(root)/
glib-2.79.0/
girepository/
cmph/
bmz.c
       1  #include "graph.h"
       2  #include "bmz.h"
       3  #include "cmph_structs.h"
       4  #include "bmz_structs.h"
       5  #include "hash.h"
       6  #include "vqueue.h"
       7  #include "bitbool.h"
       8  
       9  #include <math.h>
      10  #include <stdlib.h>
      11  #include <stdio.h>
      12  #include <assert.h>
      13  #include <string.h>
      14  #include <errno.h>
      15  
      16  //#define DEBUG
      17  #include "debug.h"
      18  
      19  static int bmz_gen_edges(cmph_config_t *mph);
      20  static cmph_uint8 bmz_traverse_critical_nodes(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited);
      21  static cmph_uint8 bmz_traverse_critical_nodes_heuristic(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited);
      22  static void bmz_traverse_non_critical_nodes(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint8 * visited);
      23  
      24  bmz_config_data_t *bmz_config_new(void)
      25  {
      26  	bmz_config_data_t *bmz = NULL;
      27  	bmz = (bmz_config_data_t *)malloc(sizeof(bmz_config_data_t));
      28  	assert(bmz);
      29  	memset(bmz, 0, sizeof(bmz_config_data_t));
      30  	bmz->hashfuncs[0] = CMPH_HASH_JENKINS;
      31  	bmz->hashfuncs[1] = CMPH_HASH_JENKINS;
      32  	bmz->g = NULL;
      33  	bmz->graph = NULL;
      34  	bmz->hashes = NULL;
      35  	return bmz;
      36  }
      37  
      38  void bmz_config_destroy(cmph_config_t *mph)
      39  {
      40  	bmz_config_data_t *data = (bmz_config_data_t *)mph->data;
      41  	DEBUGP("Destroying algorithm dependent data\n");
      42  	free(data);
      43  }
      44  
      45  void bmz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs)
      46  {
      47  	bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
      48  	CMPH_HASH *hashptr = hashfuncs;
      49  	cmph_uint32 i = 0;
      50  	while(*hashptr != CMPH_HASH_COUNT)
      51  	{
      52  		if (i >= 2) break; //bmz only uses two hash functions
      53  		bmz->hashfuncs[i] = *hashptr;	
      54  		++i, ++hashptr;
      55  	}
      56  }
      57  
      58  cmph_t *bmz_new(cmph_config_t *mph, double c)
      59  {
      60  	cmph_t *mphf = NULL;
      61  	bmz_data_t *bmzf = NULL;
      62  	cmph_uint32 i;
      63  	cmph_uint32 iterations;
      64  	cmph_uint32 iterations_map = 20;
      65  	cmph_uint8 *used_edges = NULL;
      66  	cmph_uint8 restart_mapping = 0;
      67  	cmph_uint8 * visited = NULL;
      68  
      69  	bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
      70  	if (c == 0) c = 1.15; // validating restrictions over parameter c.
      71  	DEBUGP("c: %f\n", c);
      72  	bmz->m = mph->key_source->nkeys;	
      73  	bmz->n = (cmph_uint32)ceil(c * mph->key_source->nkeys);	
      74  	DEBUGP("m (edges): %u n (vertices): %u c: %f\n", bmz->m, bmz->n, c);
      75  	bmz->graph = graph_new(bmz->n, bmz->m);
      76  	DEBUGP("Created graph\n");
      77  
      78  	bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
      79  	for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL;
      80  
      81  	do
      82  	{
      83  	  // Mapping step
      84  	  cmph_uint32 biggest_g_value = 0;
      85  	  cmph_uint32 biggest_edge_value = 1;	
      86  	  iterations = 100;
      87  	  if (mph->verbosity)
      88  	  {
      89  		fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n);
      90  	  }
      91  	  while(1)
      92  	  {
      93  		int ok;
      94  		DEBUGP("hash function 1\n");
      95  		bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n);
      96  		DEBUGP("hash function 2\n");
      97  		bmz->hashes[1] = hash_state_new(bmz->hashfuncs[1], bmz->n);
      98  		DEBUGP("Generating edges\n");
      99  		ok = bmz_gen_edges(mph);
     100  		if (!ok)
     101  		{
     102  			--iterations;
     103  			hash_state_destroy(bmz->hashes[0]);
     104  			bmz->hashes[0] = NULL;
     105  			hash_state_destroy(bmz->hashes[1]);
     106  			bmz->hashes[1] = NULL;
     107  			DEBUGP("%u iterations remaining\n", iterations);
     108  			if (mph->verbosity)
     109  			{
     110  				fprintf(stderr, "simple graph creation failure - %u iterations remaining\n", iterations);
     111  			}
     112  			if (iterations == 0) break;
     113  		} 
     114  		else break;
     115  	  }
     116  	  if (iterations == 0)
     117  	  {
     118  		graph_destroy(bmz->graph);	
     119  		return NULL;
     120  	  }
     121  	  // Ordering step
     122  	  if (mph->verbosity)
     123  	  {
     124  		fprintf(stderr, "Starting ordering step\n");
     125  	  }
     126  	  graph_obtain_critical_nodes(bmz->graph);
     127  
     128  	  // Searching step
     129  	  if (mph->verbosity)
     130  	  {
     131  		fprintf(stderr, "Starting Searching step.\n");
     132  		fprintf(stderr, "\tTraversing critical vertices.\n");
     133  	  }
     134  	  DEBUGP("Searching step\n");
     135  	  visited = (cmph_uint8 *)malloc((size_t)bmz->n/8 + 1);
     136  	  memset(visited, 0, (size_t)bmz->n/8 + 1);
     137  	  used_edges = (cmph_uint8 *)malloc((size_t)bmz->m/8 + 1);
     138  	  memset(used_edges, 0, (size_t)bmz->m/8 + 1);
     139  	  free(bmz->g);
     140  	  bmz->g = (cmph_uint32 *)calloc((size_t)bmz->n, sizeof(cmph_uint32));
     141  	  assert(bmz->g);
     142  	  for (i = 0; i < bmz->n; ++i) // critical nodes
     143  	  {
     144                  if (graph_node_is_critical(bmz->graph, i) && (!GETBIT(visited,i)))
     145  		{
     146  		  if(c > 1.14) restart_mapping = bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
     147  		  else restart_mapping = bmz_traverse_critical_nodes_heuristic(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
     148  		  if(restart_mapping) break;
     149  		}
     150  	  }
     151  	  if(!restart_mapping)
     152  	  {
     153  	        if (mph->verbosity)
     154  	        {
     155  		  fprintf(stderr, "\tTraversing non critical vertices.\n");
     156  		}
     157  		bmz_traverse_non_critical_nodes(bmz, used_edges, visited); // non_critical_nodes
     158  	  }
     159  	  else 
     160  	  {
     161   	        iterations_map--;
     162  		if (mph->verbosity) fprintf(stderr, "Restarting mapping step. %u iterations remaining.\n", iterations_map);
     163  	  }    
     164  	  free(used_edges);
     165  	  free(visited);
     166          }while(restart_mapping && iterations_map > 0);
     167  	graph_destroy(bmz->graph);
     168  	bmz->graph = NULL;
     169  	if (iterations_map == 0) 
     170  	{
     171  		return NULL;
     172  	}
     173  	mphf = (cmph_t *)malloc(sizeof(cmph_t));
     174  	mphf->algo = mph->algo;
     175  	bmzf = (bmz_data_t *)malloc(sizeof(bmz_data_t));
     176  	bmzf->g = bmz->g;
     177  	bmz->g = NULL; //transfer memory ownership
     178  	bmzf->hashes = bmz->hashes;
     179  	bmz->hashes = NULL; //transfer memory ownership
     180  	bmzf->n = bmz->n;
     181  	bmzf->m = bmz->m;
     182  	mphf->data = bmzf;
     183  	mphf->size = bmz->m;
     184  
     185  	DEBUGP("Successfully generated minimal perfect hash\n");
     186  	if (mph->verbosity)
     187  	{
     188  		fprintf(stderr, "Successfully generated minimal perfect hash function\n");
     189  	}
     190  	return mphf;
     191  }
     192  
     193  static cmph_uint8 bmz_traverse_critical_nodes(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited)
     194  {
     195          cmph_uint32 next_g;
     196  	cmph_uint32 u;   /* Auxiliary vertex */
     197  	cmph_uint32 lav; /* lookahead vertex */
     198  	cmph_uint8 collision;
     199  	vqueue_t * q = vqueue_new((cmph_uint32)(graph_ncritical_nodes(bmz->graph)) + 1);
     200  	graph_iterator_t it, it1;
     201  
     202  	DEBUGP("Labelling critical vertices\n");
     203  	bmz->g[v] = (cmph_uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
     204  	SETBIT(visited, v);
     205  	next_g    = (cmph_uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
     206  	vqueue_insert(q, v);
     207  	while(!vqueue_is_empty(q))
     208  	{
     209  		v = vqueue_remove(q);
     210  		it = graph_neighbors_it(bmz->graph, v);		
     211  		while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
     212  		{		        
     213                 	        if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
     214  			{
     215  			        collision = 1;
     216  			        while(collision) // lookahead to resolve collisions
     217  				{
     218   				        next_g = *biggest_g_value + 1; 
     219  					it1 = graph_neighbors_it(bmz->graph, u);
     220  					collision = 0;
     221  					while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
     222  					{
     223    					        if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
     224  						{
     225     						        if(next_g + bmz->g[lav] >= bmz->m)
     226  							{
     227  							        vqueue_destroy(q);
     228  								return 1; // restart mapping step.
     229  							}
     230  							if (GETBIT(used_edges, (next_g + bmz->g[lav]))) 
     231  							{
     232  							        collision = 1;
     233  								break;
     234  							}
     235  						}
     236  					}
     237   					if (next_g > *biggest_g_value) *biggest_g_value = next_g;
     238  				}		
     239  				// Marking used edges...
     240  				it1 = graph_neighbors_it(bmz->graph, u);
     241  				while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
     242  				{
     243                   		        if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
     244  					{
     245                     			        SETBIT(used_edges,(next_g + bmz->g[lav]));
     246  						if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
     247  					}
     248  				}
     249  				bmz->g[u] = next_g; // Labelling vertex u.
     250  				SETBIT(visited,u);
     251  			        vqueue_insert(q, u);
     252  			}			
     253  	        }
     254  		 
     255  	}
     256  	vqueue_destroy(q);
     257  	return 0;
     258  }
     259  
     260  static cmph_uint8 bmz_traverse_critical_nodes_heuristic(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited)
     261  {
     262          cmph_uint32 next_g;
     263  	cmph_uint32 u;   /* Auxiliary vertex */
     264  	cmph_uint32 lav; /* lookahead vertex */
     265  	cmph_uint8 collision;
     266  	cmph_uint32 * unused_g_values = NULL;
     267  	cmph_uint32 unused_g_values_capacity = 0;
     268  	cmph_uint32 nunused_g_values = 0;
     269  	vqueue_t * q = vqueue_new((cmph_uint32)(0.5*graph_ncritical_nodes(bmz->graph))+1);
     270  	graph_iterator_t it, it1;
     271  
     272  	DEBUGP("Labelling critical vertices\n");
     273  	bmz->g[v] = (cmph_uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
     274  	SETBIT(visited, v);
     275  	next_g    = (cmph_uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
     276  	vqueue_insert(q, v);
     277  	while(!vqueue_is_empty(q))
     278  	{
     279  		v = vqueue_remove(q);
     280  		it = graph_neighbors_it(bmz->graph, v);		
     281  		while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
     282  		{		        
     283                 	        if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
     284  			{
     285  			        cmph_uint32 next_g_index = 0;
     286  			        collision = 1;
     287  			        while(collision) // lookahead to resolve collisions
     288  				{
     289  				        if (next_g_index < nunused_g_values) 
     290  					{
     291  					        next_g = unused_g_values[next_g_index++];						
     292  					}
     293  					else    
     294  					{
     295  					        next_g = *biggest_g_value + 1; 
     296  						next_g_index = UINT_MAX;
     297  					}
     298  					it1 = graph_neighbors_it(bmz->graph, u);
     299  					collision = 0;
     300  					while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
     301  					{
     302    					        if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
     303  						{
     304     						        if(next_g + bmz->g[lav] >= bmz->m)
     305  							{
     306  							        vqueue_destroy(q);
     307  								free(unused_g_values);
     308  								return 1; // restart mapping step.
     309  							}
     310  							if (GETBIT(used_edges, (next_g + bmz->g[lav]))) 
     311  							{
     312  							        collision = 1;
     313  								break;
     314  							}
     315  						}
     316  					}
     317  					if(collision && (next_g > *biggest_g_value)) // saving the current g value stored in next_g.
     318  					{
     319  					        if(nunused_g_values == unused_g_values_capacity)
     320  						{
     321     						        unused_g_values = (cmph_uint32 *)realloc(unused_g_values, (unused_g_values_capacity + BUFSIZ)*sizeof(cmph_uint32));
     322  						        unused_g_values_capacity += BUFSIZ;  							
     323  						} 
     324  						unused_g_values[nunused_g_values++] = next_g;							
     325  
     326  					}
     327   					if (next_g > *biggest_g_value) *biggest_g_value = next_g;
     328  				}	
     329  				next_g_index--;
     330  				if (next_g_index < nunused_g_values) unused_g_values[next_g_index] = unused_g_values[--nunused_g_values];
     331  
     332  				// Marking used edges...
     333  				it1 = graph_neighbors_it(bmz->graph, u);
     334  				while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
     335  				{
     336                   		        if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
     337  					{
     338                     			        SETBIT(used_edges,(next_g + bmz->g[lav]));
     339  						if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
     340  					}
     341  				}
     342  				bmz->g[u] = next_g; // Labelling vertex u.
     343  				SETBIT(visited, u);
     344  			        vqueue_insert(q, u);
     345  			}			
     346  	        }
     347  		 
     348  	}
     349  	vqueue_destroy(q);
     350  	free(unused_g_values);
     351  	return 0;  
     352  }
     353  
     354  static cmph_uint32 next_unused_edge(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint32 unused_edge_index)
     355  {
     356         while(1)
     357         {
     358  		assert(unused_edge_index < bmz->m);
     359  		if(GETBIT(used_edges, unused_edge_index)) unused_edge_index ++;
     360  		else break;
     361         }
     362         return unused_edge_index;
     363  }
     364  
     365  static void bmz_traverse(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint32 v, cmph_uint32 * unused_edge_index, cmph_uint8 * visited)
     366  {
     367  	graph_iterator_t it = graph_neighbors_it(bmz->graph, v);
     368  	cmph_uint32 neighbor = 0;
     369  	while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
     370  	{
     371       	        if(GETBIT(visited,neighbor)) continue;
     372  		//DEBUGP("Visiting neighbor %u\n", neighbor);
     373  		*unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index);
     374  		bmz->g[neighbor] = *unused_edge_index - bmz->g[v];
     375  		//if (bmz->g[neighbor] >= bmz->m) bmz->g[neighbor] += bmz->m;
     376  		SETBIT(visited, neighbor);
     377  		(*unused_edge_index)++;
     378  		bmz_traverse(bmz, used_edges, neighbor, unused_edge_index, visited);
     379  		
     380  	}  
     381  }
     382  
     383  static void bmz_traverse_non_critical_nodes(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint8 * visited)
     384  {
     385  
     386  	cmph_uint32 i, v1, v2, unused_edge_index = 0;
     387  	DEBUGP("Labelling non critical vertices\n");
     388  	for(i = 0; i < bmz->m; i++)
     389  	{
     390  	        v1 = graph_vertex_id(bmz->graph, i, 0);
     391  		v2 = graph_vertex_id(bmz->graph, i, 1);
     392  		if((GETBIT(visited,v1) && GETBIT(visited,v2)) || (!GETBIT(visited,v1) && !GETBIT(visited,v2))) continue;				  	
     393  		if(GETBIT(visited,v1)) bmz_traverse(bmz, used_edges, v1, &unused_edge_index, visited);
     394  	        else bmz_traverse(bmz, used_edges, v2, &unused_edge_index, visited);
     395  
     396  	}
     397  
     398  	for(i = 0; i < bmz->n; i++)
     399  	{
     400  		if(!GETBIT(visited,i))
     401  		{ 	                        
     402  		        bmz->g[i] = 0;
     403  			SETBIT(visited, i);
     404  			bmz_traverse(bmz, used_edges, i, &unused_edge_index, visited);
     405  		}
     406  	}
     407  
     408  }
     409  		
     410  static int bmz_gen_edges(cmph_config_t *mph)
     411  {
     412  	cmph_uint32 e;
     413  	bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
     414  	cmph_uint8 multiple_edges = 0;
     415  	DEBUGP("Generating edges for %u vertices\n", bmz->n);
     416  	graph_clear_edges(bmz->graph);	
     417  	mph->key_source->rewind(mph->key_source->data);
     418  	for (e = 0; e < mph->key_source->nkeys; ++e)
     419  	{
     420  		cmph_uint32 h1, h2;
     421  		cmph_uint32 keylen;
     422  		char *key = NULL;
     423  		mph->key_source->read(mph->key_source->data, &key, &keylen);
     424  		
     425  //		if (key == NULL)fprintf(stderr, "key = %s -- read BMZ\n", key);
     426  		h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
     427  		h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
     428  		if (h1 == h2) if (++h2 >= bmz->n) h2 = 0;
     429  		if (h1 == h2) 
     430  		{
     431  			if (mph->verbosity) fprintf(stderr, "Self loop for key %u\n", e);
     432  			mph->key_source->dispose(mph->key_source->data, key, keylen);
     433  			return 0;
     434  		}
     435  		//DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key);
     436  		mph->key_source->dispose(mph->key_source->data, key, keylen);
     437  //		fprintf(stderr, "key = %s -- dispose BMZ\n", key);
     438  		multiple_edges = graph_contains_edge(bmz->graph, h1, h2);
     439  		if (mph->verbosity && multiple_edges) fprintf(stderr, "A non simple graph was generated\n");
     440  		if (multiple_edges) return 0; // checking multiple edge restriction.
     441  		graph_add_edge(bmz->graph, h1, h2);
     442  	}
     443  	return !multiple_edges;
     444  }
     445  
     446  int bmz_dump(cmph_t *mphf, FILE *fd)
     447  {
     448  	char *buf = NULL;
     449  	cmph_uint32 buflen;
     450  	cmph_uint32 two = 2; //number of hash functions
     451  	bmz_data_t *data = (bmz_data_t *)mphf->data;
     452  	register size_t nbytes;
     453  #ifdef DEBUG
     454  	cmph_uint32 i;
     455  #endif
     456  
     457  	__cmph_dump(mphf, fd);
     458  
     459  	nbytes = fwrite(&two, sizeof(cmph_uint32), (size_t)1, fd);
     460  
     461  	hash_state_dump(data->hashes[0], &buf, &buflen);
     462  	DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
     463  	nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd);
     464  	nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd);
     465  	free(buf);
     466  
     467  	hash_state_dump(data->hashes[1], &buf, &buflen);
     468  	DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
     469  	nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd);
     470  	nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd);
     471  	free(buf);
     472  
     473  	nbytes = fwrite(&(data->n), sizeof(cmph_uint32), (size_t)1, fd);
     474  	nbytes = fwrite(&(data->m), sizeof(cmph_uint32), (size_t)1, fd);
     475  	
     476  	nbytes = fwrite(data->g, sizeof(cmph_uint32)*(data->n), (size_t)1, fd);
     477  	if (nbytes == 0 && ferror(fd)) {
     478            fprintf(stderr, "ERROR: %s\n", strerror(errno));
     479            return 0;
     480          }
     481  	#ifdef DEBUG
     482  	fprintf(stderr, "G: ");
     483  	for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]);
     484  	fprintf(stderr, "\n");
     485  	#endif
     486  	return 1;
     487  }
     488  
     489  void bmz_load(FILE *f, cmph_t *mphf)
     490  {
     491  	cmph_uint32 nhashes;
     492  	char *buf = NULL;
     493  	cmph_uint32 buflen;
     494  	cmph_uint32 i;
     495  	bmz_data_t *bmz = (bmz_data_t *)malloc(sizeof(bmz_data_t));
     496  	register size_t nbytes;
     497  	DEBUGP("Loading bmz mphf\n");
     498  	mphf->data = bmz;
     499  	nbytes = fread(&nhashes, sizeof(cmph_uint32), (size_t)1, f);
     500  	bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1));
     501  	bmz->hashes[nhashes] = NULL;
     502  	DEBUGP("Reading %u hashes\n", nhashes);
     503  	for (i = 0; i < nhashes; ++i)
     504  	{
     505  		hash_state_t *state = NULL;
     506  		nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f);
     507  		DEBUGP("Hash state has %u bytes\n", buflen);
     508  		buf = (char *)malloc((size_t)buflen);
     509  		nbytes = fread(buf, (size_t)buflen, (size_t)1, f);
     510  		state = hash_state_load(buf, buflen);
     511  		bmz->hashes[i] = state;
     512  		free(buf);
     513  	}
     514  
     515  	DEBUGP("Reading m and n\n");
     516  	nbytes = fread(&(bmz->n), sizeof(cmph_uint32), (size_t)1, f);	
     517  	nbytes = fread(&(bmz->m), sizeof(cmph_uint32), (size_t)1, f);	
     518  
     519  	bmz->g = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*bmz->n);
     520  	nbytes = fread(bmz->g, bmz->n*sizeof(cmph_uint32), (size_t)1, f);
     521  	if (nbytes == 0 && ferror(f)) {
     522            fprintf(stderr, "ERROR: %s\n", strerror(errno));
     523            return;
     524          }
     525  
     526  	#ifdef DEBUG
     527  	fprintf(stderr, "G: ");
     528  	for (i = 0; i < bmz->n; ++i) fprintf(stderr, "%u ", bmz->g[i]);
     529  	fprintf(stderr, "\n");
     530  	#endif
     531  	return;
     532  }
     533  		
     534  
     535  cmph_uint32 bmz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen)
     536  {
     537  	bmz_data_t *bmz = mphf->data;
     538  	cmph_uint32 h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
     539  	cmph_uint32 h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
     540  	DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2);
     541  	if (h1 == h2 && ++h2 > bmz->n) h2 = 0;
     542  	DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, bmz->g[h1], bmz->g[h2], bmz->m);
     543  	return bmz->g[h1] + bmz->g[h2];
     544  }
     545  void bmz_destroy(cmph_t *mphf)
     546  {
     547  	bmz_data_t *data = (bmz_data_t *)mphf->data;
     548  	free(data->g);	
     549  	hash_state_destroy(data->hashes[0]);
     550  	hash_state_destroy(data->hashes[1]);
     551  	free(data->hashes);
     552  	free(data);
     553  	free(mphf);
     554  }
     555  
     556  /** \fn void bmz_pack(cmph_t *mphf, void *packed_mphf);
     557   *  \brief Support the ability to pack a perfect hash function into a preallocated contiguous memory space pointed by packed_mphf.
     558   *  \param mphf pointer to the resulting mphf
     559   *  \param packed_mphf pointer to the contiguous memory area used to store the resulting mphf. The size of packed_mphf must be at least cmph_packed_size() 
     560   */
     561  void bmz_pack(cmph_t *mphf, void *packed_mphf)
     562  {
     563  
     564  	bmz_data_t *data = (bmz_data_t *)mphf->data;
     565  	cmph_uint8 * ptr = packed_mphf;
     566  	CMPH_HASH h2_type;
     567  
     568  	// packing h1 type
     569  	CMPH_HASH h1_type = hash_get_type(data->hashes[0]);
     570  	*((cmph_uint32 *) ptr) = h1_type;
     571  	ptr += sizeof(cmph_uint32);
     572  
     573  	// packing h1
     574  	hash_state_pack(data->hashes[0], ptr);
     575  	ptr += hash_state_packed_size(h1_type);
     576  
     577  	// packing h2 type
     578  	h2_type = hash_get_type(data->hashes[1]);
     579  	*((cmph_uint32 *) ptr) = h2_type;
     580  	ptr += sizeof(cmph_uint32);
     581  
     582  	// packing h2
     583  	hash_state_pack(data->hashes[1], ptr);
     584  	ptr += hash_state_packed_size(h2_type);
     585  
     586  	// packing n
     587  	*((cmph_uint32 *) ptr) = data->n;
     588  	ptr += sizeof(data->n);
     589  
     590  	// packing g
     591  	memcpy(ptr, data->g, sizeof(cmph_uint32)*data->n);	
     592  }
     593  
     594  /** \fn cmph_uint32 bmz_packed_size(cmph_t *mphf);
     595   *  \brief Return the amount of space needed to pack mphf.
     596   *  \param mphf pointer to a mphf
     597   *  \return the size of the packed function or zero for failures
     598   */ 
     599  cmph_uint32 bmz_packed_size(cmph_t *mphf)
     600  {
     601  	bmz_data_t *data = (bmz_data_t *)mphf->data;
     602  	CMPH_HASH h1_type = hash_get_type(data->hashes[0]); 
     603  	CMPH_HASH h2_type = hash_get_type(data->hashes[1]); 
     604  
     605  	return (cmph_uint32)(sizeof(CMPH_ALGO) + hash_state_packed_size(h1_type) + hash_state_packed_size(h2_type) + 
     606  			3*sizeof(cmph_uint32) + sizeof(cmph_uint32)*data->n);
     607  }
     608  
     609  /** cmph_uint32 bmz_search(void *packed_mphf, const char *key, cmph_uint32 keylen);
     610   *  \brief Use the packed mphf to do a search. 
     611   *  \param  packed_mphf pointer to the packed mphf
     612   *  \param key key to be hashed
     613   *  \param keylen key legth in bytes
     614   *  \return The mphf value
     615   */
     616  cmph_uint32 bmz_search_packed(void *packed_mphf, const char *key, cmph_uint32 keylen)
     617  {
     618  	register cmph_uint8 *h1_ptr = packed_mphf;
     619  	register CMPH_HASH h1_type  = *((cmph_uint32 *)h1_ptr);
     620  	register cmph_uint8 *h2_ptr;
     621  	register CMPH_HASH h2_type;
     622  	register cmph_uint32 *g_ptr, n, h1, h2;
     623  
     624  	h1_ptr += 4;
     625  
     626  	h2_ptr = h1_ptr + hash_state_packed_size(h1_type);
     627  	h2_type  = *((cmph_uint32 *)h2_ptr);
     628  	h2_ptr += 4;
     629  	
     630  	g_ptr = (cmph_uint32 *)(h2_ptr + hash_state_packed_size(h2_type));
     631  	
     632  	n = *g_ptr++;
     633  	
     634  	h1 = hash_packed(h1_ptr, h1_type, key, keylen) % n;
     635  	h2 = hash_packed(h2_ptr, h2_type, key, keylen) % n;
     636  	if (h1 == h2 && ++h2 > n) h2 = 0;
     637  	return (g_ptr[h1] + g_ptr[h2]);	
     638  }