(root)/
coreutils-9.4/
lib/
sha512.c
       1  /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
       2     memory blocks according to the NIST specification FIPS-180-2.
       3  
       4     Copyright (C) 2005-2006, 2008-2023 Free Software Foundation, Inc.
       5  
       6     This file is free software: you can redistribute it and/or modify
       7     it under the terms of the GNU Lesser General Public License as
       8     published by the Free Software Foundation; either version 2.1 of the
       9     License, or (at your option) any later version.
      10  
      11     This file is distributed in the hope that it will be useful,
      12     but WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14     GNU Lesser General Public License for more details.
      15  
      16     You should have received a copy of the GNU Lesser General Public License
      17     along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
      18  
      19  /* Written by David Madore, considerably copypasting from
      20     Scott G. Miller's sha1.c
      21  */
      22  
      23  #include <config.h>
      24  
      25  /* Specification.  */
      26  #if HAVE_OPENSSL_SHA512
      27  # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
      28  #endif
      29  #include "sha512.h"
      30  
      31  #include <stdint.h>
      32  #include <string.h>
      33  
      34  #include <byteswap.h>
      35  #ifdef WORDS_BIGENDIAN
      36  # define SWAP(n) (n)
      37  #else
      38  # define SWAP(n) bswap_64 (n)
      39  #endif
      40  
      41  #if ! HAVE_OPENSSL_SHA512
      42  
      43  /* This array contains the bytes used to pad the buffer to the next
      44     128-byte boundary.  */
      45  static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ...  */ };
      46  
      47  
      48  /*
      49    Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
      50    initializes it to the start constants of the SHA512 algorithm.  This
      51    must be called before using hash in the call to sha512_hash
      52  */
      53  void
      54  sha512_init_ctx (struct sha512_ctx *ctx)
      55  {
      56    ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
      57    ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
      58    ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
      59    ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
      60    ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
      61    ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
      62    ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
      63    ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
      64  
      65    ctx->total[0] = ctx->total[1] = u64lo (0);
      66    ctx->buflen = 0;
      67  }
      68  
      69  void
      70  sha384_init_ctx (struct sha512_ctx *ctx)
      71  {
      72    ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
      73    ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
      74    ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
      75    ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
      76    ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
      77    ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
      78    ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
      79    ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
      80  
      81    ctx->total[0] = ctx->total[1] = u64lo (0);
      82    ctx->buflen = 0;
      83  }
      84  
      85  /* Copy the value from V into the memory location pointed to by *CP,
      86     If your architecture allows unaligned access, this is equivalent to
      87     * (__typeof__ (v) *) cp = v  */
      88  static void
      89  set_uint64 (char *cp, u64 v)
      90  {
      91    memcpy (cp, &v, sizeof v);
      92  }
      93  
      94  /* Put result from CTX in first 64 bytes following RESBUF.
      95     The result must be in little endian byte order.  */
      96  void *
      97  sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
      98  {
      99    int i;
     100    char *r = resbuf;
     101  
     102    for (i = 0; i < 8; i++)
     103      set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
     104  
     105    return resbuf;
     106  }
     107  
     108  void *
     109  sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
     110  {
     111    int i;
     112    char *r = resbuf;
     113  
     114    for (i = 0; i < 6; i++)
     115      set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
     116  
     117    return resbuf;
     118  }
     119  
     120  /* Process the remaining bytes in the internal buffer and the usual
     121     prolog according to the standard and write the result to RESBUF.  */
     122  static void
     123  sha512_conclude_ctx (struct sha512_ctx *ctx)
     124  {
     125    /* Take yet unprocessed bytes into account.  */
     126    size_t bytes = ctx->buflen;
     127    size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
     128  
     129    /* Now count remaining bytes.  */
     130    ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
     131    if (u64lt (ctx->total[0], u64lo (bytes)))
     132      ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
     133  
     134    /* Put the 128-bit file length in *bits* at the end of the buffer.
     135       Use set_uint64 rather than a simple assignment, to avoid risk of
     136       unaligned access.  */
     137    set_uint64 ((char *) &ctx->buffer[size - 2],
     138                SWAP (u64or (u64shl (ctx->total[1], 3),
     139                             u64shr (ctx->total[0], 61))));
     140    set_uint64 ((char *) &ctx->buffer[size - 1],
     141                SWAP (u64shl (ctx->total[0], 3)));
     142  
     143    memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
     144  
     145    /* Process last bytes.  */
     146    sha512_process_block (ctx->buffer, size * 8, ctx);
     147  }
     148  
     149  void *
     150  sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
     151  {
     152    sha512_conclude_ctx (ctx);
     153    return sha512_read_ctx (ctx, resbuf);
     154  }
     155  
     156  void *
     157  sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
     158  {
     159    sha512_conclude_ctx (ctx);
     160    return sha384_read_ctx (ctx, resbuf);
     161  }
     162  
     163  /* Compute SHA512 message digest for LEN bytes beginning at BUFFER.  The
     164     result is always in little endian byte order, so that a byte-wise
     165     output yields to the wanted ASCII representation of the message
     166     digest.  */
     167  void *
     168  sha512_buffer (const char *buffer, size_t len, void *resblock)
     169  {
     170    struct sha512_ctx ctx;
     171  
     172    /* Initialize the computation context.  */
     173    sha512_init_ctx (&ctx);
     174  
     175    /* Process whole buffer but last len % 128 bytes.  */
     176    sha512_process_bytes (buffer, len, &ctx);
     177  
     178    /* Put result in desired memory area.  */
     179    return sha512_finish_ctx (&ctx, resblock);
     180  }
     181  
     182  void *
     183  sha384_buffer (const char *buffer, size_t len, void *resblock)
     184  {
     185    struct sha512_ctx ctx;
     186  
     187    /* Initialize the computation context.  */
     188    sha384_init_ctx (&ctx);
     189  
     190    /* Process whole buffer but last len % 128 bytes.  */
     191    sha512_process_bytes (buffer, len, &ctx);
     192  
     193    /* Put result in desired memory area.  */
     194    return sha384_finish_ctx (&ctx, resblock);
     195  }
     196  
     197  void
     198  sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
     199  {
     200    /* When we already have some bits in our internal buffer concatenate
     201       both inputs first.  */
     202    if (ctx->buflen != 0)
     203      {
     204        size_t left_over = ctx->buflen;
     205        size_t add = 256 - left_over > len ? len : 256 - left_over;
     206  
     207        memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
     208        ctx->buflen += add;
     209  
     210        if (ctx->buflen > 128)
     211          {
     212            sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
     213  
     214            ctx->buflen &= 127;
     215            /* The regions in the following copy operation cannot overlap,
     216               because ctx->buflen < 128 ≤ (left_over + add) & ~127.  */
     217            memcpy (ctx->buffer,
     218                    &((char *) ctx->buffer)[(left_over + add) & ~127],
     219                    ctx->buflen);
     220          }
     221  
     222        buffer = (const char *) buffer + add;
     223        len -= add;
     224      }
     225  
     226    /* Process available complete blocks.  */
     227    if (len >= 128)
     228      {
     229  #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
     230  # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0)
     231        if (UNALIGNED_P (buffer))
     232          while (len > 128)
     233            {
     234              sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
     235              buffer = (const char *) buffer + 128;
     236              len -= 128;
     237            }
     238        else
     239  #endif
     240          {
     241            sha512_process_block (buffer, len & ~127, ctx);
     242            buffer = (const char *) buffer + (len & ~127);
     243            len &= 127;
     244          }
     245      }
     246  
     247    /* Move remaining bytes in internal buffer.  */
     248    if (len > 0)
     249      {
     250        size_t left_over = ctx->buflen;
     251  
     252        memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
     253        left_over += len;
     254        if (left_over >= 128)
     255          {
     256            sha512_process_block (ctx->buffer, 128, ctx);
     257            left_over -= 128;
     258            /* The regions in the following copy operation cannot overlap,
     259               because left_over ≤ 128.  */
     260            memcpy (ctx->buffer, &ctx->buffer[16], left_over);
     261          }
     262        ctx->buflen = left_over;
     263      }
     264  }
     265  
     266  /* --- Code below is the primary difference between sha1.c and sha512.c --- */
     267  
     268  /* SHA512 round constants */
     269  #define K(I) sha512_round_constants[I]
     270  static u64 const sha512_round_constants[80] = {
     271    u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
     272    u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
     273    u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
     274    u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
     275    u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
     276    u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
     277    u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
     278    u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
     279    u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
     280    u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
     281    u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
     282    u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
     283    u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
     284    u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
     285    u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
     286    u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
     287    u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
     288    u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
     289    u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
     290    u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
     291    u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
     292    u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
     293    u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
     294    u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
     295    u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
     296    u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
     297    u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
     298    u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
     299    u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
     300    u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
     301    u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
     302    u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
     303    u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
     304    u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
     305    u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
     306    u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
     307    u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
     308    u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
     309    u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
     310    u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
     311  };
     312  
     313  /* Round functions.  */
     314  #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
     315  #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
     316  
     317  /* Process LEN bytes of BUFFER, accumulating context into CTX.
     318     It is assumed that LEN % 128 == 0.
     319     Most of this code comes from GnuPG's cipher/sha1.c.  */
     320  
     321  void
     322  sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
     323  {
     324    u64 const *words = buffer;
     325    u64 const *endp = words + len / sizeof (u64);
     326    u64 x[16];
     327    u64 a = ctx->state[0];
     328    u64 b = ctx->state[1];
     329    u64 c = ctx->state[2];
     330    u64 d = ctx->state[3];
     331    u64 e = ctx->state[4];
     332    u64 f = ctx->state[5];
     333    u64 g = ctx->state[6];
     334    u64 h = ctx->state[7];
     335    u64 lolen = u64size (len);
     336  
     337    /* First increment the byte count.  FIPS PUB 180-2 specifies the possible
     338       length of the file up to 2^128 bits.  Here we only compute the
     339       number of bytes.  Do a double word increment.  */
     340    ctx->total[0] = u64plus (ctx->total[0], lolen);
     341    ctx->total[1] = u64plus (ctx->total[1],
     342                             u64plus (u64size (len >> 31 >> 31 >> 2),
     343                                      u64lo (u64lt (ctx->total[0], lolen))));
     344  
     345  #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
     346  #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
     347  #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
     348  #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
     349  
     350  #define M(I) (x[(I) & 15]                                                 \
     351                = u64plus (x[(I) & 15],                                     \
     352                           u64plus (S1 (x[((I) - 2) & 15]),                 \
     353                                    u64plus (x[((I) - 7) & 15],             \
     354                                             S0 (x[((I) - 15) & 15])))))
     355  
     356  #define R(A, B, C, D, E, F, G, H, K, M)                                   \
     357    do                                                                      \
     358      {                                                                     \
     359        u64 t0 = u64plus (SS0 (A), F2 (A, B, C));                           \
     360        u64 t1 =                                                            \
     361          u64plus (H, u64plus (SS1 (E),                                     \
     362                               u64plus (F1 (E, F, G), u64plus (K, M))));    \
     363        D = u64plus (D, t1);                                                \
     364        H = u64plus (t0, t1);                                               \
     365      }                                                                     \
     366    while (0)
     367  
     368    while (words < endp)
     369      {
     370        int t;
     371        /* FIXME: see sha1.c for a better implementation.  */
     372        for (t = 0; t < 16; t++)
     373          {
     374            x[t] = SWAP (*words);
     375            words++;
     376          }
     377  
     378        R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
     379        R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
     380        R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
     381        R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
     382        R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
     383        R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
     384        R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
     385        R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
     386        R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
     387        R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
     388        R( g, h, a, b, c, d, e, f, K(10), x[10] );
     389        R( f, g, h, a, b, c, d, e, K(11), x[11] );
     390        R( e, f, g, h, a, b, c, d, K(12), x[12] );
     391        R( d, e, f, g, h, a, b, c, K(13), x[13] );
     392        R( c, d, e, f, g, h, a, b, K(14), x[14] );
     393        R( b, c, d, e, f, g, h, a, K(15), x[15] );
     394        R( a, b, c, d, e, f, g, h, K(16), M(16) );
     395        R( h, a, b, c, d, e, f, g, K(17), M(17) );
     396        R( g, h, a, b, c, d, e, f, K(18), M(18) );
     397        R( f, g, h, a, b, c, d, e, K(19), M(19) );
     398        R( e, f, g, h, a, b, c, d, K(20), M(20) );
     399        R( d, e, f, g, h, a, b, c, K(21), M(21) );
     400        R( c, d, e, f, g, h, a, b, K(22), M(22) );
     401        R( b, c, d, e, f, g, h, a, K(23), M(23) );
     402        R( a, b, c, d, e, f, g, h, K(24), M(24) );
     403        R( h, a, b, c, d, e, f, g, K(25), M(25) );
     404        R( g, h, a, b, c, d, e, f, K(26), M(26) );
     405        R( f, g, h, a, b, c, d, e, K(27), M(27) );
     406        R( e, f, g, h, a, b, c, d, K(28), M(28) );
     407        R( d, e, f, g, h, a, b, c, K(29), M(29) );
     408        R( c, d, e, f, g, h, a, b, K(30), M(30) );
     409        R( b, c, d, e, f, g, h, a, K(31), M(31) );
     410        R( a, b, c, d, e, f, g, h, K(32), M(32) );
     411        R( h, a, b, c, d, e, f, g, K(33), M(33) );
     412        R( g, h, a, b, c, d, e, f, K(34), M(34) );
     413        R( f, g, h, a, b, c, d, e, K(35), M(35) );
     414        R( e, f, g, h, a, b, c, d, K(36), M(36) );
     415        R( d, e, f, g, h, a, b, c, K(37), M(37) );
     416        R( c, d, e, f, g, h, a, b, K(38), M(38) );
     417        R( b, c, d, e, f, g, h, a, K(39), M(39) );
     418        R( a, b, c, d, e, f, g, h, K(40), M(40) );
     419        R( h, a, b, c, d, e, f, g, K(41), M(41) );
     420        R( g, h, a, b, c, d, e, f, K(42), M(42) );
     421        R( f, g, h, a, b, c, d, e, K(43), M(43) );
     422        R( e, f, g, h, a, b, c, d, K(44), M(44) );
     423        R( d, e, f, g, h, a, b, c, K(45), M(45) );
     424        R( c, d, e, f, g, h, a, b, K(46), M(46) );
     425        R( b, c, d, e, f, g, h, a, K(47), M(47) );
     426        R( a, b, c, d, e, f, g, h, K(48), M(48) );
     427        R( h, a, b, c, d, e, f, g, K(49), M(49) );
     428        R( g, h, a, b, c, d, e, f, K(50), M(50) );
     429        R( f, g, h, a, b, c, d, e, K(51), M(51) );
     430        R( e, f, g, h, a, b, c, d, K(52), M(52) );
     431        R( d, e, f, g, h, a, b, c, K(53), M(53) );
     432        R( c, d, e, f, g, h, a, b, K(54), M(54) );
     433        R( b, c, d, e, f, g, h, a, K(55), M(55) );
     434        R( a, b, c, d, e, f, g, h, K(56), M(56) );
     435        R( h, a, b, c, d, e, f, g, K(57), M(57) );
     436        R( g, h, a, b, c, d, e, f, K(58), M(58) );
     437        R( f, g, h, a, b, c, d, e, K(59), M(59) );
     438        R( e, f, g, h, a, b, c, d, K(60), M(60) );
     439        R( d, e, f, g, h, a, b, c, K(61), M(61) );
     440        R( c, d, e, f, g, h, a, b, K(62), M(62) );
     441        R( b, c, d, e, f, g, h, a, K(63), M(63) );
     442        R( a, b, c, d, e, f, g, h, K(64), M(64) );
     443        R( h, a, b, c, d, e, f, g, K(65), M(65) );
     444        R( g, h, a, b, c, d, e, f, K(66), M(66) );
     445        R( f, g, h, a, b, c, d, e, K(67), M(67) );
     446        R( e, f, g, h, a, b, c, d, K(68), M(68) );
     447        R( d, e, f, g, h, a, b, c, K(69), M(69) );
     448        R( c, d, e, f, g, h, a, b, K(70), M(70) );
     449        R( b, c, d, e, f, g, h, a, K(71), M(71) );
     450        R( a, b, c, d, e, f, g, h, K(72), M(72) );
     451        R( h, a, b, c, d, e, f, g, K(73), M(73) );
     452        R( g, h, a, b, c, d, e, f, K(74), M(74) );
     453        R( f, g, h, a, b, c, d, e, K(75), M(75) );
     454        R( e, f, g, h, a, b, c, d, K(76), M(76) );
     455        R( d, e, f, g, h, a, b, c, K(77), M(77) );
     456        R( c, d, e, f, g, h, a, b, K(78), M(78) );
     457        R( b, c, d, e, f, g, h, a, K(79), M(79) );
     458  
     459        a = ctx->state[0] = u64plus (ctx->state[0], a);
     460        b = ctx->state[1] = u64plus (ctx->state[1], b);
     461        c = ctx->state[2] = u64plus (ctx->state[2], c);
     462        d = ctx->state[3] = u64plus (ctx->state[3], d);
     463        e = ctx->state[4] = u64plus (ctx->state[4], e);
     464        f = ctx->state[5] = u64plus (ctx->state[5], f);
     465        g = ctx->state[6] = u64plus (ctx->state[6], g);
     466        h = ctx->state[7] = u64plus (ctx->state[7], h);
     467      }
     468  }
     469  
     470  #endif
     471  
     472  /*
     473   * Hey Emacs!
     474   * Local Variables:
     475   * coding: utf-8
     476   * End:
     477   */