(root)/
binutils-2.41/
gas/
config/
tc-xtensa.h
       1  /* tc-xtensa.h -- Header file for tc-xtensa.c.
       2     Copyright (C) 2003-2023 Free Software Foundation, Inc.
       3  
       4     This file is part of GAS, the GNU Assembler.
       5  
       6     GAS is free software; you can redistribute it and/or modify
       7     it under the terms of the GNU General Public License as published by
       8     the Free Software Foundation; either version 3, or (at your option)
       9     any later version.
      10  
      11     GAS is distributed in the hope that it will be useful,
      12     but WITHOUT ANY WARRANTY; without even the implied warranty of
      13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14     GNU General Public License for more details.
      15  
      16     You should have received a copy of the GNU General Public License
      17     along with GAS; see the file COPYING.  If not, write to the Free
      18     Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
      19     02110-1301, USA.  */
      20  
      21  #ifndef TC_XTENSA
      22  #define TC_XTENSA 1
      23  
      24  struct fix;
      25  
      26  #ifndef OBJ_ELF
      27  #error Xtensa support requires ELF object format
      28  #endif
      29  
      30  #include "xtensa-isa.h"
      31  #include "xtensa-dynconfig.h"
      32  
      33  #define TARGET_BYTES_BIG_ENDIAN 0
      34  
      35  
      36  /* Maximum number of opcode slots in a VLIW instruction.  */
      37  #define MAX_SLOTS 15
      38  
      39  
      40  /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
      41     RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
      42     in the fr_var field.  For the two exceptions, fr_var is a float value
      43     that records the frequency with which the following instruction is
      44     executed as a branch target.  The aligner uses this information to
      45     tell which targets are most important to be aligned.  */
      46  
      47  enum xtensa_relax_statesE
      48  {
      49    RELAX_XTENSA_NONE,
      50  
      51    RELAX_ALIGN_NEXT_OPCODE,
      52    /* Use the first opcode of the next fragment to determine the
      53       alignment requirements.  This is ONLY used for LOOPs currently.  */
      54  
      55    RELAX_CHECK_ALIGN_NEXT_OPCODE,
      56    /* The next non-empty frag contains a loop instruction.  Check to see
      57       if it is correctly aligned, but do not align it.  */
      58  
      59    RELAX_DESIRE_ALIGN_IF_TARGET,
      60    /* These are placed in front of labels and converted to either
      61       RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
      62       relaxation begins.  */
      63  
      64    RELAX_ADD_NOP_IF_A0_B_RETW,
      65    /* These are placed in front of conditional branches.  Before
      66       relaxation begins, they are turned into either NOPs for branches
      67       immediately followed by RETW or RETW.N or rs_fills of 0.  This is
      68       used to avoid a hardware bug in some early versions of the
      69       processor.  */
      70  
      71    RELAX_ADD_NOP_IF_PRE_LOOP_END,
      72    /* These are placed after JX instructions.  Before relaxation begins,
      73       they are turned into either NOPs, if the JX is one instruction
      74       before a loop end label, or rs_fills of 0.  This is used to avoid a
      75       hardware interlock issue prior to Xtensa version T1040.  */
      76  
      77    RELAX_ADD_NOP_IF_SHORT_LOOP,
      78    /* These are placed after LOOP instructions and turned into NOPs when:
      79       (1) there are less than 3 instructions in the loop; we place 2 of
      80       these in a row to add up to 2 NOPS in short loops; or (2) the
      81       instructions in the loop do not include a branch or jump.
      82       Otherwise they are turned into rs_fills of 0 before relaxation
      83       begins.  This is used to avoid hardware bug PR3830.  */
      84  
      85    RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
      86    /* These are placed after LOOP instructions and turned into NOPs if
      87       there are less than 12 bytes to the end of some other loop's end.
      88       Otherwise they are turned into rs_fills of 0 before relaxation
      89       begins.  This is used to avoid hardware bug PR3830.  */
      90  
      91    RELAX_DESIRE_ALIGN,
      92    /* The next fragment would like its first instruction to NOT cross an
      93       instruction fetch boundary.  */
      94  
      95    RELAX_MAYBE_DESIRE_ALIGN,
      96    /* The next fragment might like its first instruction to NOT cross an
      97       instruction fetch boundary.  These are placed after a branch that
      98       might be relaxed.  If the branch is relaxed, then this frag will be
      99       a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
     100       frag.  */
     101  
     102    RELAX_LOOP_END,
     103    /* This will be turned into a NOP or NOP.N if the previous instruction
     104       is expanded to negate a loop.  */
     105  
     106    RELAX_LOOP_END_ADD_NOP,
     107    /* When the code density option is available, this will generate a
     108       NOP.N marked RELAX_NARROW.  Otherwise, it will create an rs_fill
     109       fragment with a NOP in it.  Once a frag has been converted to
     110       RELAX_LOOP_END_ADD_NOP, it should never be changed back to
     111       RELAX_LOOP_END.  */
     112  
     113    RELAX_LITERAL,
     114    /* Another fragment could generate an expansion here but has not yet.  */
     115  
     116    RELAX_LITERAL_NR,
     117    /* Expansion has been generated by an instruction that generates a
     118       literal.  However, the stretch has NOT been reported yet in this
     119       fragment.  */
     120  
     121    RELAX_LITERAL_FINAL,
     122    /* Expansion has been generated by an instruction that generates a
     123       literal.  */
     124  
     125    RELAX_LITERAL_POOL_BEGIN,
     126    RELAX_LITERAL_POOL_END,
     127    RELAX_LITERAL_POOL_CANDIDATE_BEGIN,
     128    /* Technically these are not relaxations at all but mark a location
     129       to store literals later.  Note that fr_var stores the frchain for
     130       BEGIN frags and fr_var stores now_seg for END frags.  */
     131  
     132    RELAX_NARROW,
     133    /* The last instruction in this fragment (at->fr_opcode) can be
     134       freely replaced with a single wider instruction if a future
     135       alignment desires or needs it.  */
     136  
     137    RELAX_IMMED,
     138    /* The last instruction in this fragment (at->fr_opcode) contains
     139       an immediate or symbol.  If the value does not fit, relax the
     140       opcode using expansions from the relax table.  */
     141  
     142    RELAX_IMMED_STEP1,
     143    /* The last instruction in this fragment (at->fr_opcode) contains a
     144       literal.  It has already been expanded 1 step.  */
     145  
     146    RELAX_IMMED_STEP2,
     147    /* The last instruction in this fragment (at->fr_opcode) contains a
     148       literal.  It has already been expanded 2 steps.  */
     149  
     150    RELAX_IMMED_STEP3,
     151    /* The last instruction in this fragment (at->fr_opcode) contains a
     152       literal.  It has already been expanded 3 steps.  */
     153  
     154    RELAX_SLOTS,
     155    /* There are instructions within the last VLIW instruction that need
     156       relaxation.  Find the relaxation based on the slot info in
     157       xtensa_frag_type.  Relaxations that deal with particular opcodes
     158       are slot-based (e.g., converting a MOVI to an L32R).  Relaxations
     159       that deal with entire instructions, such as alignment, are not
     160       slot-based.  */
     161  
     162    RELAX_FILL_NOP,
     163    /* This marks the location of a pipeline stall.  We can fill these guys
     164       in for alignment of any size.  */
     165  
     166    RELAX_UNREACHABLE,
     167    /* This marks the location as unreachable.  The assembler may widen or
     168       narrow this area to meet alignment requirements of nearby
     169       instructions.  */
     170  
     171    RELAX_MAYBE_UNREACHABLE,
     172    /* This marks the location as possibly unreachable.  These are placed
     173       after a branch that may be relaxed into a branch and jump. If the
     174       branch is relaxed, then this frag will be converted to a
     175       RELAX_UNREACHABLE frag.  */
     176  
     177    RELAX_ORG,
     178    /* This marks the location as having previously been an rs_org frag.
     179       rs_org frags are converted to fill-zero frags immediately after
     180       relaxation.  However, we need to remember where they were so we can
     181       prevent the linker from changing the size of any frag between the
     182       section start and the org frag.  */
     183  
     184    RELAX_TRAMPOLINE,
     185    /* Every few thousand frags, we insert one of these, just in case we may
     186       need some space for a trampoline (jump to a jump) because the function
     187       has gotten too big. If not needed, it disappears. */
     188  
     189    RELAX_NONE
     190  };
     191  
     192  /* This is used as a stopper to bound the number of steps that
     193     can be taken.  */
     194  #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
     195  
     196  struct xtensa_frag_type
     197  {
     198    /* Info about the current state of assembly, e.g., transform,
     199       absolute_literals, etc.  These need to be passed to the backend and
     200       then to the object file.
     201  
     202       When is_assembly_state_set is false, the frag inherits some of the
     203       state settings from the previous frag in this segment.  Because it
     204       is not possible to intercept all fragment closures (frag_more and
     205       frag_append_1_char can close a frag), we use a pass after initial
     206       assembly to fill in the assembly states.  */
     207  
     208    unsigned int is_assembly_state_set : 1;
     209    unsigned int is_no_density : 1;
     210    unsigned int is_no_transform : 1;
     211    unsigned int use_longcalls : 1;
     212    unsigned int use_absolute_literals : 1;
     213  
     214    /* Inhibits relaxation of machine-dependent alignment frags the
     215       first time through a relaxation....  */
     216    unsigned int relax_seen : 1;
     217  
     218    /* Information that is needed in the object file and set when known.  */
     219    unsigned int is_literal : 1;
     220    unsigned int is_loop_target : 1;
     221    unsigned int is_branch_target : 1;
     222    unsigned int is_insn : 1;
     223    unsigned int is_unreachable : 1;
     224  
     225    unsigned int is_specific_opcode : 1; /* also implies no_transform */
     226  
     227    unsigned int is_align : 1;
     228    unsigned int is_text_align : 1;
     229    unsigned int alignment : 5;
     230  
     231    /* A frag with this bit set is the first in a loop that actually
     232       contains an instruction.  */
     233    unsigned int is_first_loop_insn : 1;
     234  
     235    /* A frag with this bit set is a branch that we are using to
     236       align branch targets as if it were a normal narrow instruction.  */
     237    unsigned int is_aligning_branch : 1;
     238  
     239    /* A trampoline frag that is located in the middle of code and thus
     240       needs a jump around.  */
     241    unsigned int needs_jump_around : 1;
     242  
     243    /* For text fragments that can generate literals at relax time, this
     244       variable points to the frag where the literal will be stored.  For
     245       literal frags, this variable points to the nearest literal pool
     246       location frag.  This literal frag will be moved to after this
     247       location.  For RELAX_LITERAL_POOL_BEGIN frags, this field points
     248       to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
     249       frag, to make moving frags for this literal pool efficient.  */
     250    fragS *literal_frag;
     251  
     252    /* The destination segment for literal frags.  (Note that this is only
     253       valid after xtensa_move_literals.)  This field is also used for
     254       LITERAL_POOL_END frags.  */
     255    segT lit_seg;
     256  
     257    /* Frag chain for LITERAL_POOL_BEGIN frags.  */
     258    struct frchain *lit_frchain;
     259  
     260    /* For the relaxation scheme, some literal fragments can have their
     261       expansions modified by an instruction that relaxes.  */
     262    int text_expansion[MAX_SLOTS];
     263    int literal_expansion[MAX_SLOTS];
     264    int unreported_expansion;
     265  
     266    /* For slots that have a free register for relaxation, record that
     267       register.  */
     268    expressionS free_reg[MAX_SLOTS];
     269  
     270    /* For text fragments that can generate literals at relax time:  */
     271    fragS *literal_frags[MAX_SLOTS];
     272    enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
     273    symbolS *slot_symbols[MAX_SLOTS];
     274    offsetT slot_offsets[MAX_SLOTS];
     275  
     276    /* For trampoline fragments.  */
     277    struct fix *jump_around_fix;
     278  
     279    /* When marking frags after this one in the chain as no transform,
     280       cache the last one in the chain, so that we can skip to the
     281       end of the chain.  */
     282    fragS *no_transform_end;
     283  };
     284  
     285  
     286  /* For VLIW support, we need to know what slot a fixup applies to.  */
     287  typedef struct xtensa_fix_data_struct
     288  {
     289    int slot;
     290    symbolS *X_add_symbol;
     291    offsetT X_add_number;
     292  } xtensa_fix_data;
     293  
     294  
     295  /* Structure to record xtensa-specific symbol information.  */
     296  typedef struct xtensa_symfield_type
     297  {
     298    unsigned int is_loop_target : 1;
     299    unsigned int is_branch_target : 1;
     300    symbolS *next_expr_symbol;
     301  } xtensa_symfield_type;
     302  
     303  
     304  /* Structure for saving information about a block of property data
     305     for frags that have the same flags.   The forward reference is
     306     in this header file.  The actual definition is in tc-xtensa.c.  */
     307  struct xtensa_block_info_struct;
     308  typedef struct xtensa_block_info_struct xtensa_block_info;
     309  
     310  
     311  /* Property section types.  */
     312  typedef enum
     313  {
     314    xt_literal_sec,
     315    xt_prop_sec,
     316    max_xt_sec
     317  } xt_section_type;
     318  
     319  typedef struct xtensa_segment_info_struct
     320  {
     321    fragS *literal_pool_loc;
     322    xtensa_block_info *blocks[max_xt_sec];
     323  } xtensa_segment_info;
     324  
     325  
     326  extern const char *xtensa_target_format (void);
     327  extern void xtensa_init_fix_data (struct fix *);
     328  extern void xtensa_frag_init (fragS *);
     329  extern int xtensa_force_relocation (struct fix *);
     330  extern int xtensa_validate_fix_sub (struct fix *);
     331  extern void xtensa_frob_label (struct symbol *);
     332  extern void xtensa_md_finish (void);
     333  extern void xtensa_post_relax_hook (void);
     334  extern void xtensa_file_arch_init (bfd *);
     335  extern void xtensa_flush_pending_output (void);
     336  extern bool xtensa_fix_adjustable (struct fix *);
     337  extern void xtensa_symbol_new_hook (symbolS *);
     338  extern long xtensa_relax_frag (fragS *, long, int *);
     339  extern void xtensa_elf_section_change_hook (void);
     340  extern int xtensa_unrecognized_line (int);
     341  extern bool xtensa_check_inside_bundle (void);
     342  extern void xtensa_handle_align (fragS *);
     343  extern char *xtensa_section_rename (const char *);
     344  
     345  /* We need to set the target endianness in xtensa_init and not in md_begin.
     346     This is because xtensa_target_format is called before md_begin, and we
     347     want to have all non-statically initialized fields initialized.  */
     348  
     349  #define HOST_SPECIAL_INIT xtensa_init
     350  extern void xtensa_init (int, char **);
     351  
     352  #define TARGET_FORMAT			xtensa_target_format ()
     353  #define TARGET_ARCH			bfd_arch_xtensa
     354  #define TC_SEGMENT_INFO_TYPE		xtensa_segment_info
     355  #define TC_SYMFIELD_TYPE                struct xtensa_symfield_type
     356  #define TC_FIX_TYPE			xtensa_fix_data
     357  #define TC_INIT_FIX_DATA(x)		xtensa_init_fix_data (x)
     358  #define TC_FRAG_TYPE			struct xtensa_frag_type
     359  #define TC_FRAG_INIT(frag, max_bytes)	xtensa_frag_init (frag)
     360  #define TC_FORCE_RELOCATION(fix)	xtensa_force_relocation (fix)
     361  #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
     362    (GENERIC_FORCE_RELOCATION_SUB_SAME (fix, seg)	\
     363     || xtensa_force_relocation (fix))
     364  #define	TC_VALIDATE_FIX_SUB(fix, seg)	xtensa_validate_fix_sub (fix)
     365  #define NO_PSEUDO_DOT			xtensa_check_inside_bundle ()
     366  #define tc_canonicalize_symbol_name(s)	xtensa_section_rename (s)
     367  #define tc_canonicalize_section_name(s)	xtensa_section_rename (s)
     368  #define tc_init_after_args()		xtensa_file_arch_init (stdoutput)
     369  #define tc_fix_adjustable(fix)		xtensa_fix_adjustable (fix)
     370  #define tc_frob_label(sym)		xtensa_frob_label (sym)
     371  #define tc_unrecognized_line(ch)	xtensa_unrecognized_line (ch)
     372  #define tc_symbol_new_hook(sym)		xtensa_symbol_new_hook (sym)
     373  #define md_do_align(a,b,c,d,e)		xtensa_flush_pending_output ()
     374  #define md_elf_section_change_hook	xtensa_elf_section_change_hook
     375  #define md_finish			xtensa_md_finish
     376  #define md_flush_pending_output()	xtensa_flush_pending_output ()
     377  #define md_operand(x)
     378  #define TEXT_SECTION_NAME		xtensa_section_rename (".text")
     379  #define DATA_SECTION_NAME		xtensa_section_rename (".data")
     380  #define BSS_SECTION_NAME		xtensa_section_rename (".bss")
     381  #define HANDLE_ALIGN(fragP)		xtensa_handle_align (fragP)
     382  #define MAX_MEM_FOR_RS_ALIGN_CODE	1
     383  
     384  
     385  /* The renumber_section function must be mapped over all the sections
     386     after calling xtensa_post_relax_hook.  That function is static in
     387     write.c so it cannot be called from xtensa_post_relax_hook itself.  */
     388  
     389  #define md_post_relax_hook \
     390    do \
     391      { \
     392        int i = 0; \
     393        xtensa_post_relax_hook (); \
     394        bfd_map_over_sections (stdoutput, renumber_sections, &i); \
     395      } \
     396    while (0)
     397  
     398  
     399  /* Because xtensa relaxation can insert a new literal into the middle of
     400     fragment and thus require re-running the relaxation pass on the
     401     section, we need an explicit flag here.  We explicitly use the name
     402     "stretched" here to avoid changing the source code in write.c.  */
     403  
     404  #define md_relax_frag(segment, fragP, stretch) \
     405    xtensa_relax_frag (fragP, stretch, &stretched)
     406  
     407  /* Only allow call frame debug info optimization when linker relaxation is
     408     not enabled as otherwise we could generate the DWARF directives without
     409     the relocs necessary to patch them up.  */
     410  #define md_allow_eh_opt (linkrelax == 0)
     411  
     412  #define LOCAL_LABELS_FB 1
     413  #define WORKING_DOT_WORD 1
     414  #define DOUBLESLASH_LINE_COMMENTS
     415  #define TC_HANDLES_FX_DONE
     416  #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
     417  #define TC_LINKRELAX_FIXUP(SEG) 0
     418  #define MD_APPLY_SYM_VALUE(FIX) 0
     419  #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
     420  
     421  /* Use line number format that is amenable to linker relaxation.  */
     422  #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
     423  
     424  
     425  /* Resource reservation info functions.  */
     426  
     427  /* Returns the number of copies of a particular unit.  */
     428  typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
     429  
     430  /* Returns the number of units the opcode uses.  */
     431  typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
     432  
     433  /* Given an opcode and an index into the opcode's funcUnit list,
     434     returns the unit used for the index.  */
     435  typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
     436  
     437  /* Given an opcode and an index into the opcode's funcUnit list,
     438     returns the cycle during which the unit is used.  */
     439  typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
     440  
     441  /* The above typedefs parameterize the resource_table so that the
     442     optional scheduler doesn't need its own resource reservation system.
     443  
     444     For simple resource checking, which is all that happens normally,
     445     the functions will be as follows (with some wrapping to make the
     446     interface more convenient):
     447  
     448     unit_num_copies_func = xtensa_funcUnit_num_copies
     449     opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
     450     opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
     451     opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
     452  
     453     Of course the optional scheduler has its own reservation table
     454     and functions.  */
     455  
     456  int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
     457  int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
     458  
     459  typedef struct
     460  {
     461    void *data;
     462    int cycles;
     463    int allocated_cycles;
     464    int num_units;
     465    unit_num_copies_func unit_num_copies;
     466    opcode_num_units_func opcode_num_units;
     467    opcode_funcUnit_use_unit_func opcode_unit_use;
     468    opcode_funcUnit_use_stage_func opcode_unit_stage;
     469    unsigned char **units;
     470  } resource_table;
     471  
     472  resource_table *new_resource_table
     473    (void *, int, int, unit_num_copies_func, opcode_num_units_func,
     474     opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
     475  void resize_resource_table (resource_table *, int);
     476  void clear_resource_table (resource_table *);
     477  bool resources_available (resource_table *, xtensa_opcode, int);
     478  void reserve_resources (resource_table *, xtensa_opcode, int);
     479  void release_resources (resource_table *, xtensa_opcode, int);
     480  
     481  #endif /* TC_XTENSA */