(root)/
coreutils-9.4/
src/
cksum_pclmul.c
       1  /* cksum -- calculate and print POSIX checksums and sizes of files
       2     Copyright (C) 1992-2023 Free Software Foundation, Inc.
       3  
       4     This program is free software: you can redistribute it and/or modify
       5     it under the terms of the GNU General Public License as published by
       6     the Free Software Foundation, either version 3 of the License, or
       7     (at your option) any later version.
       8  
       9     This program is distributed in the hope that it will be useful,
      10     but WITHOUT ANY WARRANTY; without even the implied warranty of
      11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12     GNU General Public License for more details.
      13  
      14     You should have received a copy of the GNU General Public License
      15     along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
      16  
      17  #include <config.h>
      18  
      19  #include <stdio.h>
      20  #include <sys/types.h>
      21  #include <stdint.h>
      22  #include <x86intrin.h>
      23  #include "system.h"
      24  
      25  /* Number of bytes to read at once.  */
      26  #define BUFLEN (1 << 16)
      27  
      28  extern uint_fast32_t const crctab[8][256];
      29  
      30  extern bool
      31  cksum_pclmul (FILE *fp, uint_fast32_t *crc_out, uintmax_t *length_out);
      32  
      33  /* Calculate CRC32 using PCLMULQDQ CPU instruction found in x86/x64 CPUs */
      34  
      35  bool
      36  cksum_pclmul (FILE *fp, uint_fast32_t *crc_out, uintmax_t *length_out)
      37  {
      38    __m128i buf[BUFLEN / sizeof (__m128i)];
      39    uint_fast32_t crc = 0;
      40    uintmax_t length = 0;
      41    size_t bytes_read;
      42    __m128i single_mult_constant;
      43    __m128i four_mult_constant;
      44    __m128i shuffle_constant;
      45  
      46    if (!fp || !crc_out || !length_out)
      47      return false;
      48  
      49    /* These constants and general algorithms are taken from the Intel whitepaper
      50       "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
      51    */
      52    single_mult_constant = _mm_set_epi64x (0xC5B9CD4C, 0xE8A45605);
      53    four_mult_constant = _mm_set_epi64x (0x8833794C, 0xE6228B11);
      54  
      55    /* Constant to byteswap a full SSE register */
      56    shuffle_constant = _mm_set_epi8 (0, 1, 2, 3, 4, 5, 6, 7, 8,
      57                                     9, 10, 11, 12, 13, 14, 15);
      58  
      59    while ((bytes_read = fread (buf, 1, BUFLEN, fp)) > 0)
      60      {
      61        __m128i *datap;
      62        __m128i data;
      63        __m128i data2;
      64        __m128i data3;
      65        __m128i data4;
      66        __m128i data5;
      67        __m128i data6;
      68        __m128i data7;
      69        __m128i data8;
      70        __m128i fold_data;
      71        __m128i xor_crc;
      72  
      73        if (length + bytes_read < length)
      74          {
      75            errno = EOVERFLOW;
      76            return false;
      77          }
      78        length += bytes_read;
      79  
      80        datap = (__m128i *)buf;
      81  
      82        /* Fold in parallel eight 16-byte blocks into four 16-byte blocks */
      83        if (bytes_read >= 16 * 8)
      84          {
      85            data = _mm_loadu_si128 (datap);
      86            data = _mm_shuffle_epi8 (data, shuffle_constant);
      87            /* XOR in initial CRC value (for us 0 so no effect), or CRC value
      88               calculated for previous BUFLEN buffer from fread */
      89            xor_crc = _mm_set_epi32 (crc, 0, 0, 0);
      90            crc = 0;
      91            data = _mm_xor_si128 (data, xor_crc);
      92            data3 = _mm_loadu_si128 (datap + 1);
      93            data3 = _mm_shuffle_epi8 (data3, shuffle_constant);
      94            data5 = _mm_loadu_si128 (datap + 2);
      95            data5 = _mm_shuffle_epi8 (data5, shuffle_constant);
      96            data7 = _mm_loadu_si128 (datap + 3);
      97            data7 = _mm_shuffle_epi8 (data7, shuffle_constant);
      98  
      99  
     100            while (bytes_read >= 16 * 8)
     101              {
     102                datap += 4;
     103  
     104                /* Do multiplication here for four consecutive 16 byte blocks */
     105                data2 = _mm_clmulepi64_si128 (data, four_mult_constant, 0x00);
     106                data = _mm_clmulepi64_si128 (data, four_mult_constant, 0x11);
     107                data4 = _mm_clmulepi64_si128 (data3, four_mult_constant, 0x00);
     108                data3 = _mm_clmulepi64_si128 (data3, four_mult_constant, 0x11);
     109                data6 = _mm_clmulepi64_si128 (data5, four_mult_constant, 0x00);
     110                data5 = _mm_clmulepi64_si128 (data5, four_mult_constant, 0x11);
     111                data8 = _mm_clmulepi64_si128 (data7, four_mult_constant, 0x00);
     112                data7 = _mm_clmulepi64_si128 (data7, four_mult_constant, 0x11);
     113  
     114                /* Now multiplication results for the four blocks is xor:ed with
     115                   next four 16 byte blocks from the buffer. This effectively
     116                   "consumes" the first four blocks from the buffer.
     117                   Keep xor result in variables for multiplication in next
     118                   round of loop. */
     119                data = _mm_xor_si128 (data, data2);
     120                data2 = _mm_loadu_si128 (datap);
     121                data2 = _mm_shuffle_epi8 (data2, shuffle_constant);
     122                data = _mm_xor_si128 (data, data2);
     123  
     124                data3 = _mm_xor_si128 (data3, data4);
     125                data4 = _mm_loadu_si128 (datap + 1);
     126                data4 = _mm_shuffle_epi8 (data4, shuffle_constant);
     127                data3 = _mm_xor_si128 (data3, data4);
     128  
     129                data5 = _mm_xor_si128 (data5, data6);
     130                data6 = _mm_loadu_si128 (datap + 2);
     131                data6 = _mm_shuffle_epi8 (data6, shuffle_constant);
     132                data5 = _mm_xor_si128 (data5, data6);
     133  
     134                data7 = _mm_xor_si128 (data7, data8);
     135                data8 = _mm_loadu_si128 (datap + 3);
     136                data8 = _mm_shuffle_epi8 (data8, shuffle_constant);
     137                data7 = _mm_xor_si128 (data7, data8);
     138  
     139                bytes_read -= (16 * 4);
     140              }
     141            /* At end of loop we write out results from variables back into
     142               the buffer, for use in single fold loop */
     143            data = _mm_shuffle_epi8 (data, shuffle_constant);
     144            _mm_storeu_si128 (datap, data);
     145            data3 = _mm_shuffle_epi8 (data3, shuffle_constant);
     146            _mm_storeu_si128 (datap + 1, data3);
     147            data5 = _mm_shuffle_epi8 (data5, shuffle_constant);
     148            _mm_storeu_si128 (datap + 2, data5);
     149            data7 = _mm_shuffle_epi8 (data7, shuffle_constant);
     150            _mm_storeu_si128 (datap + 3, data7);
     151          }
     152  
     153        /* Fold two 16-byte blocks into one 16-byte block */
     154        if (bytes_read >= 32)
     155          {
     156            data = _mm_loadu_si128 (datap);
     157            data = _mm_shuffle_epi8 (data, shuffle_constant);
     158            xor_crc = _mm_set_epi32 (crc, 0, 0, 0);
     159            crc = 0;
     160            data = _mm_xor_si128 (data, xor_crc);
     161            while (bytes_read >= 32)
     162              {
     163                datap++;
     164  
     165                data2 = _mm_clmulepi64_si128 (data, single_mult_constant, 0x00);
     166                data = _mm_clmulepi64_si128 (data, single_mult_constant, 0x11);
     167                fold_data = _mm_loadu_si128 (datap);
     168                fold_data = _mm_shuffle_epi8 (fold_data, shuffle_constant);
     169                data = _mm_xor_si128 (data, data2);
     170                data = _mm_xor_si128 (data, fold_data);
     171                bytes_read -= 16;
     172              }
     173            data = _mm_shuffle_epi8 (data, shuffle_constant);
     174            _mm_storeu_si128 (datap, data);
     175          }
     176  
     177        /* And finish up last 0-31 bytes in a byte by byte fashion */
     178        unsigned char *cp = (unsigned char *)datap;
     179        while (bytes_read--)
     180          crc = (crc << 8) ^ crctab[0][((crc >> 24) ^ *cp++) & 0xFF];
     181        if (feof (fp))
     182          break;
     183      }
     184  
     185    *crc_out = crc;
     186    *length_out = length;
     187  
     188    return !ferror (fp);
     189  }