(root)/
findutils-4.9.0/
gnulib-tests/
test-trunc2.c
       1  /* Test of rounding towards zero.
       2     Copyright (C) 2007-2022 Free Software Foundation, Inc.
       3  
       4     This program is free software: you can redistribute it and/or modify
       5     it under the terms of the GNU General Public License as published by
       6     the Free Software Foundation, either version 3 of the License, or
       7     (at your option) any later version.
       8  
       9     This program is distributed in the hope that it will be useful,
      10     but WITHOUT ANY WARRANTY; without even the implied warranty of
      11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12     GNU General Public License for more details.
      13  
      14     You should have received a copy of the GNU General Public License
      15     along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
      16  
      17  /* Written by Bruno Haible <bruno@clisp.org>, 2007.  */
      18  
      19  /* When this test fails on some platform, build it together with the gnulib
      20     module 'fprintf-posix' for optimal debugging output.  */
      21  
      22  #include <config.h>
      23  
      24  #include <math.h>
      25  
      26  #include <float.h>
      27  #include <stdbool.h>
      28  #include <stdint.h>
      29  #include <stdio.h>
      30  
      31  #include "isnand-nolibm.h"
      32  #include "minus-zero.h"
      33  #include "macros.h"
      34  
      35  /* MSVC with option -fp:strict refuses to compile constant initializers that
      36     contain floating-point operations.  Pacify this compiler.  */
      37  #if defined _MSC_VER && !defined __clang__
      38  # pragma fenv_access (off)
      39  #endif
      40  
      41  
      42  /* The reference implementation, taken from lib/trunc.c.  */
      43  
      44  #define DOUBLE double
      45  #define MANT_DIG DBL_MANT_DIG
      46  #define L_(literal) literal
      47  
      48  /* -0.0.  See minus-zero.h.  */
      49  #define MINUS_ZERO minus_zerod
      50  
      51  /* 2^(MANT_DIG-1).  */
      52  static const DOUBLE TWO_MANT_DIG =
      53    /* Assume MANT_DIG <= 5 * 31.
      54       Use the identity
      55         n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5).  */
      56    (DOUBLE) (1U << ((MANT_DIG - 1) / 5))
      57    * (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5))
      58    * (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5))
      59    * (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5))
      60    * (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5));
      61  
      62  DOUBLE
      63  trunc_reference (DOUBLE x)
      64  {
      65    /* The use of 'volatile' guarantees that excess precision bits are dropped
      66       at each addition step and before the following comparison at the caller's
      67       site.  It is necessary on x86 systems where double-floats are not IEEE
      68       compliant by default, to avoid that the results become platform and compiler
      69       option dependent.  'volatile' is a portable alternative to gcc's
      70       -ffloat-store option.  */
      71    volatile DOUBLE y = x;
      72    volatile DOUBLE z = y;
      73  
      74    if (z > L_(0.0))
      75      {
      76        /* For 0 < x < 1, return +0.0 even if the current rounding mode is
      77           FE_DOWNWARD.  */
      78        if (z < L_(1.0))
      79          z = L_(0.0);
      80        /* Avoid rounding errors for values near 2^k, where k >= MANT_DIG-1.  */
      81        else if (z < TWO_MANT_DIG)
      82          {
      83            /* Round to the next integer (nearest or up or down, doesn't matter).  */
      84            z += TWO_MANT_DIG;
      85            z -= TWO_MANT_DIG;
      86            /* Enforce rounding down.  */
      87            if (z > y)
      88              z -= L_(1.0);
      89          }
      90      }
      91    else if (z < L_(0.0))
      92      {
      93        /* For -1 < x < 0, return -0.0 regardless of the current rounding
      94           mode.  */
      95        if (z > L_(-1.0))
      96          z = MINUS_ZERO;
      97        /* Avoid rounding errors for values near -2^k, where k >= MANT_DIG-1.  */
      98        else if (z > - TWO_MANT_DIG)
      99          {
     100            /* Round to the next integer (nearest or up or down, doesn't matter).  */
     101            z -= TWO_MANT_DIG;
     102            z += TWO_MANT_DIG;
     103            /* Enforce rounding up.  */
     104            if (z < y)
     105              z += L_(1.0);
     106          }
     107      }
     108    return z;
     109  }
     110  
     111  
     112  /* Test for equality.  */
     113  static int
     114  equal (DOUBLE x, DOUBLE y)
     115  {
     116    return (isnand (x) ? isnand (y) : x == y);
     117  }
     118  
     119  /* Test whether the result for a given argument is correct.  */
     120  static bool
     121  correct_result_p (DOUBLE x, DOUBLE result)
     122  {
     123    return
     124      (x >= 0
     125       ? (x < 1 ? result == L_(0.0) :
     126          x - 1 < x ? result <= x && result >= x - 1 && x - result < 1 :
     127          equal (result, x))
     128       : (x > -1 ? result == L_(0.0) :
     129          x + 1 > x ? result >= x && result <= x + 1 && result - x < 1 :
     130          equal (result, x)));
     131  }
     132  
     133  /* Test the function for a given argument.  */
     134  static int
     135  check (double x)
     136  {
     137    /* If the reference implementation is incorrect, bail out immediately.  */
     138    double reference = trunc_reference (x);
     139    ASSERT (correct_result_p (x, reference));
     140    /* If the actual implementation is wrong, return an error code.  */
     141    {
     142      double result = trunc (x);
     143      if (correct_result_p (x, result))
     144        return 0;
     145      else
     146        {
     147  #if GNULIB_TEST_FPRINTF_POSIX
     148          fprintf (stderr, "trunc %g(%a) = %g(%a) or %g(%a)?\n",
     149                   x, x, reference, reference, result, result);
     150  #endif
     151          return 1;
     152        }
     153    }
     154  }
     155  
     156  #define NUM_HIGHBITS 13
     157  #define NUM_LOWBITS 4
     158  
     159  int
     160  main ()
     161  {
     162    unsigned int highbits;
     163    unsigned int lowbits;
     164    int error = 0;
     165    for (highbits = 0; highbits < (1 << NUM_HIGHBITS); highbits++)
     166      for (lowbits = 0; lowbits < (1 << NUM_LOWBITS); lowbits++)
     167        {
     168          /* Combine highbits and lowbits into a floating-point number,
     169             sign-extending the lowbits to 32-NUM_HIGHBITS bits.  */
     170          union { double f; uint64_t i; } janus;
     171          janus.i = ((uint64_t) highbits << (64 - NUM_HIGHBITS))
     172                    | ((uint64_t) ((int64_t) ((uint64_t) lowbits << (64 - NUM_LOWBITS))
     173                                   >> (64 - NUM_LOWBITS - NUM_HIGHBITS))
     174                       >> NUM_HIGHBITS);
     175          error |= check (janus.f);
     176        }
     177    return (error ? 1 : 0);
     178  }