(root)/
glib-2.79.0/
glib/
gvariant-core.c
       1  /*
       2   * Copyright © 2007, 2008 Ryan Lortie
       3   * Copyright © 2010 Codethink Limited
       4   * Copyright © 2022 Endless OS Foundation, LLC
       5   *
       6   * SPDX-License-Identifier: LGPL-2.1-or-later
       7   *
       8   * This library is free software; you can redistribute it and/or
       9   * modify it under the terms of the GNU Lesser General Public
      10   * License as published by the Free Software Foundation; either
      11   * version 2.1 of the License, or (at your option) any later version.
      12   *
      13   * This library is distributed in the hope that it will be useful,
      14   * but WITHOUT ANY WARRANTY; without even the implied warranty of
      15   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      16   * Lesser General Public License for more details.
      17   *
      18   * You should have received a copy of the GNU Lesser General Public
      19   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
      20   */
      21  
      22  #include "config.h"
      23  
      24  #include <glib/gvariant-core.h>
      25  
      26  #include <glib/gvariant-internal.h>
      27  #include <glib/gvariant-serialiser.h>
      28  #include <glib/gtestutils.h>
      29  #include <glib/gbitlock.h>
      30  #include <glib/gatomic.h>
      31  #include <glib/gbytes.h>
      32  #include <glib/gslice.h>
      33  #include <glib/gmem.h>
      34  #include <glib/grefcount.h>
      35  #include <string.h>
      36  
      37  #include "glib_trace.h"
      38  
      39  /*
      40   * This file includes the structure definition for GVariant and a small
      41   * set of functions that are allowed to access the structure directly.
      42   *
      43   * This minimises the amount of code that can possibly touch a GVariant
      44   * structure directly to a few simple fundamental operations.  These few
      45   * operations are written to be completely threadsafe with respect to
      46   * all possible outside access.  This means that we only need to be
      47   * concerned about thread safety issues in this one small file.
      48   *
      49   * Most GVariant API functions are in gvariant.c.
      50   */
      51  
      52  struct _GVariant
      53  /* see below for field member documentation */
      54  {
      55    GVariantTypeInfo *type_info;
      56    gsize size;
      57  
      58    union
      59    {
      60      struct
      61      {
      62        GBytes *bytes;
      63        gconstpointer data;
      64        gsize ordered_offsets_up_to;
      65        gsize checked_offsets_up_to;
      66      } serialised;
      67  
      68      struct
      69      {
      70        GVariant **children;
      71        gsize n_children;
      72      } tree;
      73    } contents;
      74  
      75    gint state;
      76    gatomicrefcount ref_count;
      77    gsize depth;
      78  };
      79  
      80  /* struct GVariant:
      81   *
      82   * There are two primary forms of GVariant instances: "serialized form"
      83   * and "tree form".
      84   *
      85   * "serialized form": A serialized GVariant instance stores its value in
      86   *                    the GVariant serialization format.  All
      87   *                    basic-typed instances (ie: non-containers) are in
      88   *                    serialized format, as are some containers.
      89   *
      90   * "tree form": Some containers are in "tree form".  In this case,
      91   *              instead of containing the serialized data for the
      92   *              container, the instance contains an array of pointers to
      93   *              the child values of the container (thus forming a tree).
      94   *
      95   * It is possible for an instance to transition from tree form to
      96   * serialized form.  This happens, implicitly, if the serialized data is
      97   * requested (eg: via g_variant_get_data()).  Serialized form instances
      98   * never transition into tree form.
      99   *
     100   *
     101   * The fields of the structure are documented here:
     102   *
     103   * type_info: this is a reference to a GVariantTypeInfo describing the
     104   *            type of the instance.  When the instance is freed, this
     105   *            reference must be released with g_variant_type_info_unref().
     106   *
     107   *            The type_info field never changes during the life of the
     108   *            instance, so it can be accessed without a lock.
     109   *
     110   * size: this is the size of the serialized form for the instance, if it
     111   *       is known.  If the instance is in serialized form then it is, by
     112   *       definition, known.  If the instance is in tree form then it may
     113   *       be unknown (in which case it is -1).  It is possible for the
     114   *       size to be known when in tree form if, for example, the user
     115   *       has called g_variant_get_size() without calling
     116   *       g_variant_get_data().  Additionally, even when the user calls
     117   *       g_variant_get_data() the size of the data must first be
     118   *       determined so that a large enough buffer can be allocated for
     119   *       the data.
     120   *
     121   *       Once the size is known, it can never become unknown again.
     122   *       g_variant_ensure_size() is used to ensure that the size is in
     123   *       the known state -- it calculates the size if needed.  After
     124   *       that, the size field can be accessed without a lock.
     125   *
     126   * contents: a union containing either the information associated with
     127   *           holding a value in serialized form or holding a value in
     128   *           tree form.
     129   *
     130   *   .serialised: Only valid when the instance is in serialized form.
     131   *
     132   *                Since an instance can never transition away from
     133   *                serialized form, once these fields are set, they will
     134   *                never be changed.  It is therefore valid to access
     135   *                them without holding a lock.
     136   *
     137   *     .bytes:  the #GBytes that contains the memory pointed to by
     138   *              .data, or %NULL if .data is %NULL.  In the event that
     139   *              the instance was deserialized from another instance,
     140   *              then the bytes will be shared by both of them.  When
     141   *              the instance is freed, this reference must be released
     142   *              with g_bytes_unref().
     143   *
     144   *     .data: the serialized data (of size 'size') of the instance.
     145   *            This pointer should not be freed or modified in any way.
     146   *            #GBytes is responsible for memory management.
     147   *
     148   *            This pointer may be %NULL in two cases:
     149   *
     150   *              - if the serialized size of the instance is 0
     151   *
     152   *              - if the instance is of a fixed-sized type and was
     153   *                deserialized out of a corrupted container such that
     154   *                the container contains too few bytes to point to the
     155   *                entire proper fixed-size of this instance.  In this
     156   *                case, 'size' will still be equal to the proper fixed
     157   *                size, but this pointer will be %NULL.  This is exactly
     158   *                the reason that g_variant_get_data() sometimes returns
     159   *                %NULL.  For all other calls, the effect should be as
     160   *                if .data pointed to the appropriate number of nul
     161   *                bytes.
     162   *
     163   *     .ordered_offsets_up_to: If ordered_offsets_up_to == n this means that all
     164   *                             the frame offsets up to and including the frame
     165   *                             offset determining the end of element n are in
     166   *                             order. This guarantees that the bytes of element
     167   *                             n don't overlap with any previous element.
     168   *
     169   *                             For trusted data this is set to G_MAXSIZE and we
     170   *                             don't check that the frame offsets are in order.
     171   *
     172   *                             Note: This doesn't imply the offsets are good in
     173   *                             any way apart from their ordering.  In particular
     174   *                             offsets may be out of bounds for this value or
     175   *                             may imply that the data overlaps the frame
     176   *                             offsets themselves.
     177   *
     178   *                             This field is only relevant for arrays of non
     179   *                             fixed width types and for tuples.
     180   *
     181   *     .checked_offsets_up_to: Similarly to .ordered_offsets_up_to, this stores
     182   *                             the index of the highest element, n, whose frame
     183   *                             offsets (and all the preceding frame offsets)
     184   *                             have been checked for validity.
     185   *
     186   *                             It is always the case that
     187   *                             .checked_offsets_up_to ≥ .ordered_offsets_up_to.
     188   *
     189   *                             If .checked_offsets_up_to == .ordered_offsets_up_to,
     190   *                             then a bad offset has not been found so far.
     191   *
     192   *                             If .checked_offsets_up_to > .ordered_offsets_up_to,
     193   *                             then a bad offset has been found at
     194   *                             (.ordered_offsets_up_to + 1).
     195   *
     196   *                             This field is only relevant for arrays of non
     197   *                             fixed width types and for tuples.
     198   *
     199   *   .tree: Only valid when the instance is in tree form.
     200   *
     201   *          Note that accesses from other threads could result in
     202   *          conversion of the instance from tree form to serialized form
     203   *          at any time.  For this reason, the instance lock must always
     204   *          be held while performing any operations on 'contents.tree'.
     205   *
     206   *     .children: the array of the child instances of this instance.
     207   *                When the instance is freed (or converted to serialized
     208   *                form) then each child must have g_variant_unref()
     209   *                called on it and the array must be freed using
     210   *                g_free().
     211   *
     212   *     .n_children: the number of items in the .children array.
     213   *
     214   * state: a bitfield describing the state of the instance.  It is a
     215   *        bitwise-or of the following STATE_* constants:
     216   *
     217   *    STATE_LOCKED: the instance lock is held.  This is the bit used by
     218   *                  g_bit_lock().
     219   *
     220   *    STATE_SERIALISED: the instance is in serialized form.  If this
     221   *                      flag is not set then the instance is in tree
     222   *                      form.
     223   *
     224   *    STATE_TRUSTED: for serialized form instances, this means that the
     225   *                   serialized data is known to be in normal form (ie:
     226   *                   not corrupted).
     227   *
     228   *                   For tree form instances, this means that all of the
     229   *                   child instances in the contents.tree.children array
     230   *                   are trusted.  This means that if the container is
     231   *                   serialized then the resulting data will be in
     232   *                   normal form.
     233   *
     234   *                   If this flag is unset it does not imply that the
     235   *                   data is corrupted.  It merely means that we're not
     236   *                   sure that it's valid.  See g_variant_is_trusted().
     237   *
     238   *    STATE_FLOATING: if this flag is set then the object has a floating
     239   *                    reference.  See g_variant_ref_sink().
     240   *
     241   * ref_count: the reference count of the instance
     242   *
     243   * depth: the depth of the GVariant in a hierarchy of nested containers,
     244   *        increasing with the level of nesting. The top-most GVariant has depth
     245   *        zero.  This is used to avoid recursing too deeply and overflowing the
     246   *        stack when handling deeply nested untrusted serialized GVariants.
     247   */
     248  #define STATE_LOCKED     1
     249  #define STATE_SERIALISED 2
     250  #define STATE_TRUSTED    4
     251  #define STATE_FLOATING   8
     252  
     253  /* -- private -- */
     254  /* < private >
     255   * g_variant_lock:
     256   * @value: a #GVariant
     257   *
     258   * Locks @value for performing sensitive operations.
     259   */
     260  static void
     261  g_variant_lock (GVariant *value)
     262  {
     263    g_bit_lock (&value->state, 0);
     264  }
     265  
     266  /* < private >
     267   * g_variant_unlock:
     268   * @value: a #GVariant
     269   *
     270   * Unlocks @value after performing sensitive operations.
     271   */
     272  static void
     273  g_variant_unlock (GVariant *value)
     274  {
     275    g_bit_unlock (&value->state, 0);
     276  }
     277  
     278  /* < private >
     279   * g_variant_release_children:
     280   * @value: a #GVariant
     281   *
     282   * Releases the reference held on each child in the 'children' array of
     283   * @value and frees the array itself.  @value must be in tree form.
     284   *
     285   * This is done when freeing a tree-form instance or converting it to
     286   * serialized form.
     287   *
     288   * The current thread must hold the lock on @value.
     289   */
     290  static void
     291  g_variant_release_children (GVariant *value)
     292  {
     293    gsize i;
     294  
     295    g_assert (value->state & STATE_LOCKED);
     296    g_assert (~value->state & STATE_SERIALISED);
     297  
     298    for (i = 0; i < value->contents.tree.n_children; i++)
     299      g_variant_unref (value->contents.tree.children[i]);
     300  
     301    g_free (value->contents.tree.children);
     302  }
     303  
     304  /* This begins the main body of the recursive serializer.
     305   *
     306   * There are 3 functions here that work as a team with the serializer to
     307   * get things done.  g_variant_store() has a trivial role, but as a
     308   * public API function, it has its definition elsewhere.
     309   *
     310   * Note that "serialization" of an instance does not mean that the
     311   * instance is converted to serialized form -- it means that the
     312   * serialized form of an instance is written to an external buffer.
     313   * g_variant_ensure_serialised() (which is not part of this set of
     314   * functions) is the function that is responsible for converting an
     315   * instance to serialized form.
     316   *
     317   * We are only concerned here with container types since non-container
     318   * instances are always in serialized form.  For these instances,
     319   * storing their serialized form merely involves a memcpy().
     320   *
     321   * Serialization is a two-step process.  First, the size of the
     322   * serialized data must be calculated so that an appropriately-sized
     323   * buffer can be allocated.  Second, the data is written into the
     324   * buffer.
     325   *
     326   * Determining the size:
     327   *   The process of determining the size is triggered by a call to
     328   *   g_variant_ensure_size() on a container.  This invokes the
     329   *   serializer code to determine the size.  The serializer is passed
     330   *   g_variant_fill_gvs() as a callback.
     331   *
     332   *   g_variant_fill_gvs() is called by the serializer on each child of
     333   *   the container which, in turn, calls g_variant_ensure_size() on
     334   *   itself and fills in the result of its own size calculation.
     335   *
     336   *   The serializer uses the size information from the children to
     337   *   calculate the size needed for the entire container.
     338   *
     339   * Writing the data:
     340   *   After the buffer has been allocated, g_variant_serialise() is
     341   *   called on the container.  This invokes the serializer code to write
     342   *   the bytes to the container.  The serializer is, again, passed
     343   *   g_variant_fill_gvs() as a callback.
     344   *
     345   *   This time, when g_variant_fill_gvs() is called for each child, the
     346   *   child is given a pointer to a sub-region of the allocated buffer
     347   *   where it should write its data.  This is done by calling
     348   *   g_variant_store().  In the event that the instance is in serialized
     349   *   form this means a memcpy() of the serialized data into the
     350   *   allocated buffer.  In the event that the instance is in tree form
     351   *   this means a recursive call back into g_variant_serialise().
     352   *
     353   *
     354   * The forward declaration here allows corecursion via callback:
     355   */
     356  static void g_variant_fill_gvs (GVariantSerialised *, gpointer);
     357  
     358  /* < private >
     359   * g_variant_ensure_size:
     360   * @value: a #GVariant
     361   *
     362   * Ensures that the ->size field of @value is filled in properly.  This
     363   * must be done as a precursor to any serialization of the value in
     364   * order to know how large of a buffer is needed to store the data.
     365   *
     366   * The current thread must hold the lock on @value.
     367   */
     368  static void
     369  g_variant_ensure_size (GVariant *value)
     370  {
     371    g_assert (value->state & STATE_LOCKED);
     372  
     373    if (value->size == (gsize) -1)
     374      {
     375        gpointer *children;
     376        gsize n_children;
     377  
     378        children = (gpointer *) value->contents.tree.children;
     379        n_children = value->contents.tree.n_children;
     380        value->size = g_variant_serialiser_needed_size (value->type_info,
     381                                                        g_variant_fill_gvs,
     382                                                        children, n_children);
     383      }
     384  }
     385  
     386  /* < private >
     387   * g_variant_to_serialised:
     388   * @value: a #GVariant
     389   *
     390   * Gets a GVariantSerialised for a GVariant in state STATE_SERIALISED.
     391   */
     392  inline static GVariantSerialised
     393  g_variant_to_serialised (GVariant *value)
     394  {
     395    g_assert (value->state & STATE_SERIALISED);
     396    {
     397      GVariantSerialised serialised = {
     398        value->type_info,
     399        (gpointer) value->contents.serialised.data,
     400        value->size,
     401        value->depth,
     402        value->contents.serialised.ordered_offsets_up_to,
     403        value->contents.serialised.checked_offsets_up_to,
     404      };
     405      return serialised;
     406    }
     407  }
     408  
     409  /* < private >
     410   * g_variant_serialise:
     411   * @value: a #GVariant
     412   * @data: an appropriately-sized buffer
     413   *
     414   * Serializes @value into @data.  @value must be in tree form.
     415   *
     416   * No change is made to @value.
     417   *
     418   * The current thread must hold the lock on @value.
     419   */
     420  static void
     421  g_variant_serialise (GVariant *value,
     422                       gpointer  data)
     423  {
     424    GVariantSerialised serialised = { 0, };
     425    gpointer *children;
     426    gsize n_children;
     427  
     428    g_assert (~value->state & STATE_SERIALISED);
     429    g_assert (value->state & STATE_LOCKED);
     430  
     431    serialised.type_info = value->type_info;
     432    serialised.size = value->size;
     433    serialised.data = data;
     434    serialised.depth = value->depth;
     435    serialised.ordered_offsets_up_to = 0;
     436    serialised.checked_offsets_up_to = 0;
     437  
     438    children = (gpointer *) value->contents.tree.children;
     439    n_children = value->contents.tree.n_children;
     440  
     441    g_variant_serialiser_serialise (serialised, g_variant_fill_gvs,
     442                                    children, n_children);
     443  }
     444  
     445  /* < private >
     446   * g_variant_fill_gvs:
     447   * @serialised: a pointer to a #GVariantSerialised
     448   * @data: a #GVariant instance
     449   *
     450   * This is the callback that is passed by a tree-form container instance
     451   * to the serializer.  This callback gets called on each child of the
     452   * container.  Each child is responsible for performing the following
     453   * actions:
     454   *
     455   *  - reporting its type
     456   *
     457   *  - reporting its serialized size (requires knowing the size first)
     458   *
     459   *  - possibly storing its serialized form into the provided buffer
     460   */
     461  static void
     462  g_variant_fill_gvs (GVariantSerialised *serialised,
     463                      gpointer            data)
     464  {
     465    GVariant *value = data;
     466  
     467    g_variant_lock (value);
     468    g_variant_ensure_size (value);
     469    g_variant_unlock (value);
     470  
     471    if (serialised->type_info == NULL)
     472      serialised->type_info = value->type_info;
     473    g_assert (serialised->type_info == value->type_info);
     474  
     475    if (serialised->size == 0)
     476      serialised->size = value->size;
     477    g_assert (serialised->size == value->size);
     478    serialised->depth = value->depth;
     479  
     480    if (value->state & STATE_SERIALISED)
     481      {
     482        serialised->ordered_offsets_up_to = value->contents.serialised.ordered_offsets_up_to;
     483        serialised->checked_offsets_up_to = value->contents.serialised.checked_offsets_up_to;
     484      }
     485    else
     486      {
     487        serialised->ordered_offsets_up_to = 0;
     488        serialised->checked_offsets_up_to = 0;
     489      }
     490  
     491    if (serialised->data)
     492      /* g_variant_store() is a public API, so it
     493       * it will reacquire the lock if it needs to.
     494       */
     495      g_variant_store (value, serialised->data);
     496  }
     497  
     498  /* this ends the main body of the recursive serializer */
     499  
     500  /* < private >
     501   * g_variant_ensure_serialised:
     502   * @value: a #GVariant
     503   *
     504   * Ensures that @value is in serialized form.
     505   *
     506   * If @value is in tree form then this function ensures that the
     507   * serialized size is known and then allocates a buffer of that size and
     508   * serializes the instance into the buffer.  The 'children' array is
     509   * then released and the instance is set to serialized form based on the
     510   * contents of the buffer.
     511   *
     512   * The current thread must hold the lock on @value.
     513   */
     514  static void
     515  g_variant_ensure_serialised (GVariant *value)
     516  {
     517    g_assert (value->state & STATE_LOCKED);
     518  
     519    if (~value->state & STATE_SERIALISED)
     520      {
     521        GBytes *bytes;
     522        gpointer data;
     523  
     524        TRACE(GLIB_VARIANT_START_SERIALISE(value, value->type_info));
     525        g_variant_ensure_size (value);
     526        data = g_malloc (value->size);
     527        g_variant_serialise (value, data);
     528  
     529        g_variant_release_children (value);
     530  
     531        bytes = g_bytes_new_take (data, value->size);
     532        value->contents.serialised.data = g_bytes_get_data (bytes, NULL);
     533        value->contents.serialised.bytes = bytes;
     534        value->contents.serialised.ordered_offsets_up_to = G_MAXSIZE;
     535        value->contents.serialised.checked_offsets_up_to = G_MAXSIZE;
     536        value->state |= STATE_SERIALISED;
     537        TRACE(GLIB_VARIANT_END_SERIALISE(value, value->type_info));
     538      }
     539  }
     540  
     541  /* < private >
     542   * g_variant_alloc:
     543   * @type: the type of the new instance
     544   * @serialised: if the instance will be in serialised form
     545   * @trusted: if the instance will be trusted
     546   *
     547   * Allocates a #GVariant instance and does some common work (such as
     548   * looking up and filling in the type info), setting the state field,
     549   * and setting the ref_count to 1.
     550   *
     551   * Returns: a new #GVariant with a floating reference
     552   */
     553  static GVariant *
     554  g_variant_alloc (const GVariantType *type,
     555                   gboolean            serialised,
     556                   gboolean            trusted)
     557  {
     558    GVariant *value;
     559  
     560    value = g_slice_new (GVariant);
     561    value->type_info = g_variant_type_info_get (type);
     562    value->state = (serialised ? STATE_SERIALISED : 0) |
     563                   (trusted ? STATE_TRUSTED : 0) |
     564                   STATE_FLOATING;
     565    value->size = (gssize) -1;
     566    g_atomic_ref_count_init (&value->ref_count);
     567    value->depth = 0;
     568  
     569    return value;
     570  }
     571  
     572  /**
     573   * g_variant_new_from_bytes:
     574   * @type: a #GVariantType
     575   * @bytes: a #GBytes
     576   * @trusted: if the contents of @bytes are trusted
     577   *
     578   * Constructs a new serialized-mode #GVariant instance.  This is the
     579   * inner interface for creation of new serialized values that gets
     580   * called from various functions in gvariant.c.
     581   *
     582   * A reference is taken on @bytes.
     583   *
     584   * The data in @bytes must be aligned appropriately for the @type being loaded.
     585   * Otherwise this function will internally create a copy of the memory (since
     586   * GLib 2.60) or (in older versions) fail and exit the process.
     587   *
     588   * Returns: (transfer none): a new #GVariant with a floating reference
     589   *
     590   * Since: 2.36
     591   */
     592  GVariant *
     593  g_variant_new_from_bytes (const GVariantType *type,
     594                            GBytes             *bytes,
     595                            gboolean            trusted)
     596  {
     597    GVariant *value;
     598    guint alignment;
     599    gsize size;
     600    GBytes *owned_bytes = NULL;
     601    GVariantSerialised serialised;
     602  
     603    value = g_variant_alloc (type, TRUE, trusted);
     604  
     605    g_variant_type_info_query (value->type_info,
     606                               &alignment, &size);
     607  
     608    /* Ensure the alignment is correct. This is a huge performance hit if it’s
     609     * not correct, but that’s better than aborting if a caller provides data
     610     * with the wrong alignment (which is likely to happen very occasionally, and
     611     * only cause an abort on some architectures — so is unlikely to be caught
     612     * in testing). Callers can always actively ensure they use the correct
     613     * alignment to avoid the performance hit. */
     614    serialised.type_info = value->type_info;
     615    serialised.data = (guchar *) g_bytes_get_data (bytes, &serialised.size);
     616    serialised.depth = 0;
     617    serialised.ordered_offsets_up_to = trusted ? G_MAXSIZE : 0;
     618    serialised.checked_offsets_up_to = trusted ? G_MAXSIZE : 0;
     619  
     620    if (!g_variant_serialised_check (serialised))
     621      {
     622  #ifdef HAVE_POSIX_MEMALIGN
     623        gpointer aligned_data = NULL;
     624        gsize aligned_size = g_bytes_get_size (bytes);
     625  
     626        /* posix_memalign() requires the alignment to be a multiple of
     627         * sizeof(void*), and a power of 2. See g_variant_type_info_query() for
     628         * details on the alignment format. */
     629        if (posix_memalign (&aligned_data, MAX (sizeof (void *), alignment + 1),
     630                            aligned_size) != 0)
     631          g_error ("posix_memalign failed");
     632  
     633        if (aligned_size != 0)
     634          memcpy (aligned_data, g_bytes_get_data (bytes, NULL), aligned_size);
     635  
     636        bytes = owned_bytes = g_bytes_new_with_free_func (aligned_data,
     637                                                          aligned_size,
     638                                                          free, aligned_data);
     639        aligned_data = NULL;
     640  #else
     641        /* NOTE: there may be platforms that lack posix_memalign() and also
     642         * have malloc() that returns non-8-aligned.  if so, we need to try
     643         * harder here.
     644         */
     645        bytes = owned_bytes = g_bytes_new (g_bytes_get_data (bytes, NULL),
     646                                           g_bytes_get_size (bytes));
     647  #endif
     648      }
     649  
     650    value->contents.serialised.bytes = g_bytes_ref (bytes);
     651  
     652    if (size && g_bytes_get_size (bytes) != size)
     653      {
     654        /* Creating a fixed-sized GVariant with a bytes of the wrong
     655         * size.
     656         *
     657         * We should do the equivalent of pulling a fixed-sized child out
     658         * of a brozen container (ie: data is NULL size is equal to the correct
     659         * fixed size).
     660         */
     661        value->contents.serialised.data = NULL;
     662        value->size = size;
     663      }
     664    else
     665      {
     666        value->contents.serialised.data = g_bytes_get_data (bytes, &value->size);
     667      }
     668  
     669    value->contents.serialised.ordered_offsets_up_to = trusted ? G_MAXSIZE : 0;
     670    value->contents.serialised.checked_offsets_up_to = trusted ? G_MAXSIZE : 0;
     671  
     672    g_clear_pointer (&owned_bytes, g_bytes_unref);
     673  
     674    TRACE(GLIB_VARIANT_FROM_BUFFER(value, value->type_info, value->ref_count, value->state));
     675  
     676    return value;
     677  }
     678  
     679  /* -- internal -- */
     680  
     681  /* < internal >
     682   * g_variant_new_from_children:
     683   * @type: a #GVariantType
     684   * @children: an array of #GVariant pointers.  Consumed.
     685   * @n_children: the length of @children
     686   * @trusted: %TRUE if every child in @children is trusted
     687   *
     688   * Constructs a new tree-mode #GVariant instance.  This is the inner
     689   * interface for creation of new serialized values that gets called from
     690   * various functions in gvariant.c.
     691   *
     692   * @children is consumed by this function.  g_free() will be called on
     693   * it some time later.
     694   *
     695   * Returns: a new #GVariant with a floating reference
     696   */
     697  GVariant *
     698  g_variant_new_from_children (const GVariantType  *type,
     699                               GVariant           **children,
     700                               gsize                n_children,
     701                               gboolean             trusted)
     702  {
     703    GVariant *value;
     704  
     705    value = g_variant_alloc (type, FALSE, trusted);
     706    value->contents.tree.children = children;
     707    value->contents.tree.n_children = n_children;
     708    TRACE(GLIB_VARIANT_FROM_CHILDREN(value, value->type_info, value->ref_count, value->state));
     709  
     710    return value;
     711  }
     712  
     713  /* < internal >
     714   * g_variant_get_type_info:
     715   * @value: a #GVariant
     716   *
     717   * Returns the #GVariantTypeInfo corresponding to the type of @value.  A
     718   * reference is not added, so the return value is only good for the
     719   * duration of the life of @value.
     720   *
     721   * Returns: the #GVariantTypeInfo for @value
     722   */
     723  GVariantTypeInfo *
     724  g_variant_get_type_info (GVariant *value)
     725  {
     726    return value->type_info;
     727  }
     728  
     729  /* < internal >
     730   * g_variant_is_trusted:
     731   * @value: a #GVariant
     732   *
     733   * Determines if @value is trusted by #GVariant to contain only
     734   * fully-valid data.  All values constructed solely via #GVariant APIs
     735   * are trusted, but values containing data read in from other sources
     736   * are usually not trusted.
     737   *
     738   * The main advantage of trusted data is that certain checks can be
     739   * skipped.  For example, we don't need to check that a string is
     740   * properly nul-terminated or that an object path is actually a
     741   * properly-formatted object path.
     742   *
     743   * Returns: if @value is trusted
     744   */
     745  gboolean
     746  g_variant_is_trusted (GVariant *value)
     747  {
     748    return (value->state & STATE_TRUSTED) != 0;
     749  }
     750  
     751  /* < internal >
     752   * g_variant_get_depth:
     753   * @value: a #GVariant
     754   *
     755   * Gets the nesting depth of a #GVariant. This is 0 for a #GVariant with no
     756   * children.
     757   *
     758   * Returns: nesting depth of @value
     759   */
     760  gsize
     761  g_variant_get_depth (GVariant *value)
     762  {
     763    return value->depth;
     764  }
     765  
     766  /* -- public -- */
     767  
     768  /**
     769   * g_variant_unref:
     770   * @value: a #GVariant
     771   *
     772   * Decreases the reference count of @value.  When its reference count
     773   * drops to 0, the memory used by the variant is freed.
     774   *
     775   * Since: 2.24
     776   **/
     777  void
     778  g_variant_unref (GVariant *value)
     779  {
     780    g_return_if_fail (value != NULL);
     781  
     782    TRACE(GLIB_VARIANT_UNREF(value, value->type_info, value->ref_count, value->state));
     783  
     784    if (g_atomic_ref_count_dec (&value->ref_count))
     785      {
     786        if G_UNLIKELY (value->state & STATE_LOCKED)
     787          g_critical ("attempting to free a locked GVariant instance.  "
     788                      "This should never happen.");
     789  
     790        value->state |= STATE_LOCKED;
     791  
     792        g_variant_type_info_unref (value->type_info);
     793  
     794        if (value->state & STATE_SERIALISED)
     795          g_bytes_unref (value->contents.serialised.bytes);
     796        else
     797          g_variant_release_children (value);
     798  
     799        memset (value, 0, sizeof (GVariant));
     800        g_slice_free (GVariant, value);
     801      }
     802  }
     803  
     804  /**
     805   * g_variant_ref:
     806   * @value: a #GVariant
     807   *
     808   * Increases the reference count of @value.
     809   *
     810   * Returns: the same @value
     811   *
     812   * Since: 2.24
     813   **/
     814  GVariant *
     815  g_variant_ref (GVariant *value)
     816  {
     817    g_return_val_if_fail (value != NULL, NULL);
     818  
     819    TRACE(GLIB_VARIANT_REF(value, value->type_info, value->ref_count, value->state));
     820  
     821    g_atomic_ref_count_inc (&value->ref_count);
     822  
     823    return value;
     824  }
     825  
     826  /**
     827   * g_variant_ref_sink:
     828   * @value: a #GVariant
     829   *
     830   * #GVariant uses a floating reference count system.  All functions with
     831   * names starting with `g_variant_new_` return floating
     832   * references.
     833   *
     834   * Calling g_variant_ref_sink() on a #GVariant with a floating reference
     835   * will convert the floating reference into a full reference.  Calling
     836   * g_variant_ref_sink() on a non-floating #GVariant results in an
     837   * additional normal reference being added.
     838   *
     839   * In other words, if the @value is floating, then this call "assumes
     840   * ownership" of the floating reference, converting it to a normal
     841   * reference.  If the @value is not floating, then this call adds a
     842   * new normal reference increasing the reference count by one.
     843   *
     844   * All calls that result in a #GVariant instance being inserted into a
     845   * container will call g_variant_ref_sink() on the instance.  This means
     846   * that if the value was just created (and has only its floating
     847   * reference) then the container will assume sole ownership of the value
     848   * at that point and the caller will not need to unreference it.  This
     849   * makes certain common styles of programming much easier while still
     850   * maintaining normal refcounting semantics in situations where values
     851   * are not floating.
     852   *
     853   * Returns: the same @value
     854   *
     855   * Since: 2.24
     856   **/
     857  GVariant *
     858  g_variant_ref_sink (GVariant *value)
     859  {
     860    g_return_val_if_fail (value != NULL, NULL);
     861    g_return_val_if_fail (!g_atomic_ref_count_compare (&value->ref_count, 0), NULL);
     862  
     863    g_variant_lock (value);
     864  
     865    TRACE(GLIB_VARIANT_REF_SINK(value, value->type_info, value->ref_count, value->state, value->state & STATE_FLOATING));
     866  
     867    if (~value->state & STATE_FLOATING)
     868      g_variant_ref (value);
     869    else
     870      value->state &= ~STATE_FLOATING;
     871  
     872    g_variant_unlock (value);
     873  
     874    return value;
     875  }
     876  
     877  /**
     878   * g_variant_take_ref:
     879   * @value: a #GVariant
     880   *
     881   * If @value is floating, sink it.  Otherwise, do nothing.
     882   *
     883   * Typically you want to use g_variant_ref_sink() in order to
     884   * automatically do the correct thing with respect to floating or
     885   * non-floating references, but there is one specific scenario where
     886   * this function is helpful.
     887   *
     888   * The situation where this function is helpful is when creating an API
     889   * that allows the user to provide a callback function that returns a
     890   * #GVariant.  We certainly want to allow the user the flexibility to
     891   * return a non-floating reference from this callback (for the case
     892   * where the value that is being returned already exists).
     893   *
     894   * At the same time, the style of the #GVariant API makes it likely that
     895   * for newly-created #GVariant instances, the user can be saved some
     896   * typing if they are allowed to return a #GVariant with a floating
     897   * reference.
     898   *
     899   * Using this function on the return value of the user's callback allows
     900   * the user to do whichever is more convenient for them.  The caller
     901   * will always receives exactly one full reference to the value: either
     902   * the one that was returned in the first place, or a floating reference
     903   * that has been converted to a full reference.
     904   *
     905   * This function has an odd interaction when combined with
     906   * g_variant_ref_sink() running at the same time in another thread on
     907   * the same #GVariant instance.  If g_variant_ref_sink() runs first then
     908   * the result will be that the floating reference is converted to a hard
     909   * reference.  If g_variant_take_ref() runs first then the result will
     910   * be that the floating reference is converted to a hard reference and
     911   * an additional reference on top of that one is added.  It is best to
     912   * avoid this situation.
     913   *
     914   * Returns: the same @value
     915   **/
     916  GVariant *
     917  g_variant_take_ref (GVariant *value)
     918  {
     919    g_return_val_if_fail (value != NULL, NULL);
     920    g_return_val_if_fail (!g_atomic_ref_count_compare (&value->ref_count, 0), NULL);
     921  
     922    TRACE(GLIB_VARIANT_TAKE_REF(value, value->type_info, value->ref_count, value->state, value->state & STATE_FLOATING));
     923    g_atomic_int_and (&value->state, ~STATE_FLOATING);
     924  
     925    return value;
     926  }
     927  
     928  /**
     929   * g_variant_is_floating:
     930   * @value: a #GVariant
     931   *
     932   * Checks whether @value has a floating reference count.
     933   *
     934   * This function should only ever be used to assert that a given variant
     935   * is or is not floating, or for debug purposes. To acquire a reference
     936   * to a variant that might be floating, always use g_variant_ref_sink()
     937   * or g_variant_take_ref().
     938   *
     939   * See g_variant_ref_sink() for more information about floating reference
     940   * counts.
     941   *
     942   * Returns: whether @value is floating
     943   *
     944   * Since: 2.26
     945   **/
     946  gboolean
     947  g_variant_is_floating (GVariant *value)
     948  {
     949    g_return_val_if_fail (value != NULL, FALSE);
     950  
     951    return (value->state & STATE_FLOATING) != 0;
     952  }
     953  
     954  /**
     955   * g_variant_get_size:
     956   * @value: a #GVariant instance
     957   *
     958   * Determines the number of bytes that would be required to store @value
     959   * with g_variant_store().
     960   *
     961   * If @value has a fixed-sized type then this function always returned
     962   * that fixed size.
     963   *
     964   * In the case that @value is already in serialized form or the size has
     965   * already been calculated (ie: this function has been called before)
     966   * then this function is O(1).  Otherwise, the size is calculated, an
     967   * operation which is approximately O(n) in the number of values
     968   * involved.
     969   *
     970   * Returns: the serialized size of @value
     971   *
     972   * Since: 2.24
     973   **/
     974  gsize
     975  g_variant_get_size (GVariant *value)
     976  {
     977    g_variant_lock (value);
     978    g_variant_ensure_size (value);
     979    g_variant_unlock (value);
     980  
     981    return value->size;
     982  }
     983  
     984  /**
     985   * g_variant_get_data:
     986   * @value: a #GVariant instance
     987   *
     988   * Returns a pointer to the serialized form of a #GVariant instance.
     989   * The returned data may not be in fully-normalised form if read from an
     990   * untrusted source.  The returned data must not be freed; it remains
     991   * valid for as long as @value exists.
     992   *
     993   * If @value is a fixed-sized value that was deserialized from a
     994   * corrupted serialized container then %NULL may be returned.  In this
     995   * case, the proper thing to do is typically to use the appropriate
     996   * number of nul bytes in place of @value.  If @value is not fixed-sized
     997   * then %NULL is never returned.
     998   *
     999   * In the case that @value is already in serialized form, this function
    1000   * is O(1).  If the value is not already in serialized form,
    1001   * serialization occurs implicitly and is approximately O(n) in the size
    1002   * of the result.
    1003   *
    1004   * To deserialize the data returned by this function, in addition to the
    1005   * serialized data, you must know the type of the #GVariant, and (if the
    1006   * machine might be different) the endianness of the machine that stored
    1007   * it. As a result, file formats or network messages that incorporate
    1008   * serialized #GVariants must include this information either
    1009   * implicitly (for instance "the file always contains a
    1010   * %G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
    1011   * explicitly (by storing the type and/or endianness in addition to the
    1012   * serialized data).
    1013   *
    1014   * Returns: (transfer none): the serialized form of @value, or %NULL
    1015   *
    1016   * Since: 2.24
    1017   **/
    1018  gconstpointer
    1019  g_variant_get_data (GVariant *value)
    1020  {
    1021    g_variant_lock (value);
    1022    g_variant_ensure_serialised (value);
    1023    g_variant_unlock (value);
    1024  
    1025    return value->contents.serialised.data;
    1026  }
    1027  
    1028  /**
    1029   * g_variant_get_data_as_bytes:
    1030   * @value: a #GVariant
    1031   *
    1032   * Returns a pointer to the serialized form of a #GVariant instance.
    1033   * The semantics of this function are exactly the same as
    1034   * g_variant_get_data(), except that the returned #GBytes holds
    1035   * a reference to the variant data.
    1036   *
    1037   * Returns: (transfer full): A new #GBytes representing the variant data
    1038   *
    1039   * Since: 2.36
    1040   */ 
    1041  GBytes *
    1042  g_variant_get_data_as_bytes (GVariant *value)
    1043  {
    1044    const gchar *bytes_data;
    1045    const gchar *data;
    1046    gsize bytes_size;
    1047    gsize size;
    1048  
    1049    g_variant_lock (value);
    1050    g_variant_ensure_serialised (value);
    1051    g_variant_unlock (value);
    1052  
    1053    bytes_data = g_bytes_get_data (value->contents.serialised.bytes, &bytes_size);
    1054    data = value->contents.serialised.data;
    1055    size = value->size;
    1056  
    1057    if (data == NULL)
    1058      {
    1059        g_assert (size == 0);
    1060        data = bytes_data;
    1061      }
    1062  
    1063    if (data == bytes_data && size == bytes_size)
    1064      return g_bytes_ref (value->contents.serialised.bytes);
    1065    else
    1066      return g_bytes_new_from_bytes (value->contents.serialised.bytes,
    1067                                     data - bytes_data, size);
    1068  }
    1069  
    1070  
    1071  /**
    1072   * g_variant_n_children:
    1073   * @value: a container #GVariant
    1074   *
    1075   * Determines the number of children in a container #GVariant instance.
    1076   * This includes variants, maybes, arrays, tuples and dictionary
    1077   * entries.  It is an error to call this function on any other type of
    1078   * #GVariant.
    1079   *
    1080   * For variants, the return value is always 1.  For values with maybe
    1081   * types, it is always zero or one.  For arrays, it is the length of the
    1082   * array.  For tuples it is the number of tuple items (which depends
    1083   * only on the type).  For dictionary entries, it is always 2
    1084   *
    1085   * This function is O(1).
    1086   *
    1087   * Returns: the number of children in the container
    1088   *
    1089   * Since: 2.24
    1090   **/
    1091  gsize
    1092  g_variant_n_children (GVariant *value)
    1093  {
    1094    gsize n_children;
    1095  
    1096    g_variant_lock (value);
    1097  
    1098    if (value->state & STATE_SERIALISED)
    1099      n_children = g_variant_serialised_n_children (
    1100          g_variant_to_serialised (value));
    1101    else
    1102      n_children = value->contents.tree.n_children;
    1103  
    1104    g_variant_unlock (value);
    1105  
    1106    return n_children;
    1107  }
    1108  
    1109  /**
    1110   * g_variant_get_child_value:
    1111   * @value: a container #GVariant
    1112   * @index_: the index of the child to fetch
    1113   *
    1114   * Reads a child item out of a container #GVariant instance.  This
    1115   * includes variants, maybes, arrays, tuples and dictionary
    1116   * entries.  It is an error to call this function on any other type of
    1117   * #GVariant.
    1118   *
    1119   * It is an error if @index_ is greater than the number of child items
    1120   * in the container.  See g_variant_n_children().
    1121   *
    1122   * The returned value is never floating.  You should free it with
    1123   * g_variant_unref() when you're done with it.
    1124   *
    1125   * Note that values borrowed from the returned child are not guaranteed to
    1126   * still be valid after the child is freed even if you still hold a reference
    1127   * to @value, if @value has not been serialized at the time this function is
    1128   * called. To avoid this, you can serialize @value by calling
    1129   * g_variant_get_data() and optionally ignoring the return value.
    1130   *
    1131   * There may be implementation specific restrictions on deeply nested values,
    1132   * which would result in the unit tuple being returned as the child value,
    1133   * instead of further nested children. #GVariant is guaranteed to handle
    1134   * nesting up to at least 64 levels.
    1135   *
    1136   * This function is O(1).
    1137   *
    1138   * Returns: (transfer full): the child at the specified index
    1139   *
    1140   * Since: 2.24
    1141   **/
    1142  GVariant *
    1143  g_variant_get_child_value (GVariant *value,
    1144                             gsize     index_)
    1145  {
    1146    g_return_val_if_fail (value->depth < G_MAXSIZE, NULL);
    1147  
    1148    if (~g_atomic_int_get (&value->state) & STATE_SERIALISED)
    1149      {
    1150        /* g_variant_serialised_get_child() does its own checks on index_ */
    1151        g_return_val_if_fail (index_ < g_variant_n_children (value), NULL);
    1152  
    1153        g_variant_lock (value);
    1154  
    1155        if (~value->state & STATE_SERIALISED)
    1156          {
    1157            GVariant *child;
    1158  
    1159            child = g_variant_ref (value->contents.tree.children[index_]);
    1160            g_variant_unlock (value);
    1161  
    1162            return child;
    1163          }
    1164  
    1165        g_variant_unlock (value);
    1166      }
    1167  
    1168    {
    1169      GVariantSerialised serialised = g_variant_to_serialised (value);
    1170      GVariantSerialised s_child;
    1171      GVariant *child;
    1172  
    1173      /* get the serializer to extract the serialized data for the child
    1174       * from the serialized data for the container
    1175       */
    1176      s_child = g_variant_serialised_get_child (serialised, index_);
    1177  
    1178      /* Update the cached ordered_offsets_up_to, since @serialised will be thrown away when this function exits */
    1179      value->contents.serialised.ordered_offsets_up_to = MAX (value->contents.serialised.ordered_offsets_up_to, serialised.ordered_offsets_up_to);
    1180      value->contents.serialised.checked_offsets_up_to = MAX (value->contents.serialised.checked_offsets_up_to, serialised.checked_offsets_up_to);
    1181  
    1182      /* Check whether this would cause nesting too deep. If so, return a fake
    1183       * child. The only situation we expect this to happen in is with a variant,
    1184       * as all other deeply-nested types have a static type, and hence should
    1185       * have been rejected earlier. In the case of a variant whose nesting plus
    1186       * the depth of its child is too great, return a unit variant () instead of
    1187       * the real child. */
    1188      if (!(value->state & STATE_TRUSTED) &&
    1189          g_variant_type_info_query_depth (s_child.type_info) >=
    1190          G_VARIANT_MAX_RECURSION_DEPTH - value->depth)
    1191        {
    1192          g_assert (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT));
    1193          g_variant_type_info_unref (s_child.type_info);
    1194          return g_variant_new_tuple (NULL, 0);
    1195        }
    1196  
    1197      /* create a new serialized instance out of it */
    1198      child = g_slice_new (GVariant);
    1199      child->type_info = s_child.type_info;
    1200      child->state = (value->state & STATE_TRUSTED) |
    1201                     STATE_SERIALISED;
    1202      child->size = s_child.size;
    1203      g_atomic_ref_count_init (&child->ref_count);
    1204      child->depth = value->depth + 1;
    1205      child->contents.serialised.bytes =
    1206        g_bytes_ref (value->contents.serialised.bytes);
    1207      child->contents.serialised.data = s_child.data;
    1208      child->contents.serialised.ordered_offsets_up_to = (value->state & STATE_TRUSTED) ? G_MAXSIZE : s_child.ordered_offsets_up_to;
    1209      child->contents.serialised.checked_offsets_up_to = (value->state & STATE_TRUSTED) ? G_MAXSIZE : s_child.checked_offsets_up_to;
    1210  
    1211      TRACE(GLIB_VARIANT_FROM_PARENT(child, child->type_info, child->ref_count, child->state, value));
    1212  
    1213      return child;
    1214    }
    1215  }
    1216  
    1217  /**
    1218   * g_variant_maybe_get_child_value:
    1219   * @value: a container #GVariant
    1220   * @index_: the index of the child to fetch
    1221   *
    1222   * Reads a child item out of a container #GVariant instance, if it is in normal
    1223   * form. If it is not in normal form, return %NULL.
    1224   *
    1225   * This function behaves the same as g_variant_get_child_value(), except that it
    1226   * returns %NULL if the child is not in normal form. g_variant_get_child_value()
    1227   * would instead return a new default value of the correct type.
    1228   *
    1229   * This is intended to be used internally to avoid unnecessary #GVariant
    1230   * allocations.
    1231   *
    1232   * The returned value is never floating.  You should free it with
    1233   * g_variant_unref() when you're done with it.
    1234   *
    1235   * This function is O(1).
    1236   *
    1237   * Returns: (transfer full): the child at the specified index
    1238   *
    1239   * Since: 2.74
    1240   */
    1241  GVariant *
    1242  g_variant_maybe_get_child_value (GVariant *value,
    1243                                   gsize     index_)
    1244  {
    1245    g_return_val_if_fail (value->depth < G_MAXSIZE, NULL);
    1246  
    1247    if (~g_atomic_int_get (&value->state) & STATE_SERIALISED)
    1248      {
    1249        /* g_variant_serialised_get_child() does its own checks on index_ */
    1250        g_return_val_if_fail (index_ < g_variant_n_children (value), NULL);
    1251  
    1252        g_variant_lock (value);
    1253  
    1254        if (~value->state & STATE_SERIALISED)
    1255          {
    1256            GVariant *child;
    1257  
    1258            child = g_variant_ref (value->contents.tree.children[index_]);
    1259            g_variant_unlock (value);
    1260  
    1261            return child;
    1262          }
    1263  
    1264        g_variant_unlock (value);
    1265      }
    1266  
    1267    {
    1268      GVariantSerialised serialised = g_variant_to_serialised (value);
    1269      GVariantSerialised s_child;
    1270  
    1271      /* get the serializer to extract the serialized data for the child
    1272       * from the serialized data for the container
    1273       */
    1274      s_child = g_variant_serialised_get_child (serialised, index_);
    1275  
    1276      if (!(value->state & STATE_TRUSTED) && s_child.data == NULL)
    1277        {
    1278          g_variant_type_info_unref (s_child.type_info);
    1279          return NULL;
    1280        }
    1281  
    1282      g_variant_type_info_unref (s_child.type_info);
    1283      return g_variant_get_child_value (value, index_);
    1284    }
    1285  }
    1286  
    1287  /**
    1288   * g_variant_store:
    1289   * @value: the #GVariant to store
    1290   * @data: (not nullable): the location to store the serialized data at
    1291   *
    1292   * Stores the serialized form of @value at @data.  @data should be
    1293   * large enough.  See g_variant_get_size().
    1294   *
    1295   * The stored data is in machine native byte order but may not be in
    1296   * fully-normalised form if read from an untrusted source.  See
    1297   * g_variant_get_normal_form() for a solution.
    1298   *
    1299   * As with g_variant_get_data(), to be able to deserialize the
    1300   * serialized variant successfully, its type and (if the destination
    1301   * machine might be different) its endianness must also be available.
    1302   *
    1303   * This function is approximately O(n) in the size of @data.
    1304   *
    1305   * Since: 2.24
    1306   **/
    1307  void
    1308  g_variant_store (GVariant *value,
    1309                   gpointer  data)
    1310  {
    1311    g_variant_lock (value);
    1312  
    1313    if (value->state & STATE_SERIALISED)
    1314      {
    1315        if (value->contents.serialised.data != NULL)
    1316          memcpy (data, value->contents.serialised.data, value->size);
    1317        else
    1318          memset (data, 0, value->size);
    1319      }
    1320    else
    1321      g_variant_serialise (value, data);
    1322  
    1323    g_variant_unlock (value);
    1324  }
    1325  
    1326  /**
    1327   * g_variant_is_normal_form:
    1328   * @value: a #GVariant instance
    1329   *
    1330   * Checks if @value is in normal form.
    1331   *
    1332   * The main reason to do this is to detect if a given chunk of
    1333   * serialized data is in normal form: load the data into a #GVariant
    1334   * using g_variant_new_from_data() and then use this function to
    1335   * check.
    1336   *
    1337   * If @value is found to be in normal form then it will be marked as
    1338   * being trusted.  If the value was already marked as being trusted then
    1339   * this function will immediately return %TRUE.
    1340   *
    1341   * There may be implementation specific restrictions on deeply nested values.
    1342   * GVariant is guaranteed to handle nesting up to at least 64 levels.
    1343   *
    1344   * Returns: %TRUE if @value is in normal form
    1345   *
    1346   * Since: 2.24
    1347   **/
    1348  gboolean
    1349  g_variant_is_normal_form (GVariant *value)
    1350  {
    1351    if (value->state & STATE_TRUSTED)
    1352      return TRUE;
    1353  
    1354    g_variant_lock (value);
    1355  
    1356    if (value->depth >= G_VARIANT_MAX_RECURSION_DEPTH)
    1357      return FALSE;
    1358  
    1359    if (value->state & STATE_SERIALISED)
    1360      {
    1361        if (g_variant_serialised_is_normal (g_variant_to_serialised (value)))
    1362          value->state |= STATE_TRUSTED;
    1363      }
    1364    else
    1365      {
    1366        gboolean normal = TRUE;
    1367        gsize i;
    1368  
    1369        for (i = 0; i < value->contents.tree.n_children; i++)
    1370          normal &= g_variant_is_normal_form (value->contents.tree.children[i]);
    1371  
    1372        if (normal)
    1373          value->state |= STATE_TRUSTED;
    1374      }
    1375  
    1376    g_variant_unlock (value);
    1377  
    1378    return (value->state & STATE_TRUSTED) != 0;
    1379  }