(root)/
freetype-2.13.2/
src/
gzip/
adler32.c
       1  /* adler32.c -- compute the Adler-32 checksum of a data stream
       2   * Copyright (C) 1995-2011, 2016 Mark Adler
       3   * For conditions of distribution and use, see copyright notice in zlib.h
       4   */
       5  
       6  /* @(#) $Id$ */
       7  
       8  #include "zutil.h"
       9  
      10  #ifndef Z_FREETYPE
      11  local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
      12  #endif
      13  
      14  #define BASE 65521U     /* largest prime smaller than 65536 */
      15  #define NMAX 5552
      16  /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
      17  
      18  #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
      19  #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
      20  #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
      21  #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
      22  #define DO16(buf)   DO8(buf,0); DO8(buf,8);
      23  
      24  /* use NO_DIVIDE if your processor does not do division in hardware --
      25     try it both ways to see which is faster */
      26  #ifdef NO_DIVIDE
      27  /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
      28     (thank you to John Reiser for pointing this out) */
      29  #  define CHOP(a) \
      30      do { \
      31          unsigned long tmp = a >> 16; \
      32          a &= 0xffffUL; \
      33          a += (tmp << 4) - tmp; \
      34      } while (0)
      35  #  define MOD28(a) \
      36      do { \
      37          CHOP(a); \
      38          if (a >= BASE) a -= BASE; \
      39      } while (0)
      40  #  define MOD(a) \
      41      do { \
      42          CHOP(a); \
      43          MOD28(a); \
      44      } while (0)
      45  #  define MOD63(a) \
      46      do { /* this assumes a is not negative */ \
      47          z_off64_t tmp = a >> 32; \
      48          a &= 0xffffffffL; \
      49          a += (tmp << 8) - (tmp << 5) + tmp; \
      50          tmp = a >> 16; \
      51          a &= 0xffffL; \
      52          a += (tmp << 4) - tmp; \
      53          tmp = a >> 16; \
      54          a &= 0xffffL; \
      55          a += (tmp << 4) - tmp; \
      56          if (a >= BASE) a -= BASE; \
      57      } while (0)
      58  #else
      59  #  define MOD(a) a %= BASE
      60  #  define MOD28(a) a %= BASE
      61  #  define MOD63(a) a %= BASE
      62  #endif
      63  
      64  /* ========================================================================= */
      65  uLong ZEXPORT adler32_z(
      66      uLong adler,
      67      const Bytef *buf,
      68      z_size_t len)
      69  {
      70      unsigned long sum2;
      71      unsigned n;
      72  
      73      /* split Adler-32 into component sums */
      74      sum2 = (adler >> 16) & 0xffff;
      75      adler &= 0xffff;
      76  
      77      /* in case user likes doing a byte at a time, keep it fast */
      78      if (len == 1) {
      79          adler += buf[0];
      80          if (adler >= BASE)
      81              adler -= BASE;
      82          sum2 += adler;
      83          if (sum2 >= BASE)
      84              sum2 -= BASE;
      85          return adler | (sum2 << 16);
      86      }
      87  
      88      /* initial Adler-32 value (deferred check for len == 1 speed) */
      89      if (buf == Z_NULL)
      90          return 1L;
      91  
      92      /* in case short lengths are provided, keep it somewhat fast */
      93      if (len < 16) {
      94          while (len--) {
      95              adler += *buf++;
      96              sum2 += adler;
      97          }
      98          if (adler >= BASE)
      99              adler -= BASE;
     100          MOD28(sum2);            /* only added so many BASE's */
     101          return adler | (sum2 << 16);
     102      }
     103  
     104      /* do length NMAX blocks -- requires just one modulo operation */
     105      while (len >= NMAX) {
     106          len -= NMAX;
     107          n = NMAX / 16;          /* NMAX is divisible by 16 */
     108          do {
     109              DO16(buf);          /* 16 sums unrolled */
     110              buf += 16;
     111          } while (--n);
     112          MOD(adler);
     113          MOD(sum2);
     114      }
     115  
     116      /* do remaining bytes (less than NMAX, still just one modulo) */
     117      if (len) {                  /* avoid modulos if none remaining */
     118          while (len >= 16) {
     119              len -= 16;
     120              DO16(buf);
     121              buf += 16;
     122          }
     123          while (len--) {
     124              adler += *buf++;
     125              sum2 += adler;
     126          }
     127          MOD(adler);
     128          MOD(sum2);
     129      }
     130  
     131      /* return recombined sums */
     132      return adler | (sum2 << 16);
     133  }
     134  
     135  /* ========================================================================= */
     136  uLong ZEXPORT adler32(
     137      uLong adler,
     138      const Bytef *buf,
     139      uInt len)
     140  {
     141      return adler32_z(adler, buf, len);
     142  }
     143  
     144  #ifndef Z_FREETYPE
     145  
     146  /* ========================================================================= */
     147  local uLong adler32_combine_(
     148      uLong adler1,
     149      uLong adler2,
     150      z_off64_t len2)
     151  {
     152      unsigned long sum1;
     153      unsigned long sum2;
     154      unsigned rem;
     155  
     156      /* for negative len, return invalid adler32 as a clue for debugging */
     157      if (len2 < 0)
     158          return 0xffffffffUL;
     159  
     160      /* the derivation of this formula is left as an exercise for the reader */
     161      MOD63(len2);                /* assumes len2 >= 0 */
     162      rem = (unsigned)len2;
     163      sum1 = adler1 & 0xffff;
     164      sum2 = rem * sum1;
     165      MOD(sum2);
     166      sum1 += (adler2 & 0xffff) + BASE - 1;
     167      sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
     168      if (sum1 >= BASE) sum1 -= BASE;
     169      if (sum1 >= BASE) sum1 -= BASE;
     170      if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
     171      if (sum2 >= BASE) sum2 -= BASE;
     172      return sum1 | (sum2 << 16);
     173  }
     174  
     175  /* ========================================================================= */
     176  uLong ZEXPORT adler32_combine(
     177      uLong adler1,
     178      uLong adler2,
     179      z_off_t len2)
     180  {
     181      return adler32_combine_(adler1, adler2, len2);
     182  }
     183  
     184  uLong ZEXPORT adler32_combine64(
     185      uLong adler1,
     186      uLong adler2,
     187      z_off64_t len2)
     188  {
     189      return adler32_combine_(adler1, adler2, len2);
     190  }
     191  
     192  #endif  /* !Z_FREETYPE */