses of constant functions
     816     shouldn't be put through pseudo regs where they can be cse'd.
     817     Desirable on machines where ordinary constants are expensive
     818     but a CALL with constant address is cheap.
     819  
     820     We define this on the Alpha so that gen_call and gen_call_value
     821     get to see the SYMBOL_REF (for the hint field of the jsr).  It will
     822     then copy it into a register, thus actually letting the address be
     823     cse'ed.  */
     824  
     825  #define NO_FUNCTION_CSE 1
     826  
     827  /* Define this to be nonzero if shift instructions ignore all but the low-order
     828     few bits.  */
     829  #define SHIFT_COUNT_TRUNCATED 1
     830  
     831  /* Control the assembler format that we output.  */
     832  
     833  /* Output to assembler file text saying following lines
     834     may contain character constants, extra white space, comments, etc.  */
     835  #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
     836  
     837  /* Output to assembler file text saying following lines
     838     no longer contain unusual constructs.  */
     839  #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
     840  
     841  #define TEXT_SECTION_ASM_OP "\t.text"
     842  
     843  /* Output before writable data.  */
     844  
     845  #define DATA_SECTION_ASM_OP "\t.data"
     846  
     847  /* How to refer to registers in assembler output.
     848     This sequence is indexed by compiler's hard-register-number (see above).  */
     849  
     850  #define REGISTER_NAMES						\
     851  {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
     852   "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
     853   "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
     854   "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
     855   "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
     856   "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
     857   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
     858   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
     859  
     860  /* Strip name encoding when emitting labels.  */
     861  
     862  #define ASM_OUTPUT_LABELREF(STREAM, NAME)	\
     863  do {						\
     864    const char *name_ = NAME;			\
     865    if (*name_ == '@' || *name_ == '%')		\
     866      name_ += 2;					\
     867    if (*name_ == '*')				\
     868      name_++;					\
     869    else						\
     870      fputs (user_label_prefix, STREAM);		\
     871    fputs (name_, STREAM);			\
     872  } while (0)
     873  
     874  /* Globalizing directive for a label.  */
     875  #define GLOBAL_ASM_OP "\t.globl "
     876  
     877  /* Use dollar signs rather than periods in special g++ assembler names.  */
     878  
     879  #undef NO_DOLLAR_IN_LABEL
     880  
     881  /* This is how to store into the string LABEL
     882     the symbol_ref name of an internal numbered label where
     883     PREFIX is the class of label and NUM is the number within the class.
     884     This is suitable for output with `assemble_name'.  */
     885  
     886  #undef ASM_GENERATE_INTERNAL_LABEL
     887  #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
     888    sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
     889  
     890  /* This is how to output an element of a case-vector that is relative.  */
     891  
     892  #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
     893    fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
     894  
     895  /* If we use NM, pass -g to it so it only lists globals.  */
     896  #define NM_FLAGS "-pg"
     897  
     898  /* Definitions for debugging.  */
     899  
     900  /* Correct the offset of automatic variables and arguments.  Note that
     901     the Alpha debug format wants all automatic variables and arguments
     902     to be in terms of two different offsets from the virtual frame pointer,
     903     which is the stack pointer before any adjustment in the function.
     904     The offset for the argument pointer is fixed for the native compiler,
     905     it is either zero (for the no arguments case) or large enough to hold
     906     all argument registers.
     907     The offset for the auto pointer is the fourth argument to the .frame
     908     directive (local_offset).
     909     To stay compatible with the native tools we use the same offsets
     910     from the virtual frame pointer and adjust the debugger arg/auto offsets
     911     accordingly. These debugger offsets are set up in output_prolog.  */
     912  
     913  extern long alpha_arg_offset;
     914  extern long alpha_auto_offset;
     915  #define DEBUGGER_AUTO_OFFSET(X) \
     916    ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
     917  #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
     918  
     919  #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
     920    alpha_output_filename (STREAM, NAME)
     921  
     922  /* By default, turn on GDB extensions.  */
     923  #define DEFAULT_GDB_EXTENSIONS 1
     924  
     925  #define TARGET_SUPPORTS_WIDE_INT 1