(root)/
glib-2.79.0/
glib/
gnulib/
printf-frexp.c
       1  /* Split a double into fraction and mantissa, for hexadecimal printf.
       2     Copyright (C) 2007, 2009-2019 Free Software Foundation, Inc.
       3  
       4     This program is free software: you can redistribute it and/or modify
       5     it under the terms of the GNU Lesser General Public License as published by
       6     the Free Software Foundation; either version 2.1 of the License, or
       7     (at your option) any later version.
       8  
       9     This program is distributed in the hope that it will be useful,
      10     but WITHOUT ANY WARRANTY; without even the implied warranty of
      11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12     GNU Lesser General Public License for more details.
      13  
      14     You should have received a copy of the GNU Lesser General Public License
      15     along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
      16  
      17  #if ! defined USE_LONG_DOUBLE
      18  # include <config.h>
      19  #endif
      20  
      21  /* Specification.  */
      22  #ifdef USE_LONG_DOUBLE
      23  # include "printf-frexpl.h"
      24  #else
      25  # include "printf-frexp.h"
      26  #endif
      27  
      28  #include <float.h>
      29  #include <gnulib_math.h>
      30  #ifdef USE_LONG_DOUBLE
      31  # include "fpucw.h"
      32  #endif
      33  
      34  /* This file assumes FLT_RADIX = 2.  If FLT_RADIX is a power of 2 greater
      35     than 2, or not even a power of 2, some rounding errors can occur, so that
      36     then the returned mantissa is only guaranteed to be <= 2.0, not < 2.0.  */
      37  
      38  #ifdef USE_LONG_DOUBLE
      39  # define FUNC printf_frexpl
      40  # define DOUBLE long double
      41  # define MIN_EXP LDBL_MIN_EXP
      42  # if HAVE_FREXPL_IN_LIBC && HAVE_LDEXPL_IN_LIBC
      43  #  define USE_FREXP_LDEXP
      44  #  define FREXP frexpl
      45  #  define LDEXP ldexpl
      46  # endif
      47  # define DECL_ROUNDING DECL_LONG_DOUBLE_ROUNDING
      48  # define BEGIN_ROUNDING() BEGIN_LONG_DOUBLE_ROUNDING ()
      49  # define END_ROUNDING() END_LONG_DOUBLE_ROUNDING ()
      50  # define L_(literal) literal##L
      51  #else
      52  # define FUNC printf_frexp
      53  # define DOUBLE double
      54  # define MIN_EXP DBL_MIN_EXP
      55  # if HAVE_FREXP_IN_LIBC && HAVE_LDEXP_IN_LIBC
      56  #  define USE_FREXP_LDEXP
      57  #  define FREXP frexp
      58  #  define LDEXP ldexp
      59  # endif
      60  # define DECL_ROUNDING
      61  # define BEGIN_ROUNDING()
      62  # define END_ROUNDING()
      63  # define L_(literal) literal
      64  #endif
      65  
      66  DOUBLE
      67  FUNC (DOUBLE x, int *expptr)
      68  {
      69    int exponent;
      70    DECL_ROUNDING
      71  
      72    BEGIN_ROUNDING ();
      73  
      74  #ifdef USE_FREXP_LDEXP
      75    /* frexp and ldexp are usually faster than the loop below.  */
      76    x = FREXP (x, &exponent);
      77  
      78    x = x + x;
      79    exponent -= 1;
      80  
      81    if (exponent < MIN_EXP - 1)
      82      {
      83        x = LDEXP (x, exponent - (MIN_EXP - 1));
      84        exponent = MIN_EXP - 1;
      85      }
      86  #else
      87    {
      88      /* Since the exponent is an 'int', it fits in 64 bits.  Therefore the
      89         loops are executed no more than 64 times.  */
      90      DOUBLE pow2[64]; /* pow2[i] = 2^2^i */
      91      DOUBLE powh[64]; /* powh[i] = 2^-2^i */
      92      int i;
      93  
      94      exponent = 0;
      95      if (x >= L_(1.0))
      96        {
      97          /* A nonnegative exponent.  */
      98          {
      99            DOUBLE pow2_i; /* = pow2[i] */
     100            DOUBLE powh_i; /* = powh[i] */
     101  
     102            /* Invariants: pow2_i = 2^2^i, powh_i = 2^-2^i,
     103               x * 2^exponent = argument, x >= 1.0.  */
     104            for (i = 0, pow2_i = L_(2.0), powh_i = L_(0.5);
     105                 ;
     106                 i++, pow2_i = pow2_i * pow2_i, powh_i = powh_i * powh_i)
     107              {
     108                if (x >= pow2_i)
     109                  {
     110                    exponent += (1 << i);
     111                    x *= powh_i;
     112                  }
     113                else
     114                  break;
     115  
     116                pow2[i] = pow2_i;
     117                powh[i] = powh_i;
     118              }
     119          }
     120          /* Here 1.0 <= x < 2^2^i.  */
     121        }
     122      else
     123        {
     124          /* A negative exponent.  */
     125          {
     126            DOUBLE pow2_i; /* = pow2[i] */
     127            DOUBLE powh_i; /* = powh[i] */
     128  
     129            /* Invariants: pow2_i = 2^2^i, powh_i = 2^-2^i,
     130               x * 2^exponent = argument, x < 1.0, exponent >= MIN_EXP - 1.  */
     131            for (i = 0, pow2_i = L_(2.0), powh_i = L_(0.5);
     132                 ;
     133                 i++, pow2_i = pow2_i * pow2_i, powh_i = powh_i * powh_i)
     134              {
     135                if (exponent - (1 << i) < MIN_EXP - 1)
     136                  break;
     137  
     138                exponent -= (1 << i);
     139                x *= pow2_i;
     140                if (x >= L_(1.0))
     141                  break;
     142  
     143                pow2[i] = pow2_i;
     144                powh[i] = powh_i;
     145              }
     146          }
     147          /* Here either x < 1.0 and exponent - 2^i < MIN_EXP - 1 <= exponent,
     148             or 1.0 <= x < 2^2^i and exponent >= MIN_EXP - 1.  */
     149  
     150          if (x < L_(1.0))
     151            /* Invariants: x * 2^exponent = argument, x < 1.0 and
     152               exponent - 2^i < MIN_EXP - 1 <= exponent.  */
     153            while (i > 0)
     154              {
     155                i--;
     156                if (exponent - (1 << i) >= MIN_EXP - 1)
     157                  {
     158                    exponent -= (1 << i);
     159                    x *= pow2[i];
     160                    if (x >= L_(1.0))
     161                      break;
     162                  }
     163              }
     164  
     165          /* Here either x < 1.0 and exponent = MIN_EXP - 1,
     166             or 1.0 <= x < 2^2^i and exponent >= MIN_EXP - 1.  */
     167        }
     168  
     169      /* Invariants: x * 2^exponent = argument, and
     170         either x < 1.0 and exponent = MIN_EXP - 1,
     171         or 1.0 <= x < 2^2^i and exponent >= MIN_EXP - 1.  */
     172      while (i > 0)
     173        {
     174          i--;
     175          if (x >= pow2[i])
     176            {
     177              exponent += (1 << i);
     178              x *= powh[i];
     179            }
     180        }
     181      /* Here either x < 1.0 and exponent = MIN_EXP - 1,
     182         or 1.0 <= x < 2.0 and exponent >= MIN_EXP - 1.  */
     183    }
     184  #endif
     185  
     186    END_ROUNDING ();
     187  
     188    *expptr = exponent;
     189    return x;
     190  }