(root)/
gcc-13.2.0/
gcc/
basic-block.h
       1  /* Define control flow data structures for the CFG.
       2     Copyright (C) 1987-2023 Free Software Foundation, Inc.
       3  
       4  This file is part of GCC.
       5  
       6  GCC is free software; you can redistribute it and/or modify it under
       7  the terms of the GNU General Public License as published by the Free
       8  Software Foundation; either version 3, or (at your option) any later
       9  version.
      10  
      11  GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      12  WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      14  for more details.
      15  
      16  You should have received a copy of the GNU General Public License
      17  along with GCC; see the file COPYING3.  If not see
      18  <http://www.gnu.org/licenses/>.  */
      19  
      20  #ifndef GCC_BASIC_BLOCK_H
      21  #define GCC_BASIC_BLOCK_H
      22  
      23  #include <profile-count.h>
      24  
      25  /* Control flow edge information.  */
      26  class GTY((user)) edge_def {
      27  public:
      28    /* The two blocks at the ends of the edge.  */
      29    basic_block src;
      30    basic_block dest;
      31  
      32    /* Instructions queued on the edge.  */
      33    union edge_def_insns {
      34      gimple_seq g;
      35      rtx_insn *r;
      36    } insns;
      37  
      38    /* Auxiliary info specific to a pass.  */
      39    void *aux;
      40  
      41    /* Location of any goto implicit in the edge.  */
      42    location_t goto_locus;
      43  
      44    /* The index number corresponding to this edge in the edge vector
      45       dest->preds.  */
      46    unsigned int dest_idx;
      47  
      48    int flags;			/* see cfg-flags.def */
      49    profile_probability probability;
      50  
      51    /* Return count of edge E.  */
      52    inline profile_count count () const;
      53  };
      54  
      55  /* Masks for edge.flags.  */
      56  #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
      57  enum cfg_edge_flags {
      58  #include "cfg-flags.def"
      59    LAST_CFG_EDGE_FLAG		/* this is only used for EDGE_ALL_FLAGS */
      60  };
      61  #undef DEF_EDGE_FLAG
      62  
      63  /* Bit mask for all edge flags.  */
      64  #define EDGE_ALL_FLAGS		((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
      65  
      66  /* The following four flags all indicate something special about an edge.
      67     Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
      68     control flow transfers.  */
      69  #define EDGE_COMPLEX \
      70    (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
      71  
      72  struct GTY(()) rtl_bb_info {
      73    /* The first insn of the block is embedded into bb->il.x.  */
      74    /* The last insn of the block.  */
      75    rtx_insn *end_;
      76  
      77    /* In CFGlayout mode points to insn notes/jumptables to be placed just before
      78       and after the block.   */
      79    rtx_insn *header_;
      80    rtx_insn *footer_;
      81  };
      82  
      83  struct GTY(()) gimple_bb_info {
      84    /* Sequence of statements in this block.  */
      85    gimple_seq seq;
      86  
      87    /* PHI nodes for this block.  */
      88    gimple_seq phi_nodes;
      89  };
      90  
      91  /* A basic block is a sequence of instructions with only one entry and
      92     only one exit.  If any one of the instructions are executed, they
      93     will all be executed, and in sequence from first to last.
      94  
      95     There may be COND_EXEC instructions in the basic block.  The
      96     COND_EXEC *instructions* will be executed -- but if the condition
      97     is false the conditionally executed *expressions* will of course
      98     not be executed.  We don't consider the conditionally executed
      99     expression (which might have side-effects) to be in a separate
     100     basic block because the program counter will always be at the same
     101     location after the COND_EXEC instruction, regardless of whether the
     102     condition is true or not.
     103  
     104     Basic blocks need not start with a label nor end with a jump insn.
     105     For example, a previous basic block may just "conditionally fall"
     106     into the succeeding basic block, and the last basic block need not
     107     end with a jump insn.  Block 0 is a descendant of the entry block.
     108  
     109     A basic block beginning with two labels cannot have notes between
     110     the labels.
     111  
     112     Data for jump tables are stored in jump_insns that occur in no
     113     basic block even though these insns can follow or precede insns in
     114     basic blocks.  */
     115  
     116  /* Basic block information indexed by block number.  */
     117  struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
     118    /* The edges into and out of the block.  */
     119    vec<edge, va_gc> *preds;
     120    vec<edge, va_gc> *succs;
     121  
     122    /* Auxiliary info specific to a pass.  */
     123    void *GTY ((skip (""))) aux;
     124  
     125    /* Innermost loop containing the block.  */
     126    class loop *loop_father;
     127  
     128    /* The dominance and postdominance information node.  */
     129    struct et_node * GTY ((skip (""))) dom[2];
     130  
     131    /* Previous and next blocks in the chain.  */
     132    basic_block prev_bb;
     133    basic_block next_bb;
     134  
     135    union basic_block_il_dependent {
     136        struct gimple_bb_info GTY ((tag ("0"))) gimple;
     137        struct {
     138          rtx_insn *head_;
     139          struct rtl_bb_info * rtl;
     140        } GTY ((tag ("1"))) x;
     141      } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
     142  
     143    /* Various flags.  See cfg-flags.def.  */
     144    int flags;
     145  
     146    /* The index of this block.  */
     147    int index;
     148  
     149    /* Expected number of executions: calculated in profile.cc.  */
     150    profile_count count;
     151  };
     152  
     153  /* This ensures that struct gimple_bb_info is smaller than
     154     struct rtl_bb_info, so that inlining the former into basic_block_def
     155     is the better choice.  */
     156  STATIC_ASSERT (sizeof (rtl_bb_info) >= sizeof (gimple_bb_info));
     157  
     158  #define BB_FREQ_MAX 10000
     159  
     160  /* Masks for basic_block.flags.  */
     161  #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
     162  enum cfg_bb_flags
     163  {
     164  #include "cfg-flags.def"
     165    LAST_CFG_BB_FLAG		/* this is only used for BB_ALL_FLAGS */
     166  };
     167  #undef DEF_BASIC_BLOCK_FLAG
     168  
     169  /* Bit mask for all basic block flags.  */
     170  #define BB_ALL_FLAGS		((LAST_CFG_BB_FLAG - 1) * 2 - 1)
     171  
     172  /* Bit mask for all basic block flags that must be preserved.  These are
     173     the bit masks that are *not* cleared by clear_bb_flags.  */
     174  #define BB_FLAGS_TO_PRESERVE					\
     175    (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET	\
     176     | BB_HOT_PARTITION | BB_COLD_PARTITION)
     177  
     178  /* Dummy bitmask for convenience in the hot/cold partitioning code.  */
     179  #define BB_UNPARTITIONED	0
     180  
     181  /* Partitions, to be used when partitioning hot and cold basic blocks into
     182     separate sections.  */
     183  #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
     184  #define BB_SET_PARTITION(bb, part) do {					\
     185    basic_block bb_ = (bb);						\
     186    bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
     187  		| (part));						\
     188  } while (0)
     189  
     190  #define BB_COPY_PARTITION(dstbb, srcbb) \
     191    BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
     192  
     193  /* Defines for accessing the fields of the CFG structure for function FN.  */
     194  #define ENTRY_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_entry_block_ptr)
     195  #define EXIT_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_exit_block_ptr)
     196  #define basic_block_info_for_fn(FN)	     ((FN)->cfg->x_basic_block_info)
     197  #define n_basic_blocks_for_fn(FN)	     ((FN)->cfg->x_n_basic_blocks)
     198  #define n_edges_for_fn(FN)		     ((FN)->cfg->x_n_edges)
     199  #define last_basic_block_for_fn(FN)	     ((FN)->cfg->x_last_basic_block)
     200  #define label_to_block_map_for_fn(FN)	     ((FN)->cfg->x_label_to_block_map)
     201  #define profile_status_for_fn(FN)	     ((FN)->cfg->x_profile_status)
     202  
     203  #define BASIC_BLOCK_FOR_FN(FN,N) \
     204    ((*basic_block_info_for_fn (FN))[(N)])
     205  #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
     206    ((*basic_block_info_for_fn (FN))[(N)] = (BB))
     207  
     208  /* For iterating over basic blocks.  */
     209  #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
     210    for (BB = FROM; BB != TO; BB = BB->DIR)
     211  
     212  #define FOR_EACH_BB_FN(BB, FN) \
     213    FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
     214  
     215  #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
     216    FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
     217  
     218  /* For iterating over insns in basic block.  */
     219  #define FOR_BB_INSNS(BB, INSN)			\
     220    for ((INSN) = BB_HEAD (BB);			\
     221         (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
     222         (INSN) = NEXT_INSN (INSN))
     223  
     224  /* For iterating over insns in basic block when we might remove the
     225     current insn.  */
     226  #define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
     227    for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
     228         (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
     229         (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
     230  
     231  #define FOR_BB_INSNS_REVERSE(BB, INSN)		\
     232    for ((INSN) = BB_END (BB);			\
     233         (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
     234         (INSN) = PREV_INSN (INSN))
     235  
     236  #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
     237    for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
     238         (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
     239         (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
     240  
     241  /* Cycles through _all_ basic blocks, even the fake ones (entry and
     242     exit block).  */
     243  
     244  #define FOR_ALL_BB_FN(BB, FN) \
     245    for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
     246  
     247  
     248  /* Stuff for recording basic block info.  */
     249  
     250  /* For now, these will be functions (so that they can include checked casts
     251     to rtx_insn.   Once the underlying fields are converted from rtx
     252     to rtx_insn, these can be converted back to macros.  */
     253  
     254  #define BB_HEAD(B)      (B)->il.x.head_
     255  #define BB_END(B)       (B)->il.x.rtl->end_
     256  #define BB_HEADER(B)    (B)->il.x.rtl->header_
     257  #define BB_FOOTER(B)    (B)->il.x.rtl->footer_
     258  
     259  /* Special block numbers [markers] for entry and exit.
     260     Neither of them is supposed to hold actual statements.  */
     261  #define ENTRY_BLOCK (0)
     262  #define EXIT_BLOCK (1)
     263  
     264  /* The two blocks that are always in the cfg.  */
     265  #define NUM_FIXED_BLOCKS (2)
     266  
     267  /* This is the value which indicates no edge is present.  */
     268  #define EDGE_INDEX_NO_EDGE	-1
     269  
     270  /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
     271     if there is no edge between the 2 basic blocks.  */
     272  #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
     273  
     274  /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
     275     block which is either the pred or succ end of the indexed edge.  */
     276  #define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
     277  #define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
     278  
     279  /* INDEX_EDGE returns a pointer to the edge.  */
     280  #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
     281  
     282  /* Number of edges in the compressed edge list.  */
     283  #define NUM_EDGES(el)			((el)->num_edges)
     284  
     285  /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
     286  #define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
     287  					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
     288  
     289  /* BB is assumed to contain conditional jump.  Return the branch edge.  */
     290  #define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
     291  					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
     292  
     293  /* Return expected execution frequency of the edge E.  */
     294  #define EDGE_FREQUENCY(e)		e->count ().to_frequency (cfun)
     295  
     296  /* Compute a scale factor (or probability) suitable for scaling of
     297     gcov_type values via apply_probability() and apply_scale().  */
     298  #define GCOV_COMPUTE_SCALE(num,den) \
     299    ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
     300  
     301  /* Return nonzero if edge is critical.  */
     302  #define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
     303  					 && EDGE_COUNT ((e)->dest->preds) >= 2)
     304  
     305  #define EDGE_COUNT(ev)			vec_safe_length (ev)
     306  #define EDGE_I(ev,i)			(*ev)[(i)]
     307  #define EDGE_PRED(bb,i)			(*(bb)->preds)[(i)]
     308  #define EDGE_SUCC(bb,i)			(*(bb)->succs)[(i)]
     309  
     310  /* Returns true if BB has precisely one successor.  */
     311  
     312  inline bool
     313  single_succ_p (const_basic_block bb)
     314  {
     315    return EDGE_COUNT (bb->succs) == 1;
     316  }
     317  
     318  /* Returns true if BB has precisely one predecessor.  */
     319  
     320  inline bool
     321  single_pred_p (const_basic_block bb)
     322  {
     323    return EDGE_COUNT (bb->preds) == 1;
     324  }
     325  
     326  /* Returns the single successor edge of basic block BB.  Aborts if
     327     BB does not have exactly one successor.  */
     328  
     329  inline edge
     330  single_succ_edge (const_basic_block bb)
     331  {
     332    gcc_checking_assert (single_succ_p (bb));
     333    return EDGE_SUCC (bb, 0);
     334  }
     335  
     336  /* Returns the single predecessor edge of basic block BB.  Aborts
     337     if BB does not have exactly one predecessor.  */
     338  
     339  inline edge
     340  single_pred_edge (const_basic_block bb)
     341  {
     342    gcc_checking_assert (single_pred_p (bb));
     343    return EDGE_PRED (bb, 0);
     344  }
     345  
     346  /* Returns the single successor block of basic block BB.  Aborts
     347     if BB does not have exactly one successor.  */
     348  
     349  inline basic_block
     350  single_succ (const_basic_block bb)
     351  {
     352    return single_succ_edge (bb)->dest;
     353  }
     354  
     355  /* Returns the single predecessor block of basic block BB.  Aborts
     356     if BB does not have exactly one predecessor.*/
     357  
     358  inline basic_block
     359  single_pred (const_basic_block bb)
     360  {
     361    return single_pred_edge (bb)->src;
     362  }
     363  
     364  /* Iterator object for edges.  */
     365  
     366  struct edge_iterator {
     367    unsigned index;
     368    vec<edge, va_gc> **container;
     369  };
     370  
     371  inline vec<edge, va_gc> *
     372  ei_container (edge_iterator i)
     373  {
     374    gcc_checking_assert (i.container);
     375    return *i.container;
     376  }
     377  
     378  #define ei_start(iter) ei_start_1 (&(iter))
     379  #define ei_last(iter) ei_last_1 (&(iter))
     380  
     381  /* Return an iterator pointing to the start of an edge vector.  */
     382  inline edge_iterator
     383  ei_start_1 (vec<edge, va_gc> **ev)
     384  {
     385    edge_iterator i;
     386  
     387    i.index = 0;
     388    i.container = ev;
     389  
     390    return i;
     391  }
     392  
     393  /* Return an iterator pointing to the last element of an edge
     394     vector.  */
     395  inline edge_iterator
     396  ei_last_1 (vec<edge, va_gc> **ev)
     397  {
     398    edge_iterator i;
     399  
     400    i.index = EDGE_COUNT (*ev) - 1;
     401    i.container = ev;
     402  
     403    return i;
     404  }
     405  
     406  /* Is the iterator `i' at the end of the sequence?  */
     407  inline bool
     408  ei_end_p (edge_iterator i)
     409  {
     410    return (i.index == EDGE_COUNT (ei_container (i)));
     411  }
     412  
     413  /* Is the iterator `i' at one position before the end of the
     414     sequence?  */
     415  inline bool
     416  ei_one_before_end_p (edge_iterator i)
     417  {
     418    return (i.index + 1 == EDGE_COUNT (ei_container (i)));
     419  }
     420  
     421  /* Advance the iterator to the next element.  */
     422  inline void
     423  ei_next (edge_iterator *i)
     424  {
     425    gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
     426    i->index++;
     427  }
     428  
     429  /* Move the iterator to the previous element.  */
     430  inline void
     431  ei_prev (edge_iterator *i)
     432  {
     433    gcc_checking_assert (i->index > 0);
     434    i->index--;
     435  }
     436  
     437  /* Return the edge pointed to by the iterator `i'.  */
     438  inline edge
     439  ei_edge (edge_iterator i)
     440  {
     441    return EDGE_I (ei_container (i), i.index);
     442  }
     443  
     444  /* Return an edge pointed to by the iterator.  Do it safely so that
     445     NULL is returned when the iterator is pointing at the end of the
     446     sequence.  */
     447  inline edge
     448  ei_safe_edge (edge_iterator i)
     449  {
     450    return !ei_end_p (i) ? ei_edge (i) : NULL;
     451  }
     452  
     453  /* Return 1 if we should continue to iterate.  Return 0 otherwise.
     454     *Edge P is set to the next edge if we are to continue to iterate
     455     and NULL otherwise.  */
     456  
     457  inline bool
     458  ei_cond (edge_iterator ei, edge *p)
     459  {
     460    if (!ei_end_p (ei))
     461      {
     462        *p = ei_edge (ei);
     463        return 1;
     464      }
     465    else
     466      {
     467        *p = NULL;
     468        return 0;
     469      }
     470  }
     471  
     472  /* This macro serves as a convenient way to iterate each edge in a
     473     vector of predecessor or successor edges.  It must not be used when
     474     an element might be removed during the traversal, otherwise
     475     elements will be missed.  Instead, use a for-loop like that shown
     476     in the following pseudo-code:
     477  
     478     FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
     479       {
     480  	IF (e != taken_edge)
     481  	  remove_edge (e);
     482  	ELSE
     483  	  ei_next (&ei);
     484       }
     485  */
     486  
     487  #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
     488    for ((ITER) = ei_start ((EDGE_VEC));		\
     489         ei_cond ((ITER), &(EDGE));		\
     490         ei_next (&(ITER)))
     491  
     492  #define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
     493  					   except for edge forwarding */
     494  #define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
     495  #define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
     496  					   to care REG_DEAD notes.  */
     497  #define CLEANUP_THREADING	8	/* Do jump threading.  */
     498  #define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
     499  					   insns.  */
     500  #define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
     501  #define CLEANUP_CFG_CHANGED	64      /* The caller changed the CFG.  */
     502  #define CLEANUP_NO_PARTITIONING	128     /* Do not try to fix partitions.  */
     503  #define CLEANUP_FORCE_FAST_DCE	0x100	/* Force run_fast_dce to be called
     504  					   at least once.  */
     505  
     506  /* Return true if BB is in a transaction.  */
     507  
     508  inline bool
     509  bb_in_transaction (basic_block bb)
     510  {
     511    return bb->flags & BB_IN_TRANSACTION;
     512  }
     513  
     514  /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
     515  inline bool
     516  bb_has_eh_pred (basic_block bb)
     517  {
     518    edge e;
     519    edge_iterator ei;
     520  
     521    FOR_EACH_EDGE (e, ei, bb->preds)
     522      {
     523        if (e->flags & EDGE_EH)
     524  	return true;
     525      }
     526    return false;
     527  }
     528  
     529  /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
     530  inline bool
     531  bb_has_abnormal_pred (basic_block bb)
     532  {
     533    edge e;
     534    edge_iterator ei;
     535  
     536    FOR_EACH_EDGE (e, ei, bb->preds)
     537      {
     538        if (e->flags & EDGE_ABNORMAL)
     539  	return true;
     540      }
     541    return false;
     542  }
     543  
     544  /* Return the fallthru edge in EDGES if it exists, NULL otherwise.  */
     545  inline edge
     546  find_fallthru_edge (vec<edge, va_gc> *edges)
     547  {
     548    edge e;
     549    edge_iterator ei;
     550  
     551    FOR_EACH_EDGE (e, ei, edges)
     552      if (e->flags & EDGE_FALLTHRU)
     553        break;
     554  
     555    return e;
     556  }
     557  
     558  /* Check tha probability is sane.  */
     559  
     560  inline void
     561  check_probability (int prob)
     562  {
     563    gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
     564  }
     565  
     566  /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE. 
     567     Used to combine BB probabilities.  */
     568  
     569  inline int
     570  combine_probabilities (int prob1, int prob2)
     571  {
     572    check_probability (prob1);
     573    check_probability (prob2);
     574    return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
     575  }
     576  
     577  /* Apply scale factor SCALE on frequency or count FREQ. Use this
     578     interface when potentially scaling up, so that SCALE is not
     579     constrained to be < REG_BR_PROB_BASE.  */
     580  
     581  inline gcov_type
     582  apply_scale (gcov_type freq, gcov_type scale)
     583  {
     584    return RDIV (freq * scale, REG_BR_PROB_BASE);
     585  }
     586  
     587  /* Apply probability PROB on frequency or count FREQ.  */
     588  
     589  inline gcov_type
     590  apply_probability (gcov_type freq, int prob)
     591  {
     592    check_probability (prob);
     593    return apply_scale (freq, prob);
     594  }
     595  
     596  /* Return inverse probability for PROB.  */
     597  
     598  inline int
     599  inverse_probability (int prob1)
     600  {
     601    check_probability (prob1);
     602    return REG_BR_PROB_BASE - prob1;
     603  }
     604  
     605  /* Return true if BB has at least one abnormal outgoing edge.  */
     606  
     607  inline bool
     608  has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
     609  {
     610    edge e;
     611    edge_iterator ei;
     612  
     613    FOR_EACH_EDGE (e, ei, bb->succs)
     614      if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
     615        return true;
     616  
     617    return false;
     618  }
     619  
     620  /* Return true when one of the predecessor edges of BB is marked with
     621     EDGE_ABNORMAL_CALL or EDGE_EH.  */
     622  
     623  inline bool
     624  has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
     625  {
     626    edge e;
     627    edge_iterator ei;
     628  
     629    FOR_EACH_EDGE (e, ei, bb->preds)
     630      if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
     631        return true;
     632  
     633    return false;
     634  }
     635  
     636  /* Return count of edge E.  */
     637  inline profile_count edge_def::count () const
     638  {
     639    return src->count.apply_probability (probability);
     640  }
     641  
     642  #endif /* GCC_BASIC_BLOCK_H */